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Preface

This volume contains the proceedings of a conference on Graph Minors, held
at the University of Washington, Seattle, between June 22 and July 5, 1991.
The topics of the talks included algorithms on tree-structured graphs, well-quasi-
ordering, logic, infinite graphs, disjoint path problems, surface embeddings, knot
theory, graph polynomials, matroid theory, and combinatorial optimization. We
have tried to organize the volume so that related papers are near one another.

This volume also contains an English translation of a paper by Yves Colin
de Verdi~re, which was first published in a refereed journal in French. It seems
worthwhile to make this paper more easily accessible, and we are grateful to the
American Mathematical Society and Academic Press for permission to include
the translation. All the other papers in this volume have been refereed.

This conference was one in the series of AMS-IMS-SIAM Joint Summer Re-
search Conferences. It was funded by the Office of Naval Research and by the
National Science Foundation; we would like to express our thanks to the ONR
and NSF for their generous support. Thanks are also due to the other members
of the organizing committee: Harvey Friedman and Bruce Reed; Carole Kohan-
ski, who handled the detailed organization of the workshop; and Donna Harmon,
Christine Thivierge, and Alison Buckser at the American Mathematical Society,
who shepherded us successfully through the publication process.

Neil Robertson
Paul Seymour
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POLYNOMIALS

W. T. TUrTE

1. Kirchhoff's Equations.

The graphs of this paper are of the general kind. That is they can have loops
and multiple edges.

It was in a study of electrical networks that I first encountered graph-
polynomials. There was a variable called the "conductance" associated with
each edge of a graph G. It was important to consider the sum C(G) of
the conductance-products over all the spanning trees of G. This sum could
be expressed as a determinant. There were other determinants derived from
conductance-products over spanning double trees. Some standard problems
about electrical flows in G could be solved in terms of these determinants, the
determinants of "Kirchhoff's Equations" [1]. Note that the loops of G are ir-
relevant in the computation of C(G), and that C(G) is zero for a disconnected
graph.

At the time I was interested only in the special case in which each conduc-
tance had the value 1, and perhaps I did not appreciate the polynomial C(G) in
its full beauty. For that special case, in which C(G) is the number of spanning
trees of G, I was very interested in the recursion formula

(1) C(G)= C(GA) + C(GA).

Here A is any link of G, that is any edge of G having two distinct ends. GA is
the graph obtained from G be deleting that edge, and GA is the graph derived
from G by contracting A, with its two ends, into a single vertex. I looked for
other functions of graphs that satisfied this recursion.

2. Chromatic Polynomials.

I found a recursion similar to (1), attributed to R. M. Foster, in a paper of
Hlassler Whitney [31. For any positive integer 1 the number of vertex-colourings
of G in A colours was denoted by P(G, A). It was understood that in a "vertex-
colouring" each edge must have two ends of different colours. The function

1991 Mathematics Subject Claasification. Primary 05C15
This paper is in final form and no version of it will be submitted for publication elsewhere.
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2 W. T. TUTTE

P(G, A) was found to take the form of a polynornial li A. Once this was rec-
ognized it became possible to define the value of the polynomial at any real or
complex value of A. P(G, A) was called the "chromatic polynomial" of (,, [his
term is now often abbreviated to "chromial". Note tLitt P(G, A) is idelntically
zero whenever G has a loop,

Foster's recursion formula was

(2) P(G, 1) = '((GA, 1) - p(aA. 1).

The analogy with (1) is not perfect, there being a difference instead of a sum
on the right. However this discrepancy can be regarded as trivial: it can be
adjusted by multiplying the function P(G,A) by a power of -1, the index of
-l being the number of vertices of G.

Another difference between C(G) and P(G, A) is that (C(G) is zero for a
disconnected G %%hereas P(G, A) is "multiplicative", that is the chromial of G
is the product of the chromials of the components of G. As a rule I prefer
graph-polynomials to be multiplicative. Sometimes it is possible to work with
connected graphs only, and then it does not matter whether the polynomial is
multiplicative or not.

3. The Dichromnate.

It will be convenient to have names for three very simple graphs. First we
name the "vertex-graph" which has a single vertex and no edges. Then the
"loop-graph", consisting of a single vertex and a single incident loop. Last the
"link-graph", defined by a single link and its two ends. We shall not use the
null graph.

It will also be convenient to have the following notation. We write ao(G) for
the number of vertices of G, al(G) for the number of edges and po(G) for the
number of components. We write also

(3) pl(G) = al(G) - cto(G) +po(G).

We define a graph-polynomial x(G; z, y) in two variables z and y. To begin
with we assume that there is such a polynomial satisfying the following rules.

(i) If G is the vertex-graph, then x(G; x, y) 1.

(ii) x(G; 2;, y) is multiplicative.
(iii) If G has j isthmuses, k loops and no other edge, then

(4) X(G; X, y) = Xj yk.

(iv) If G has an edge A that is neither a loop nor an isthmus then the recursion
(1) applies. That is

(5) x(G; z, y) = x(Ga; I , Y) + x(GA; X, Y)_

We call X(G; x, y), the poly: Tial assumed to be defined by these rules, the
"dichromate" of G. Clearly if such a polynomial exists it is uniquely determined.
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We leave the justification of the assumption to the next Section. Meanwhile we
take note of some of its consequences.

3.1. The adjunction of an isolated vertex to G makes no difference to the dichro-
mate, by Rules (i) and (ii).

3.2. The dichromate of a link-graph is x, and that of a loop-graph is y, by Rule
(iii).

3.3. If G is connected then x(G; 1, 1) is the number of spanning trees of G.

To prove this we define rn(G) as the number of edges of G that are neither
loops nor isthmuses. If m(G) = 0 then G has just one spanning tree, obtained
from G by deleting any loops. But x(G; 1, 1) = I by Rule (iii). So the theorem
is true in this case.

We complete the proof by induction on m(G), using the two recursions (1)
and (5).

3.4. The dichromate of G is related to the chromial by the equation

(6) (-1)°o(G)(-.))Po(G)P(G, A) = x(G; 1 - A, 0).

This can be proved by sho,,,ing that the expression on the left satisfies the
four rules for the appropriate values of z and y.

If G is a connected planar graph we denote its dual by G*. It is well-known
that in the change from G to G* any isthmus is transformed into a loop and
any loop into an isthmus. Moreover the dual of GA is G*A and the dual of GA

is Gý. Using these observations we can deduce from the rules that

(7) x(G*; z, y) = x(G; y, x).

From (6) and (7) we can relate the dichromate of G to the chromatic poly-
nomial of G*.

Consider the special case in which G consists of two vertices joined by two
links. Then GA is a link-graph and GA a loop-graph. By Rule (iv)

(8) x(G; ,y) = x + y.

We can regard this result as a simple example of the rule that the dichromate
of a self-dual graph must be symmetrical in the two variables. This rule is a
consequence of (7).

Now let G be a 3-circuit. If A is one of its edges we find that each of the two
edges of GA is an isthmus, and that GA is the graph of Equation (8). So, by
Rule (iv),

(9) x(G; z, y) = x' + x + y.

It is not difficult to continue in this way until we get to the complete graph
K4 of 4 vertices. We then find that

(10) x(K4; x, y) = 2x + 3x 2 + z3 + 2y + 4xy + 3y2 +y.
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Again we have a self-dual planar graph and a symmetrical dichromate.

4. An Existence Proof for the Dichromate.

In this Section we define a graph-polynomial R(G; x, y) in two variables by an
explicit formula. We then show that it satisfies our four rules for the dichromate.
We then know that there is indeed a polynomial X(G; z, y) satisfying the four
rules. The rules themselves guarantee the uniqueness of this polynomial, by an
inductive argument over the number m(G) of edges of G that are neither loops
nor isthmuses.

Let S be any subset of the edge-set E(G) of G. Let us write G: S for the
spanning subgraph of G corresponding to S, that is the subgraph whose vertices
are those of G and whose edges are the members of S.

We define R(G; z, y) by the following equation

(11) R(G; z, y) = -(x- 1)P-(G:s)-po((y- _1)p(G:s).

S

It is easy to verify Rule (i) for R(G; x, y). For the vertex-graph S can only
be the null set. Then both indices on the right of (11) are zero and we must
put R = 1. For the link-graph or loop-graph with edge A the set S must be
{A} or the null set. So for the link-graph the first index is 1 and the second is
zero for the non-null S and both indices are zero when S is null, whence R = x.
For the loop-graph the first index is zero and the second 1 for the non-null S,
whence R = y.

To prove Rule (ii) for R suppose G to be the union of two disjoint subgraphs
H and K. Then the possible choices for S are the unions, each of an arbitrary
subset Sg of E(H) with an arbitrary subset SK of E(K). For each such choice
we can verify that the first index on the right of (11) is

po(G : SH) + po(G : SK) - po(H) - po(K)

and that the second is

p (G : Sm) + pi(G :SK).

We deduce that

(12) R(G; x, y) = R(H; z, y).R(K; x, y).

Repeated application of this result shows that R(G; x, y) is the product of the
R-polynomials of the components of G. Thus R is multiplicative in the sense
of Rule (ii).

The same argument, leading to Equation (12), can be applied when G is
the union of two subgraphs H and K having just one vertex v in common.
Repeated application of (12), in this interpretation, then shows that R(G; z, y)
is the product of the R-polynomials of the blocks of G, that is the maximal
non-separable subgraphs. Rule (iii) follows from this result since each loop and
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each isthmus of G defines a one-edged block. We state the property of this
paragraph by saying that the polynomial R is "block-multiplicative".

To prove Rule (iv) for R we split the sum on the right of (11) into two
sums, the first over subsets S containing A and the second over subsets S not
containing A. Since A is neither a loop nor an isthmus of G the first sum is
readily identified as R(GA; x, y) and the second as R(GA; x, y).

We have now verified the existence and uniqueness of X(G; x, y). We have
also found two new theorems for it, which we state below as 4.1 and 4.2. The
second is a strengthening of Rule (iv).

4.1. x(G;x,y) is given explicitly by the sum on the right of (11).
4.2. x(G; x, y) is block-multiplicative.

5. The Dichromate as a Sum Over Spanning Trees.

The sum of the numerical coefficients in x(G; x, y) is the number of spanning
trees of G, by 3.3. This suggested that each spanning tree should be associated
with a product of the form xayb, and that X(G; z, y) should be the sum of this
product over all the spanning trees.

The 3-circuit seemed to be a counter-example to this conjecture. It has three
spanning trees and they are all equivalent under the symmetry of the circuit.
So does not the conjecture imply that the dichromate of the 3-circuit is of the
form 3 xayb, contrary to (9)?

This argument from symmetry was circumvented by enumerating the edges
of G as a sequence U = ( C ,e ,e3,. , e m,),

so destroying the symmetry, and then defining a and b in terms of U, as well as

of the particular spanning tree under consideration. Unexpectedly but conve-
niently the final sum over all the spanning trees was found to be independent
of the enumeration U. Consider any spanning tree T of a connected graph G.
Let A be an edge of T. Its deletion from T splits the tree into two subtrees T,
and T'2. We write C(T, A) for the set of all edges of G, other than A, which
have one end in T1 and the other in T2 . Clearly no member of Q(T, A) belongs
to T. We say that the members of C(T, A) are the edges of G "covered by A",

with respect to T.
Now let B be an edge of G not in T. Its ends are joined by an arc L(B)

in T. If B is a loop then L(B) reduces to a vertex-graph. The edges of L(B)
constitute a set D(T, B). We say they are the edges of G "covered by B", with
respect to T.

Let A and B be distinct edges of G. It is clear that if A covers B with respect
to T then B covers A with respect to T.

An edge ej of G is said to be "dominant" with respect to T if it covers no edge
with a suffix exceeding j. We define a(T) as the number of dominant edges in T,
and b(T) as the number of dominant edges not in T, for the fixed enumeration
U. In [2] a(T) is called the "internal activity" and b(T) the "external activity"
of T.
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We now define a graph-polynomial F(G; x, y). If G is connected we define it
as a sum over the spanning trees T of G, thus:

(13) F(G; x, y) "Z Xa(T)yb(T).

T

If G is not connected we define F(G; x, y) as the product of the F-polynomials of
the components of G, taking the enumeration induced by U in each component.

5.1. The polynomials F(G; x, y) and X(G; x, y) are identical for each enumera-
tion U of E(G).

Since both x(C; x, y) and F(G; x, y) are multiplicative it is only necessary
to prove this theorem for the connected case. We proceed by induction over
al(G). We note first that if G is edgeless then it can only be a vertex-graph.
There is just one spanning tree T, and for it the indices a(T) and b(T) are both
zero. We therefore write F(G; x, y) = 1. So the theorem is true in this case, by
Rule (i).

Assume as an inductive hypothesis that the theorem holds whenever al(G)
is less than some positive integer q, and consider the case ai(G) = q. Then let
A be the edge el of U.

Suppose first that A is a loop of G. Then it belongs to no spanning tree and
is dominant for every spanning tree. Its deletion converts G into GA, and the
spanning trees of G become the spanning trees of GA. Moreover the deletion
does not affect the dominance or otherwise of any other edge with respect to
any spanning tree. (For GA we use the enumeration U, derived from U by
deleting el and then reducing each remaining suffix by 1). Hence

F(G; x, y) = yF(GA; x, y)

= YX(GA, x, y), by the induction hypothesis,

= x(G; x, y), by Rule (i) and 4.2.

Suppose next that A is an isthmus of G. Then it belongs to every spanning
tree and is dominant for every spanning tree. Its contraction converts G into
GA and the spanning trees of G become the spanning trees of GA. Moreover
the deletion does not affect the dominance or otherwise of any other edge with
respect to any spanning tree. (We use U1 for GA). Hence

F(G; x, y) = xF(GA; X, y)

= xX(GA; X, y), by the induction hypothesis,

= x(G;x,y), by Rule (i) and 4.2.

In the remaining case A is neither a loop nor an isthmus of G. Then A is
not dominant for any spanning tree. We split the sum on the right of (12) into
two sums, the first over the spanning trees containing A and the second over
the spanning trees not containing A. Let us contract A to change G into GA,
for which we use the enumeration U1 . Then the spanning trees of the first sum
are changed into the spanning trees of GA. With respect to any one of them
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the dominance or otherwise of any edge other than A is unchanged. So the first
sum is F(GA;X,y). We treat the second sum by deleting A to change G into
GA, and then using U1. The spanning trees of the second sum are those of GA,
and with respect to any one of them the dominance or otherwise of any edge
other than A is unchanged. Accordingly the second sum is F(GA; X, y). Hence

F(G; x, y) = F(GA; z, y) + F(GA; X, y)

- c(GA; z, y) + c(GA; x, y), by the induction hypothesis,

- c(G;.z,y), by Rule (iv).

This completes the proof of the theorem.

6. A Conjecture.

Using 5.1 we can rewrite (13), for a connected G, as

(14) x(G; x, y) = Ex(ii)~r' /.

Here x(i,j) is the number of spanning trees T of G for which exactly i edges
of T and exactly j edges not in T are dominant in the chosen U. The sum
is over all values of i from 0 to cro(G) - 1 and over all values of j from 0 to
ki(G) - ao(G) + 1 = p1 (G).

The coefficients are conveniently regarded as the entries in a matrix C of
ao(G) - 1 rows and pi(G) columns, the entry in the ith row and jth column
being x(i, j).

Until recently it could be said that in all known cases the matrix C shows
a simple regularity. In each row and each column: no entry lies between two
larger ones. Accordingly it was conjectured that the regularity holds for every
G. However news was received at the Seattle meeting that a counterexample
had been discovered by Werner Schw~irtzler of Bonn University. I have learned
that it is to be published in the Journal of Combinatorial Theory.

7. Some Associated Polynomials.

Let G be a connected graph with n vertices. For each spanning tree T of G
let q(G, T; i, j) be the number of enumerations U of E(G) for which a(T) = i
and b(T) = j. Then from the results of Section 6 we have

(15) n!x(i,j) = Eq(G,T;i,j).
T

For each T we can define the two-variable polynomial

(16) J(G, T; z, y) = E q(G, T; i,j)z'&y,

the sum being over all relevant values of i and j. Then by (15) we have

(17) n!x(G;z,y) = ZJ(G,T;z,y).
T
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We now define a polynomial Q(H; z) for an arbitrary graph H. In it the
coefficient of xk is the number of enumerations of the vertex-set V(H) of H
in which exactly k vertices are dominant. A "dominant" vertex is one that is
joined to no vertex coming later in the enumeration.

In a generalization Q(H, R, S; x, y) of Q(H, x) we split V(H) into two com-
plementary subsets R and S. We then define the coefficient of the product zXy'
to be the number of enumerations of V(G) with exactly i dominant vertices in
R and exactly j in S.

Going back to G and T we can define a graph H and a partition (R, S) of
V(H) as follows. The vertices of H are the edges of G. Two vertices of H are
joined by an edge if and only if each covers the other with respect to T in G.
The set S is made up of the edges of T, and R of the edges of G not in T.
Evidently

(18) J(G, T; x, y) = Q(H, S, T; x, y).

In this special case H is bipartite.
It is natural to ask if Q(H, x) and Q(H, S, T; x, y) each have a property

analogous to that once conjectured for x(G; x, y), as explained in Section 6.
But these polynomials have been calculated for too few graphs to justify a
formal conjecture.

In Reconstruction Theory a "vertex-deleted" subgraph of H is a subgraph
obtained by deleting one vertex and its incident edges. Thus there are as many
vertex-deleted subgraphs of H as H has vertices. It is easy to show that for
a connected graph H having at least two vertices the polynomial Q(H, x) is
the sum of the polynomials Q(K, z) over all the vertex-deleted subgraphs of H.
Thus the polynomial is trivially reconstructible.
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Tutte Invariants for 2-Polymatroids

JAMES OXLEY and GEOFF WHITTLE

Introduction

This paper describes a theory of Tutte invariants for 2-polymatroids that

parallels the corresponding theory for matroids. The paper is a slightly infor-

mal exposition of the main results of [13] and contains no proofs. In particular,
it shows that 2-polymatroid invariants obeying deletion-contraction recursions

arise in the enumeration of many combinatorial structures including match-

ings and perfect matchings in graphs, colourings in hypergraphs, and common

bases in pairs of matroids. The main result is that, just as for matroids, there
is a two-variable polynomial that is essentially the universal Tutte invariant

for 2-polymatroids.

Section 1 of the paper presents some basic facts about polymatroids. Sec-
tion 2 summarizes the theory of Tutte-Grothendieck invariants for matroids
which we are seeking to generalize, and Section 3 describes this generalization.
The graph and matroid terminology used throughout will follow Bondy and

Murty [1] and Oxley [11], respectively.

1. Polymatroids

We begin with an example. Let M be the rank-3 matroid that is repre-
sented geometrically in Figure 1. Now pick some set of flats of M, say the
lines that are labelled 1,2,3, and 4 and the points labelled 5,6,7,8, and 9. Let
E = {1,2,...,9} and, for each subset X of E, let f(X) be the rank in M of
the union of the flats that are labelled by members of X. So, for example,
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f({1}) = f({2}) = f({3}) = f({4}) = 2,

f({5}) = f({6}) = f({7}) = f({8}) = f({9}) 1,

f({1L5}) = f({1,5,6}) = 2, f({I,2}) = 3, and so on.

5

3

_6

8
@2

09 4

Figure 1

Then the pair (E, f) is an example of a polymatroid.

Next consider slightly modifying this example by allowing the set E to
be a multiset of flats of M. This amounts geometrically to adding flats in
parallel to existing flats as shown, for instance, in Figure 2. In that case,
E = {1, 1', 2,3,3', 4,5,51,5", 6,7,7',8,9} and, for example, f({I, 1'}) = 2,

5"1 3

' 2
09 7 7

Figure 2

f({I,5, 5'}) = 2, and so on. Again, (E, f) is an example of a polymatroid.

Formally, a polymatroid (E, f) consists of a finite set E and a function
f : 2 E -- such that

(i) f(0) = 0;
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(ii) if X C Y, then f(X) < f(Y); and

(iii) if X, Y, C E, then f(X) + f(Y) . f(X U Y) + f(X n Y).

But we find it easier to think of polymatroids geometrically as in the above
examples. Indeed, every polymatroid arises as a multiset of flats of some
matroid in the manner described there [ 7, 8, 101.

This paper will focus on 2-polymatroids, where, for a positive integer k, a
k-polymatroid is a polymatroid (E, f) such that f({e}) <: k for all e in E. Thus
a 1-polymatroid is just the rank function of a matroid, and both of the examples
looked at earlier are 2-polymatroids. Geometrically, every 2-polymatroid can
be viewed as consisting of a multiset of lines, points, and loops of some matroid.

Two well-known classes of 2-polymatroids will receive the most attention
here. The members of the first class arise from graphs in the following way.
Let G be a graph having edge set E and, for all X C E, let f0 (X) be IV(X)I,
the number of vertices of G that are incident with some edge in X. It is not
difficult to check that (E, fo) is indeed a 2-polymatroid. Comparing this 2-
polymatroid with the more familiar cycle matroid M(G) of G, we note that the
rank of X in M(G) is IV(X)I - k(X) where k(X) is the number of components
of the induced graph G[X]. Moreover, unlike M(G), the 2-polymatroid (E, fG)

uniquely determines G up to the possible presence of isolated vertices.

Our second fundamental class of examples of 2-polymatroids arises from
matroids. Let M1 and M 2 be matroids on a common ground set E and, for

all X C E, let f(X) = r1 (X) + r 2 (X) where ri is the rank function of Ali.
Since each of (E, rj) and (E, r2 ) is a 1-polymatroid, it is easy to show that
(E, ri + r 2) is a 2-polymatroid.

2. Tutte-Grothendieck invariants for matroids

Much of the motivation for our results on 2-polymatroid isomorphism
invariants derives from the well-established theory of Tutte-Grothendieck in-
variants for matroids. This theory, which grew out of work of Tutte [14] for
graphs, is reviewed in detail in [3]. We now briefly summarize some of the

relevant aspects of the theory.

Let 931 be a class of matroids that is closed under isomorphism and the tak-
ing of minors. A function V on 9R1 taking values in a field K is an isomorphism
invariant if O(M) = V(N) whenever M L N.

Several numbers that one can associate with a matroid M such as its
number of bases, its number of independent sets, and its number of spanning
sets obey the following two basic recursions:

(2.1) Vk(M) = O(M\e)ýb(MI{e}) if e is a separator (a loop or coloop) of M;
and

(2.2) for some fixed non-zero members a and r of K,
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O(M) = aU(M\e) + i4'(M/e)

if e is not a separator of AM.

An isomorphism invariant on 9R1 that obeys (2.1) and (2.2) is called a gen-
eralized T-G invariant on 91. There are many well-known important examples
of such invariants; for instance, the chromatic polynomial is a generalized T-G
invariant on the class of graphic matroids as is the flow polynomial. One par-
ticularly attractive feature of these invariants is that they are all evaluations
of a certain universal invariant. To state this result formally, we shall need
another definition. For a matroid M having ground set E and rank function
r, the (matroid) rank generating function is given by

(2.3) s(M; u, v) = E u'(E)-r(X)vIXI-r(X),
XCE

or, equivalently,

(2.4) s(.4; u, v) = F Ur(E)-r(X)Vr*(E)-r'(E-X).
XCE

It is not difficult to show that this function is a generalized T-G invariant with
a = r = 1. Moreover, for the two single-element matroids, U1.1 and U0,1 , which
consist of a single coloop and a single loop, respectively,

s(Uii;u,v) = u + I and s(Uo,1; u,v) = v + 1.

These matroids are distinguished here because they are the only irreducible
matroids with respect to the operations in (2.1) and (2.2).

Extending a result of Brylawski [2], Oxley and Welsh [12] proved that every
generalized T-G invariant is easily expressible in terms of the rank-generating
function:

(2.5) THEOREM. Let 9N) be a class of matroids that is closed under isomor-
phism and the taking of minors. If 0 is a generalized T-G invariant from 9)1
into a field K such that ip(U1 ,.) = x and V'(Uo,1 ) = y, then, for all M in 9n1,

VI(M) = orE(M)I-r(M)Tr(M) s(M; - 1, - 1).

T a

This result is more usually stated in terms of the Tutte polynomial
t(M; x, y), where

t(M; x, y) =- s(M; x - 1, y - 1).

However, the above form of the result extends more naturally to 2-polyma-
troids. Some well-known basic evaluations of the rank generating function are
as follows:

(2.6) s(M; 1, 0) is the number of independent sets of M;
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(2.7) s(M- q, 0) is the number of bases of M; and

(2.8) s(M; 0, 1) is the number of spanning sets of Al.

3. Isomnorphism invariants for 2-polymatroids

Our approach to developing a theory of isomorphism invariants for 2-
polyrnatroids will be to try to mimic the corresponding theory for matroids.
But there are several potential problems that one needs to solve.

Firstly, what does it mean for an element e to be a separator in a 2-

polymatroid (E, f)? Here we follow Cunningham [4] and define e to be a sepa-
rator if f(e) + f(E - e) = f(E). It should be noted that whereas the separators
in a matroid are of just two types, loops and points, those in a 2-polymatroid
are of three types: loops, points, and lines.

Next we need to define deletion and contraction in a 2-polymatroid (E, f).
Deletion is straightforward; we define it in terms of restriction of f: if
A C E and X C E -- A, then

(f\A)(x) = f(X).

For contraction, we again look to matroids. If rMf is the rank function of a
matroid Al on E and A C E, then the rank function of Al/A is defined by

rM/A (X) = rA,(X U A) - rMf (A)

for all X C E - A. This suggests defining contraction in a 2-polymatroid (E, J)
analogously, that is,

(f/A)(X) = f(X U A) -. f(A)

for all X C E - A [6]. It is not difficult to show that (E -- A, f/A) is indeed
a 2-polymatroid. Moreover, this definition of contraction is conzistent with
the inatroid definition in another sense. If the polymatroid f is represented
as a multiset E of flats of a matroid Al and A C E. then f/A has a i 'tural
representation as a multiset of flats of M/(ua.Aa).

We now have analogues for 2-polymatroids of two of the three fundamental
rnat-roid operations of deletion, contraction, and the taking of duals. The basic
link between these operations in the matroid case is

(3.1) M*\e =(Me)*.

Whittle [15] proposed that duality for 2-polymatroids should be an idempo-
tent operation for which the analogue of (3.1) always holds. Moreover, he
showed that if this occurs, that is, if, for all 2-polymatroids (E, f) and all c
in E,(f*)* = f and f \e = (f/e), then the dual (E,f*) of (E,f) m,.,it be
defined by
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(3.2) f*( v) = 21XI + f(E - X) - f(E)

for all X C E. The last equation should be compared with the formula for the
usual dual of a inatroid rank function r, which is given by

r*(X)= X + r(E-X) -r(D).

Next, we consider the elements in a 2-polymatroid that are not separators.
Such elements obey one of the following three conditions, where the dual f*
of f is its 2-polymatroid dual:

(i) f(E - e) =f(E) and f*(E- e) = f*(E) - 1;

(ii) f(E- e) = f(E) -1 and f*(E- e) = f*(E); and

(iii) f(E - e) = f(E) and f*(E - e) = f*(E).

Note that if f is a matroid rank function and f* denotes the rank function
of thc dual matroid. then those elements obeying (i) and (ii) above are precisely
the loops and coloops, respectively, of the matroid. Conditions (i). (ii), and
(iii) are equivalent to (i)', (ii), and (iii)', respectively, where (i)' -- (iii)' are as
follows:

(i)' f(E - e) = f(E) and f (e) = 1;

(ii)' f(E - e) = f(E) - 1 and f(e) = 2; and

(iii)' f(E - e) = f (E) and f(c) = 2.

In view of the existence of these three different types of nonseparator
elements iil 2-polymatroids, the definition of a generalized Tutte invariant for
2-.plymatroids, which we shall give next, will allow three distinct variants on
the fundamental deletion-contraction recursion.

,,et T9 be a class of 2-polymatroids that is closed under isomorphism,
deletion, and contraction. Assume that 91 contains U0. 1, U1.1 , and U2,1, ,ie
single-element 2-polymatroids of ranks zero, one, and two which corre.-,pond to
a loop, a point, and a line. An isomorphism invariant ii, on 91 is a generalized
Tutte 4nvariant for 91 if, whenever f is a member of 91 having ground set E
anl e E E, v)(f) E C[x,y,z a,b,c,d,m,n] w',ere

(3.3) 7(U 2 ,1) = x, V)(Uo.1) = y, and ?p(Uj1,) = z;

(3.4) 1,(f) =P(f\(E -e))V(f\e) if e is a separator of f;

and

(3.5)

a,/(f\e) + bln(f/e) if f(E - e) = f(E) and f(e) = 1:
4(f) = c +)(f\e) ± dV'(f /e) if f(E- e) = f(E) - I and f(e) = 2;

mU'(f\-) + nV(f/e) if f(E - e) = f(E) and f(e) = 2.
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An important example of such an invariant is the 2-polgyiatriwd rank gqcn-
eratzng function which is defined a.5 follows:

(3.6) S(f: u. cr) E U1f(E)- f(X\ 112i.; --f X)

X CE

or. equivalently,

(3.7) S(f .U. v) U f Il(E)-"f (X) 11f *I )-f*(E'- X).

XCE

Indeed, it is not difficult to check that. S(f: i., r) is a generalized Tutte invariant
on the class of all 2-polynatroids having

x = 1 4 +2 I 4- 1,2, z = u + v. in n= 1, a=d= 1, b = v, andc= u.

The reader should note the similarity between (2.4) and (3.7), the dif-
ference being that, in the first, the duality is matroid duality while, in the
second, it is 2-polymatroid duality. One striking difference occurs here be-
tween S(f: u, v) and an arbitrary generalized T-G invariant for matroids. For
the latter, the four paranett- f, x y, a, and r are independent. But. for the

former the nine parameters. x. y, z, in. n, a, b, c. and d, are far from being inde-
pendent. A natural question here is whether some such dependence is forced
for all generalized Tutte invariantis for 2-polymatroids. Our main result will
answer this. Before presenting it. we look at certain interesting evaluations
of S(f: u, v) for the two special classes of 2-polymatroids distinguished earlier.
We begin with the analogues of (2.6) (2.8).

Recall that, for a graph G,fG(X) = IV(X)I for all X C E(G). It is not
difficult to see that

(3.8) S(fG; 1,0) is the number of matchings of G.

Moreover, if G has no isolated vertices, then

(3.9) S(fc: 0, 0) is the number of perfect matchings of G; and

(3.10) S(fG,; 0,1) is the number of subsets of E(G) that cover V(G).

Now suppose that ri and r2 are the rank functions of matroids MA and
Al 2 on E. Then

(3.11) S(r1 + r2 ; 1,0) is the number of common independent sets of M1 and

(3.12) S(r1 + r2 ; 0,0) is the number of common bases of M1 and A12; and

(3.13) S(ri + r 2;0, 1) is the number of common spanning sets of MA and AM2.

Generalizing the above, we note that, for an arbitrary 2-polymatroid
(E,f),
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(3.14) S(f; 1. 0) is the number of matchings of (E, f). and

(3.15) S(f, 0, 1) is the number of spanning sets of (E, f),

where a matching is a set X such that f(X) = 21XI, while a spanming set is a

set Y for which f(Y) = f(E).

The 2-polymatroid rank generating function is closely related to the ma-

troid rank generating function. Indeed, if s(f; u, ?) is defined for a 2-polyma-
troid f by simply replacing r by f in (2.3). then

(3.16) S(f;u, v) = vf(E)s(f; uv'-,v2) provided v $ 0.

The last observation may suggest that S(f: u, v) contains little more in-
formation than s(f; u, v). In practice, however, several of the more interesting
evaluations of S(f: u, v) arise when v = 0. For instance, if G is a graph, then

(3.17) uyf(E)/ 2 S (f: u -1/2.0) is the matching generating polynomial

F mkUk of G where mk is the number of k-edge matchings of G.
k>O

If the graph G has n isolated vertices and i = VET--, then

(3.18) u" if- (F S (f-; -iu, 0) is the matching defect polynomial of G (Lovksz

and Plummer [9]).

Among the interesting properties of S(f: u. v) that are easily proved are

the following:

(3.19) S(f*;u.v) = S(f;v.u);

(3.20) S(f; 1, 1) = 2 1EL;

(3.21) S(f; -_t, -v) = (- 1 )f(E) 5(f; u, v); and

(3.22) S(f; ¼,u) = (1 + u2)IE, u-f(E) provided u $ 0.

The matching generating and matching defect polynomials are just two
examples of several single-variable polynomials that arise as special cases of
S(f; u, v). For example, if G is a graph without isolated vertices and LO(G) is

a random subgraph of G obtained by independently deleting each edge of G
with probability I - p, then

(3.23) (1 -p)iEI-fG(E)i2 pfc(E)/2 S (fG; 0,p 1/2 (1 - p)-1/2) is the probability
that w(G) has no isolated vertices.

Another evaluation of S(f; u, v) is the stability polynomial A(G: p) of a
graph G, a polynomial that has been studied by a number of authors (see.,
for example, Farr [5I). For G having no isolated vertices, A(G;p) is defined as
follows. Suppose that the vertices of G are chosen independently, each with
probability p. Then A(G; p) is the probability that the chosen set of vertices is
stable. Farr showed that A(G;p) = F (_l)tL- pfG(X), Hence

XCE
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(3.24) A(G;p) = (ip)fcG(E) S (fc;;-ip-',i).

Finally we note that S(f; u, v) has several important applications to hy-
pergraphs. For instance,

(3.25) if(E) S(f;-iA,i) (-1) XI AI(E)-1(X) = P(f;A) where P(f;A)
XCE

is the characteristic polynomial of f (Helgason [7]), which enumerates colour-
ings of a hypergraph in the same way that the chromatic polynomial enumer-
ates colourings in a graph.

Evidently 2-polymatroid rank generating functions arise in a wide variety
of contexts. The next theorem, the main result of the paper, indicates why
these functions are so pervasive by noting that S(f; u, v) is essentially the
universal Tutte invariant for 2-polymatroids.

(3.26) THEOREM. Let Vb be a generalized Tutte invariant on the class of all
2-polymatroids and suppose that at most two of x, y, z, a, b, c, d, m, and n are
identically zero. Then one of the following occurs:
(i) a =m;d=n;mx =mn+c 2 ;ny =mn+b 2 z - b+c;m $0;n #0; and

for all 2-polymatroids f, (f)- S(f; ((mn),/2)

(ii) = xy = ax+bz = cz+dy = mx+ny; yz = az+by; xz =cx+dz;
and, for all 2-polymatroids f, V)(f) = Q(f) where

(= yIEJ-f(E)zf(E) if f(E) •_ IEI;
xf(E)--i'zf*(E) if f(E) >_ EI.

Of the two functions arising here, S(f; u, v) is, by now, quite familiar. The
other function Q is basically trivial. The only information it conveys about
(E, f) is the cardinality of E and the value of f(E). Thus, in the 2-polymatroid
case, just as in the matroid case, there is essentially a unique universal Tutte
invariant.

The proof of the theorem involves looking at a number of small 2-polyma-
troids. For each of these, one evaluates P in two different ways. For instance, if
(E, f) is represented geometrically by a single point on a line, then, on deleting
and contracting the line, we get

P(ý) = c•(o) + d)(UGo,l)

= cz + dy.

On the other hand, deleting and contracting the point gives

S= aV(/) + 60(o)

= ax + bz.

Thus, for t to be well-defined,

cz + dy = ax + bz.
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By looking at several other examples, one obtains a number of other re-
lations between the nine variables involved. A detailed case analysis of these
relations leads eventually to the result. I1 fact, one can drop the restriction
that at most two of x, y, z, a, b, c, d, 77, and n are zero for, in so doing. one
merely admits six more trivial invariants each of which is a monomial convey-
ing very limited information.
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Extremal matroid theory

JOSEPH P. S. KUNG

1. INTRODUCTION

As matroid theory is the common generalization of graph theory and projec-
tive geometry, one can, in an expansionist mood, classify every extremal problem
in either area under extremal matroid theory. But, more plausibly, the reverse
is the case: extremal matroid theory is motivated by and derives many - but
not all - of its problems and methods from graphical and geometric extremal
problems. In this survey, we shall begin by discussing several classical extremal
theorems and problems connected with matroids. Next, in §3, we shall present
results about excluding submatroids. In §§4, 5, and 6, results about excluding
minors will be discussed. Finally, in §7, we shall discuss the matroid version of
the direction problem in real and complex space. It goes without saying that
any survey reflects the philosophy and research work of its author. This survey
concentrates on what I personally find interesting.

2. EXTREMAL PROBLEMS

2.1. Extremal graph theory

We begin with two well-known theorems. The first is a corollary of Euler's
formula for polyhedra and is perhaps the oldest result in extremal combinatorics.
Let v(F) be the number of vertices and e(r) the number of edges in a graph r.

(2.1) THEOREM. Let r be a simple planar graph with at least 3 vertices. Then

e(r) <: 3v(r) - 6.

The graphs attaining this bound are the planar triangulations.
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(2.2) DIRAC'S THEOREM [25]. Let F be a simple graph with at least 2 vertices
not containing the complete graph K4 as a minor (or subcontraction). Then

e(r) <_, 2v(r) - I.

The bounds on e(L) are both linear in v(F). This is not an accident and is due
to the fact that the two classes of graphs under consideration are closed under
minors.

(2.3) THEOREM. Let m be an integer greater than 2. There exists a constant
Cm such that for any simple graph F with no Km -minor,

e(r) < cmV(r).

This theorem was first proved by Mader in [60] with cm = 2`3. Mader's proof
is one of the sources of the method of cones (see §6) used in extremal matroid
theory. His idea is to do induction on m using the neighborhood graph of a
vertex. The case m = 3 is easy. Now let m > 4. Let u be a vertex of a minor-
minimal graph IF satisfying e(F) > 2m- 3v(r). By minimality, there are more
than 2 m-3 edges incident on u and every such edge is on at least 2 m-3 graphical
triangles. Hence, the graph Fr, induced by the vertices adjacent but not equal
to u has minimum degree at least 2 m-3 and hence, satisfies e(F,) > 2m-av(r•).
By induction, F,, contains a Kmin--minor A. The minor induced by u and A is
a Kmn-minor in F.

The bound given in Mader's proof is not the best possible. Using random
graphs, Thomason [78] showed that up to o(1),

0.265m l-og,2 m _< cm < 2.68m log2 m.

(2.3) implies that if one excludes any graph as a minor, then there is a drastic
drop in the maximum number of edges, from (v(r)), quadratic in v(F), to a
number bounded by a linear function in v(F).

When subgraphs are excluded, the situation is qualitatively different: the
maximum number of edges is quadratic in v(F), with some degenerate exceptions.
This is illustrated by one of the best-known results in extremal graph theory,
Turin's theorem [82].

(2.4) TURAN'S THEOREM. Let r be a simple graph on v vertices not contain-
ing Km as a subgraph. Then F contains at most tm-l (v) edges, where tml (v) is
the number of edges in the complete (m - 1)-partite graph Tm-I(v) on v vertices
with [(v + k- 1)/(m- 1)J vertices in the kth class. In addition, T,,_i(v) is the
unique graph on v vertices with no Km-subgraph having tm, -(v) edges.

Surveys of extremal graph theory can be found in [13,14,15].

2.2. Matrices

A matrix M with integer entries is said to be totally unimodular if all its sub-
determinants equal -1, 0, or 1. Totally unimodular matrices arose in algebraic
topology and linear programming. See [9] and [73, p. 299].
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(2.5) HELLER'S THEOREM [36]. Let M be an n x c totally unimodular matrix
with no repeated columns. Then

c•<2 (n) + 2n +1.

A totally unimodular matrix M with n rows has 2 (') + 2n + 1 distinct columns
if and only if M is the matrix made up from the zero column, the n x n identity
matrix and its negative, and the n x 2(') vertex-edge incidence matrix of the
complete directed graph on n vertices.

Besides putting restrictions on subdeterminants, one can also exclude certain
submatrices. The first theorem of this type is due to Sauer [71] and Shelah [76].
They proved the case q = 2 of the following theorem due to Anstee and Murty
[8]. Let Si(q) be the m x qm matrix consisting of all possible columns on m
rows with entries from the set {0, 1, 2,... , q - 1}.

(2.6) THEOREM. Let M be a n x c matrix with entries from {0, 1, 2,.. ,q- 1}
and no repeated columns. Suppose that no submatrix of M is a row or column
permutation of Sm(q). Then

c_ (q - 1

i=n-m+l

The bound in (2.6) is sharp but a characterization of the matrices with the
maximum number of columns is not known. Because every matrix with m rows,
no repeated columns, and entries in {0, 1,--- , q - 1} can be obtained from a
submatrix of S..(q) by row or column permutations, (2.6) yields a bound (not
necessarily sharp, of course) for matrices not containing any matrix in a given
set of matrices as a submatrix. For further work on excluding submatrices, see
the papers [2,3,4,5,7,81.

When q = 2 and m = 3, the bounds in (2.5) and (2.6) are identical. This is
not accidental because one can prove Heller's theorem from (2.6) [12].

2.3. Directions

In his 1970 note [721, Scott proposed the problem of finding the minimum
number of directions or slopes determined by a finite set or configuration of
points in the real Euclidean plane R2 . This problem was solved by Ungar [87].
(See also [21,22,44].)

(2.7) UNGAR'S THEOREM. Let S be a configuration of n points in R2 . Then
S determines at least n directions if n is even and n - 1 directions if n is odd.

The direction-critical configurations for which equality occurs have not been
determined. There are four known infinite families for odd n, one of which
consists of sets of vertices of a regular (n - 1)-gon together with its center. See
[42,43,44].
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2.4. Matroids and their minors

We shall assume familiarity with the basic ideas of matroid theory [24,51,70,
91,95,96,98]. Because our interest is in counting the number of points (or rank-1
flats), we shall use the word "matroid" to mean "simple matroid" or "geometry".
The size IGI of a matroid G is the number of points in G. We shall use G to
denote b:oth the matroid and its set of points.

The contraction G/U of a matroid G by a set U of points is defined to be the
(simple) matroid induced on the flats covering the closure U of U by the upper
interval [t, il in the lattice L(G) of flats of G. In particular, if a is a point, G/a
is a matroid on the set of lines (or rank-2 flats) containing a with a lattice of
flats isomorphic to the [a, i]. Thus, G/U is the simplification of the contraction
as it is usually defined and G/U = G•U. If F is a simple graph and a an edge in
the graph, then the contraction, as defined here, is the graphic matroid M(F/a),
where P/a is the graph obtained from F by contracting a and removing loops
and all but one edge from each set of multiple edges.

When a matroid G is represented by the column vectors of a matrix MG over
a field, contraction by a point a has the following explicit interpretation. Take
the column ce representing a. By row operations on MG, reduce c, so that all
but one of its entries, say, the entry at row u, are zero. Now delete row u and
column ca. The resulting matrix represents a matroid whose simplification is
isomorphic to G/a.' A representation for G/a can be obtained by removing all
but one column from each set of projectively equivalent columns.

A minor of a matroid G is a matroid which can be obtained from G by a
sequence of deletions or contractions of points.

We shall use the standard designations for frequently occurring matroids. In
particular, Ur,, is the uniform matroid with s points and rank r, U2,, is the s-
point line, PG(n, q) is the rank-(n + 1) projective geometry of dimension n over
the finite field GF(q), AG(n, q) is the rank-(n + 1) affine geometry of dimension
n over GF(q) [obtained by deleting a hyperplane from PG(n, q)], F7 is the Fano
plane, Fj- is the non-Fano plane, and RI0 is the regular rank-5 matroid on 10
points that is neither graphic nor cographic [10,75]. In addition, we shall denote
the (orthogonal) dual of a matroid G by G'. The nullity of G is the rank of its
dual G'. The corank of a flat U in G is the difference rank(G) - rank(U).

2.5. Extremal matroid theory

Given the examples in §§2.1 and 2.2, it is reasonable to say that extremal
matroid theory is concerned with the following question:

Let C be a class of matroids satisfying given properties. Determine the size
function

h(C; n) = max{IGI : G E C and rank(G) =- n}

and characterize the matroids of maximum size.

'If a row is simply deleted, then one obtains a "quotient" of G.
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Of course, we may have to settle for upper or lower bounds for h(C; n). The rank
is the correct parameter because for a connected graph F on v vertices, the rank
of the cycle matroid M(IF) equals v - 1. In addition, the rank of a matrix is at
most the number of rows. Because most matrices of maximum size contain a full
identity submatrix, the rank is a good substitute for the number of rows.

Historically, the first theorem in extremal matroid theory is Heller's theorem
published in 1957. At about the same time, Tutte [84] showed that a matroid is
regular (that is, representable over every field) if and only if it can be represented
over the integers by a totally unimodular matrix. Hen-e, Heller's theorem says:2

h(R,;n)= (n +)

where 'R is the class of regular matroids. Heller's work was not followed up until
the 1970's, when Murty [61] and Baclawski and White [9] extended it (see (6.4)).

In 1980, I was led, while considering characteristic sets [38], to ask the ques-
tion: What is the maximum size of a matroid representable over GF(p) and
GF(q), where p and q are different primes? Heller's theorem indicated that it
should be quadratic, and this in fact is the case (see §6.4). Somewhat earlier, Sey-
mour's decomposition theorem [75] showed another direction in which Heller's
theorem can be extended. Much of this survey will be concerned with work done
since then.

Besides the class of regular matroids, other important classes of matroids are:

£(q), the class of GF(q)-representable matroids,

g, the class of graphic matroids, and

g-, the class of cographic matroids.

Their size functions are given by the following formulas:

h(C(q);n) = -1
q-1

h(G;n) (n + 1)
( 2 '

h(G--;n) = 3n- 3.

The first two formulas are elementary. The formula for cographic matroids can
be proved3 by observing that if G is a connected cographic matroid, then there
exists a 3-edge-connected graph F (possibly having multiple edges> such that G
is the dual of the cycle matroid M(F) of F. Because F is connected, M(F) has
rank v - 1 and nullity e - v + 1, where v = v(F) and e = e(F). Moreover, every
vertex of F has degree at least 3 and hence 3v < 2e. We conclude that

IGI < e < e + [2e - 3v] = 3[e - v + 1] - 3 = 3rank(G) - 3.

2 Note that the zero column is never used when representing a simple matroid. Moreover,

a column and its negative represent the same projective point. Hence, the bound in Heller's
theorem yields the bound of (') + n = ( 2 ) for regular matroids.

3 This proof is implicit in Jaeger 139]; this explicit version of the proof was communicated
to me by Lindstrom (see [49]). Related papers by Jaeger are [40,41].



26JOSEPH P. S. KUNG

2.6. The critical problem

The critical problem for matroids was posed by Crapo and Rota [24, Chap. 15]
as a geometric analogue of coloring and flow problems for graphs. Let G be a
set of points in projective space PG(m, q). The critical exponent c(G; q) is the
minimum corank of a subspace U in PG(m, q) such that U n G = 0. The critical
exponent of G can be calculated from the characteristic polynomial

"XG(A%) - •t(O'X)Arank(G)-rank(X)

X:XEL(G)

Here, #i is the Mobius function of the lattice L(G) of flats of G.

(2.8) THEOREM (CRAPO AND ROTA). Let G be a set of points in PG(m, q).
Then c(G; q) is the minimum positive integer c such that xc(qC) # 0.

An important consequence of this theorem is that c(G; q) depends only on q and
L(G). It does not depend on the representation G -* PG(m, q); in particular, it
is independent of the rank m + 1 of the ambient projective space. Hence, the
critical exponent c(G; q) over GF(q) can be defined for any matroid G in £(q)
by defining it to be the critical exponent of any one of its GF(q)-representations.

From the definition, it is immediate that if H is a submatroid of G, where G
is a (simple) £(q)-matroid, then c(H. q) < c(G; q). The critical exponent behaves
badly under contraction and duality. For example, the affine geometry AG(n, q)
has critical exponent 1; however, all of its one-point contractions are isomorphic
to PG(n - 1, q) and have critical exponent n. In the same vein, PG(n, q) has
critical exponent n + 1 but its dual PG(n, q) ' is affine and has critical exponent

.4

The critical exponent of a set G of points in PG(m, q) can also be defined to
be the minimum number c of hyperplanes H 1, H2,.- .. , H, in PG(m, q) such that
for every point a in G, there exists a hyperplane Hi such that a ' Hi. Thus,
c(G; q) equals the minimum number c such that G can be partitioned into c
affine subsets of points.

A graphic matroid M(r) is affine as a binary matroid if and only if r is
bipartite (see [24,91]). Hence, for a graphic matroid M(r), the critical expo-
nent over GF(2) is the minimum number c such that the edge set of F can be
partitioned into c subsets, A1 , A2,- -. , Ac, each of which induces a bipartite sub-
graph. Let (Ai, B,) be a bipartition of the graph induced by the edge set Ai. If
v is a vertex of r, let bi(v) = 0 if v E Ai and 1 if v E Bi. Then the assignment
v '-4 (b1 (v), b2(v),... , be(v)) is a proper coloring of F with colors from {0, 1}C. We
deduce that the chromatic number of a graph F is at most 2c(M(");2). From this,
we see that for graphic matroids, the critical exponent over GF(2) approximates
the chromatic number up to the nearest power of 2.

4 To see this, use the fact [981 that if G is represented by the column vectors of a n x s
matrix M over GF(q), then G1 is represented by the column vectors of any matrix N whose
row vectors span the orthogonal complement of the subspace spanned by the row vectors of Al
in [GF(q)]s'.
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2.7. Gain-graphic matroids

Gain-graphic matroids are important examples which come up naturally when
studying minor-closed classes of matroids.5 In this section, we briefly describe
these matroids.

6

The rank-n Dowling matroid Qn(GF(q)×), or briefly, Qn(q), over the mul-
tiplicative group GF(q)x of the finite field GF(q) is the C(q)-matroid of size
(q- 1)(2) + n consisting of the following points in projective space PG(n - 1, q):

el, e2,.- ,en, and ei + oej, for all pairs i 0 j and all a E GF(q)x.

Here ei is the standard basis vector with the i-coordinate 1 and the other coordi-
nates 0. The points in Q, (2) are the column vectors in the vertex-edge incidence
matrix of the complete graph K&+1 over GF(2) with the last row deleted. Simi-
larly, the points in Q,,(3) can be thought of as column vectors in the incidence
matrix of a complete signed graph on n vertices. Thus, Q•(q) is a "q-analogue"
of the cycle matroid M(Kn+1 ). It can be represented graphically by the complete
graph K& with "half-edges" at every vertex and q - 1 multiple edges labelled by
GF(q) × between every pair of vertices.

It turns out that because the points in Qn(q) are linear combinations of one
or two basis vectors, the dependencies can be specified graphically without using
the additive structure of GF(q) or the commutativity of multiplication. Hence,
one can define the rank-n Dowling matroid Qn(A) over any group A for all n.
Moreover, when n = 3, the dependencies can be specified without using associa-
tivity: hence, Q3 (A) can be defined over any quasi-group or Latin square A. A
gain-graphic matroid over the group A is a submatroid of Q,, (A) for some n. In
particular, the gain-graphic matroids over the group of order 1 are the graphic
matroids and those over the (cyclic) group of order 2 are the signed-graphic ma-
troids [1001. We shall denote by Z(A) the class of gain-graphic matroids over
the group A. By definition, the rank-n Dowling matroid Qn(A) is the rank-n
matroid of maximum size in Z(A); hence,

h(Z(A);n) = JAI(n) + n.

For our purposes, Dowling matroids have two important properties [27].
Firstly, they are upper homogeneous: if a is a point in Qn(A), then Qn (A)/a ý
Qn- I (A). It follows from this that contractions of gain-graphic matroids over a
group A are gain-graphic over A. Secondly, they have the following representabil-
ity property.

"5Historically, gain graphs arose from two different sources. In response to a problem of Rota
to find a "q-analogue" of the partition lattice, Dowling 127,281 defined lattices of group-labelled

partitions which turned out to be the lattices of flats of complete gain-graphic matroids. (See
also [26].) Zaslavsky [99] discovered a connection between signed graphs and arrangements
of hyperplanes defined by root systems. These two lines of thought were brought together

by Zaslavsky, who defined and studied gain graphs and their generalization, biased graphs, in
[100,101,102,1031 and other papers. Gain graphs were called "voltage graphs" from the time

of their discovery until the middle 1980's, when their name was changed to avoid confusion
with systems subjected to Kirchhoff's voltage laws.

6 A brief but complete description, based on Zasiavsky's work, is in [46, p. 492].
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(2.9) THEOREM (DOWLING). When n > 3, the Dov,',ag matroid Q,(A) over
the group A is represtntable over a skew field K if and only if A is a subgroup
of the multiplicative group of K.

A co-gain-graphic matroid over A is the dual of a matroid in Z(A). Let Z(A)'
be the class of co-gain-graphic matroid over A. Using the method in §2.5 for
computing the size function of the class of cographic matroids, one can show
that

h(Z(A)'; n) = 3n - 3.

It is noteworthy that the size iunction of Z(A)' does not depend on A.

3. EXCLUDING SUBMATROIDS

In this section, we consider results about excluding submatroids. A class C is
said to be submatroid-closed if every matroid that is isomorphic to a submatroid
of a member of C is also in C. If {MI is a collection of matroids, we denote by
E&Xsub(Ma) the submatroid-closed class of matroids not containing any of thu
matroids M0 as subinatroids. If C is submatroid-closed, then C = Mub(A),

where {M,,,} is the collection of matroids not in C.

3.1. Excluding non-afline matroids

In this section, we consider the question of bounding the number of points in
matroids in 1(q) without a given matroid as a submatroid. There are surprisingly
tight bounds on the size function of many submatroid-closed classes.

(3.1) LEMMA. Let {Ma} be a collection of matroids in C(q) and let c be the
minimum min{c(Ma; q)} of their criticat exponents. Then,

h(.FXUb(M1) n L(q); n) > qn-1 + qn-2+ + + qq-c+i = q• - qr-c+l

q- 1

PROOF. Let E_ 1 (n,q) be the rank-n matroid PG(n - 1,q)\H obtainec by
removing a subspace H of codimension c- I from the rank-n projective geometry
PG(n - 1, q). By construction, E,-I(n, q) has critical exponent c - 1. Because
the critical exponent of a submatroid of E,-1 (n, q) is at most c - 1, E,-1 (n, q)
does not contain any of the matroids M,, as submatroids. The number of points
in Ec, I (n,q) equals

q -n qn-c+l -- 1 q n - qn-C+l n-1

q-1 q-1 q-1 = q.
l---n-c+l

This yields the lower bound for the size finction. EJ
Because PG(m, q) has critical exponent m + 1, (0 1) yields a lower bound oi

(qf- qr-C+l)/(q - 1) for the size function of the class of C(q)-matroids with nO

PG(m, q)-submatroid. This bound is in fact sharp. This is a consequence of the
following theorem due to Bose and Burton [16]7

7Bose and Burton used this theorem to show that certain linear codes are unique.
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(3.2) THEOREM (BURTON AND BOSE). Let G be a matroid of rank n in
eX 8 ub(PG(m, q)) n C(q). Then

qn n-rn

IGI <_ _q qyq- + q n- 2 +,..+q, nm+l

points. Em(n,q) is the unique rank-n matroid containing (qn - qn-ml)/(q - 1)
points and no PG(m, q)-submatroid.

SKETCH OF PROOF. The main step in the proof is to show that for a set F
of points in PG(r - 1, q),

(a) fF1 < JPG(k - 1, q) = (q" - 1)/(q - 1) implies that c(F;q) _< k - 1, and
(b) fFf--- (qk 1)/(q - 1) and rank(F) > k imply that c(F: q) < k - 1.

This is done by considering the average number of points in F on a subspace of
a given rank.8  D

The full projective geometries PG(m, q) are geometric analogues of the com-
plete graphs Km+,. Hence, (3.2) is an analogue in £(q) of Turin's theorem and
the matroids Ea(n, q) are analogues of the m-partite graphs Tm((n + 1). We re-
mark that the density IE, 1(n; q)/PPG(n - i, q)I of Ema(n, q) in PG(n - 1, q) has
the following approximation:

E,(n; q)PCG(n - 1,q)I = I q-m I
qn - 1

This suggests that there should be an extension of (3.2) along the lines of the
Erd6s-Stone theorem [311 in extremal graph theory. (3.1) and (3.2) yield the
following corollary.

(3.3) COROLLARY. Let {MJ} be a collection of matroids in £(q), c = min
{c(M 0 ; q)}, and r = min{rank(MJ)}. Then,

qn -- qn-C+l qfn - qn-r+l

- --<1 h(EXV,.b(M,) n C(q); n) <q -1 q -

In particular, if m > q, the class £Xsub(M(Km)) fl C(q) satisfies the bounds
given in (3.3) with c = [logq ml and- r = rn - 1.

The lower bounds in (3.1) and ý3.3) are non-trivial (and exponential) only
if c > 1, that is, only if all the matroids Ms, are non-affine. Not much is
ki1 : wn about excluding affine matroids. Note 'hat for any positive integer k,
there exists a submatroid-closed class with size function a polynomial in n of
degree k. For example, the class of binary matroids which can be represented
over GF(2) with vectors having at most k non-zero coordinates has size function

(n) + (G7-) + + (0). There might be a difference between excluding a finite
and an infinite set of affine submatroids.

8 The bound in (3.2) is very similar to the bound in (2.4). (2.4) is about excluding subma-
trices, that is, submatroids of quotients obtained from a specific representation of a matroid.
If the matrix contains a full identity sub,'atrix, then one is excluding a minor from a specific
representation of a matroid. Thus, (2.4) yields bounds for matroids no, containing minors
obtainable using a specific recipe.



30 JOSEPH P, S. KUNG

3.2. Excluding graphs from regular matroids

One can exclude stibmatroids from subclasses of £(q), For example. excluding
sul)matroids from Z(A) would yield an "extremal gain-graph theory" . Another
natural subclass is the class RZ of regular matroids. Lee (581 obtained the first
extrenial regular-niatroid theorem by extending Turin's tht.)rem for rt = 3.
Roberta Tugger j8_] then observed that every excluded-subgraph theorem with
a bound quadratic in the number of vertices extends readily to an extrenial
regular-matroid theorem. To show how this is done, we shall prove the following
extension of all the cases of Turhn's theorem.

(3.4) TUGGER'S THEOREM. (a) For m > 4,

h(eX.,b(M(K,,,)) n 1?; n) = t,,, (n + I).

(b)
hVX,,, b(GAI (Kj)) n IZ; 1) = t 2 (n + 1) if n $ 5

110 if n = 5.

SKETCH OF PROOF. By Seymour's decomposition theorem [751, a regular
matroid can be obtained by taking 1-, 2-, or 3-sums of graphic or cographic
matroids *nd copies of the matroid RIO. Now observe that

(a) Any cographic rnatroid of rank n has at most 3n - 3 points,
(b) Rio has rank 5 and 10 points, and
(c) The size function is quadratic: more precisely.

tri_(n + 1) (r2) (n + 1)2.

2(r,- 1)

Hence, it is respected as an upper bound when 1-, 2-. and 3-sunis are
taken. 0

With minor adjustments. (3.4) also holds when 1Z is replaced by the classes
EX(FF) n£(2) or £X(F7 !') n C(2).

4. MINOR-CLOSED CLASSES AND
THE GROWTH RATE CONJECTURE

At present, most of the results in extremal matroid theory are about excluding
minors.1 In D§4, 5, and 6, we shall describe all the known results in a unified
way.

4.1. Minor-closed classes

A minor-closed class C of matroids is a class satisfying the conditions:

(MC1) If G is a matroid in C and H is isomorphic to a minor of G, then H is
also in C;

(MC2) C contains a rank-n matroid for every non-negative integer n.

9'This theory is perhaps too similar to extremal graph theory to be worth extensive study.

"1One can also exclude series minors. This is analogous to excluding topological subgraphs
or subdivisions in extremal graph theory. Two papers about series minors are [10.11].
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The second condition (MC2) is there simply to avoid unnecessary pedantry when
stating theorems; it is equivalent to C containing all the free matroids U,,, of rank
n on n points. If {MA} is a collection of matroids, the class &X(Mf,) of matroids
not having any of the matroids MA as minors satisfies (MCI). Conversely, any
class C satisfying (MCI) has this form: take {M0 } to be the collection of all the
matroids not in C. The simplest minors to exclude are lines. We denote by 11(q)
the class 9X(U2,q+2) of matroids with no (q + 2)-point-line-minor.

Unions and intersections of arbitrary families of minor-closed classes are also
minor-closed classes. If B is a class of matroids, there is a unique smallest minor-
closed class containing it. This class is the completion B of B defined by:

0= fl{C: B C C, C minor-closed}.

The size function of P may be larger than the size function of B. However, if the
contraction of every matroid in B is a submatroid of a matroid in B, then 9 is
the class of all submatroids of matroids in 8; in this case, the size functions of
B and B are equal.

Now suppose that C and V are two minor-closed classes with the same size
function h(n). Then the union CUAD also has size function h(n). Hence, if h(n) is
the size function of a minor-closed class, there exists a unique maximum minor-
closed class M such that h(M;n) = h(n); this class M is obtained by taking
the union of all the minor-closed classes with size function h(n). If {MN } is an
antichain under the minor order, the class £X(MA) is a maximum class if and
only if for all a, IMQ( > h(EX(Ma); rank(Ma)) and for all proper minors N of
MQ, INI < h(EX(Mft); rank(N)). We conjecture that a maximum class in U(q)
can be characterized by a finite set of forbidden minors.

Two functions h and k defined on the non-negative integers are asymptotically
equal if there exists an integer N such that for all n > N, h(n) = k(n). When
this is the case, we write h(n) - k(n).

When studying minor-closed classes, it is often technically more convenient
to work with the first difference of the size function. The growth rate g(C: n) of
a class C of matroids is the difference

h(C; n) - h(C; n - 1).

The maximum growth rate g(C) is defined to be max{g(C; n) : I < n < oc} if
this maximum exists; it is said to be infinite otherwise.

A line is said to be long if it contains at least three points. Long lines in binary
matroids are 3-point lines. Long lines are important because they determine the
number IGI - IG/al of points destroyed when a point a is contracted in a matroid
G. More precisely, because points in G/a are lines in G containing a,

IGI - IC/al = 1 + Z1 i- 2),
t:aEf

where the sum is over all the long lines incident on a. The cone Ca at the point
a is the union of the point sets of all the long lines incident, on a.
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(4.1) LEMMA. Let a be a point in a matroid G.
(a) The number of points in the cone C, equals

I - 1) -=! - IG/al + #lon, lines on a.
e:aEe

(b) Suppose G is in U(q) and IGI - IG/al > m + 1. Then a is incident on at least
[-'i1 long lines and

ICalI!m+[ m q +1.

PROOF. To prove (b), observe that l - 2 < q - 1 for every line in a U(q)-
matroid. 0

Let C be a class of matroids. A matroid E in C is said to be extremal if any
simple proper extension of E of the same rank is not in C. Matroids in C having
maximum size are extremal but the converse is not necessarily the case.

(4.2) LEMMA. Let G be a matroid in a minor-closed class C. Suppose X is
a subset of points in G such that the restriction GIX is an extremal matroid in
C. Then X is a modular flat of G.

PROOF. See [49, (3.1)]. E

An easy and frequently used case of (4.2) is: a (q + 1)-point line is modular in a
U(q)-matroid.

4.2. Excluding lines

In this section, we shall consider the size functions of the minor-closed classes
U(q) and £(q). Since every matroid containing a circuit contains a U2 .3 -minor,
U(1) is the class {Uk,n : 0 < n < oc} of free matroids. When q is a prime power,
U2,q+2 is not representable over GF(q); hence, £(q) _ U(q). The next theorem1'
clarifies somewhat the relationship between the size functions of U(q) and £(q).

(4.3) THEOREM. Suppose q is a positive integer greater than 1. Then,

h(U(q); n) < q -
q q-1

with equality for n > 4 if and only if q is a prime power. If q is a prime power
and n > 4, a rank-n matroid in U(q) contains the maximum number of points
if and only if it is a projective geometry PG(n, q). A rank-3 matroid in U(q)
contains the maximum number of points if and only if it is a projective plane of
order q.

PROOF. We begin with a technical lemma.

"Weaker versions of this theorem can be found in (44,471.
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(4.4) LEMMA. Let G be a rank-n matroid in U(q) and let X be a copoint in
G. Then IG\XI :_ q',-1.

PROOF. We proceed by induction on n, the rank of G. The lemma is evident
when n equals 1 or 2. Now, let U be a coline contained in X. The upper interval
[U, iJ is a line in U(q) and contains at most q + 1 copoints. By induction, if Y
is such a copoint, IY\UI < q1- 2. Because G\X is the union of Y\U, where Y
ranges over all the copoints in [U, i] not equal to X,

IG\XI •_ q(qf-l) = q2-1. El

From the lemma and induction, we conclude that if G is in U(q), X is a copoint
in G, and U is a coline contained in X, then

IGI < IXJ +tqn-2 < I +q+q2 + qn-2 + qn-,,

where t + 1 is the number of copoints in the upper interval [U, i]. If equality is
attained, then

(a) IXf = I±+ q 2+ ... + qf-2 , that is, X has maximum size in 14(q), and
(b) [U, i] contains q + 1 copoints.

In particular, GIX is extremal; hence, by (4.2), X is a modular copoint. We
conclude that if IGI = 1 +q+q 2 +... +±q,'-, then every copoint in G is modular
and hence G is a modular matroid. Moreover, every upper interval of rank 2, and
hence every line (by modularity), has q + 1 points. Therefore, G is a projective
geometry of oider q. When rank(G) > 4, this forces q to be a prime power
[1,74]. In this case, G is isomorphic to PG(n - 1, q). When rank(G) = 3, G is a
projective plane of order q. Such projective planes may exist 12 when q is not a
prime power. El

(4.5) COROLLARY. Let C be a minor-closed class. The following are equiva-
lent:

(a) The size function h(C; n) is defined and finite for all n;
(b) h(C; 2) is defined and finite;
(c) C C_ 4(q), where q + 1 h(C; 2).

It seems likely that when q _ 2,

h(U4(q); n) ý q. 1

where q. is the largest prime power less than or equal to q. Some caution is
necessary here since U(q) is known not to be well-quasi-ordered when q > 3.
An interesting problem is to determine all the extremal matroids in U(3). The
known extremal matroids are: the projective geometries PG(n, 2) and PG(n, 3),
U3,.5 , certain non-representable self-dual matroids obtained by "relaxing" circuit-
hyperplanes, and their parallel connections (at points).13 Are these all the ex-
tremal matroids?

12None is actually known to exist at present.
13See [70, Chap. 141 for more details.
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4.3. Varieties

A variety of matroids is a class closed under minors and direct sums in which
there is exactly one extremal matroid for each rank. The minor-closed classes
C(q) and Z(A) are varieties. In fact, they motivated the definition! Because
of this, they are called the classical varieties. There are three other kinds of
varieties:

(a) U(1), the variety of free matroids,
(b) M(s), the variety of matchstick matroids, consisting of submatroids of

direct sums of (s + 1)-point lines, and
(c) 0(s), the variety of origami matroids, consisting of submatroids of the

matroids 0, defined as follows: Take an infinite sequence of (s + 1)-
point lines e2, 63,"'*. Choose two distinct points xi and y, on the line
fi. Define 0,, inductively by setting 02 = f 2 and defining O, to be the
parallel connection of O0-1 and f,, in which the points y,-_ and x,, are
identified.

These three kinds of varieties are said to be degenerate. Rather surprisingly, the
classical and degenerate varieties are all the varieties of finite matroids [46].14

(4.6) CLASSIFICATION OF VARIETIES. Let V be a variety of finite matroids.
Then V equals U(1), M(s) for some positive integer s, 0(s) for some positive
integer s, Z(A) for some finite group A, or, C(q) for some prime power q.

Related results can be found in [35,491.

4.4. The growth rate conjecture

There are many natural questions one can ask about minor-closed classes.
For example, one can ask whether the classical variet;- are well-quasi-ordered
under minors. Another question is whether these varieties can be characterized
by a finite set of forbidden minors. 15 A less well-known problem is to prove the
growth rate conjecture [521. This conjecture was inspired by the classification
of varieties. Roughly speaking, this conjecture says that there are exactly three
possible behavior for the size function of a minor-closed class contained in U(q) :
exponential, quadratic, and linear. We first state the technical version of this
conjecture for binary matroids.

(4.7) CONJECTURE.

(a) Let h(n) be the size function of the class EX(PG(m., 2)) nf (2) of binary
matroids with no PG(rn, 2)-minor, where m is a fixed integer greater than 1.

'4 The condition that V be closed under direct sums is essential. For example, since a minor
of a wheel (see §5.1) is a subgraph of a smaller wheel, the completion of the class of all cycle
matroids of wheels is a graphic minor-closed class having exactly one extremal matroid for each
rank. Other examples can be obtained by taking completions of suitable classes of uniform
matroids.

151t is easy to see that the degenerate varieties are well-quasi-ordered. The degenerate
varieties, as well as £(2), £(3), and g, can also be characterized by finite sets of forbidden
minors. The problem of finding the forbidden minors for Z({+, -}), the class of signed-graphic

matroids, deserves more attention.
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Then h(n) is quadratic, that is,

(n + 1)< h(n) < u(n),

where u(n) is a quadratic polynomial in n whose coefficients depend only on m.
(b) Let h(n) be the size function of the class EX(AI(Km)) n L(2) of binary

matroids with no M (Km)-minor, where m is a fixed integer greater than 2. Then
h(n) is linear, that is,

h(n) <_ cn - d,

where c and d are constants depending only on m.

(4.7) implies the following striking conjecture.

(4.8) THE GROWTH RATE CONJECTURE FOR BINARY MATROIDS. Let h(n) be
the size function of a minor-closed class C of binary matroids. Then

(a) h(n) = 2' - 1 and C equals C(2),
(b) h(n) is quadratic and C contains g, or
(c) h(n) is linear.

To see that (4.7) implies (4.8), sup, -e that C y4 £(2). Then, for some m,
PG(m, 2) is not in C and C C EX(PG(m, 2)) n £(2). Hence, h(n) is bounded
above by some quadratic polynomial in n. If C contains the class g of graphic
matroids, then h(n) > (n+,)" If not, then, for some ra, M(Km) is not in C,
C C £X(M(Km)) n £(2), and h(n) is linear.

For 1(q)-matroids, the technical version of the growth rate conjecture is more
complicated because of the existence of proper subfields and subgroups in finite
fields and their multiplicative groups. In addition, the exa•c" size function of U(q)
is not known when q is not a prime power. In the remainder of this section, I
shall describe what seems to be true in my current state of ignorance.

(4.9) CONJECTURE. Let {MR} be a collection of matroids in 11(q) and let
h(n) be the size function of the class £X(MV,) n U(q).

(a) Suppose that for some prime power r, r < q, {M,,} n (r) =0 . Let ý be
the maximum such prime power. Then,

ffl - 1
h(n) -, fn I

(b) Suppose that for every prime power r, r < q, there exists a matroid M"
which is in C(r). Then,

h(n) :_ u(n),

where u(n) is a quadratic polynomial in n whose coefficients depend only on q
and { M, }.

(c) Suppose that for every group A having order at most q - 1, there exists a
matroid M, which is in Z(A). Then,

h(n) < cn - d,
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where c and d are constants depending on only q and {M,}.

As in the binary case, (4.9) implies that there is a discrete hierarchy amongst
size functions of minor-closed classes in U(q). This is best shown using an exam-
ple. We emphasize that the last four size-function estimates are conjectural.

h(U(3);n) = 1(3 n - 1)

h(EX(U3,5 ) nlU(3);n) = '(3' -1)
2

h(EX(U3,5,PG(4, 3)) nlU(3);n) - 2" - 1

1

2(n) + n < h(EX(U3 ,5 , PG(4, 3),PG(3, 2))n lU(3); n) u1 (n)

n +) + h(CX(U 3,5,PG(4,3),PG(3,2),Q 3(3)) nlU(3);n) < u2(n)

h(eX(U3,5, PG(4, 3), PG(3, 2), Q3 (3),M(K5 )) n U(3); n) _< en - d.

Here, u 1(n) and u2 (n) are quadratic polynomials in n, and, c'and d are constants.
This hierarchical behavior can be summarized in the following way: The size
function of a minor-closed class in 11(q) can only be exponential, quadratic, or
linear. This conjecture, which we call the growth rate conjecture for U(q), is
probably quite difficult; indeed, it is not even particularly plausible. In §6.1,
we shall make this conjecture more credible by showing that for a minor-closed
class in 11(q), the size function is either exponential or polynomial. We can also
restrict the growth rate conjecture to £(q); the restricted conjecture may well
be much easier to settle.

We end by remarking that Mader's proof [601 of (2.3) extends easily to gain-
graphs. Therefore, if A is a finite group, the size function of a minor-closed class
in Z(A) is either linear or quadratic.

4.5. Framed gain-graphic matroids

It is tempting to conjecture that if C _9 U(q) has quadratic size function, then
h(C; n) - h(Z(A); n) for some group A, JAI :_ q - 1. But this is false.

We first describe a useful construction. Let G be a rank-n £(q)-matroid
represented as a set of points in rank-(n + 1) projective space PG(n, q). Let w
be a point not in the hyperplane spanned by the points representing G. The
framed matroid Fq(G) is the rank-(n + 1) matroid represented by the following
set of points:

w + aa, for all a E G and all a E GF(q).

The point w is called the apex. Four easy facts about framing are:
(a) If H is a hyperplane in PG(n,q) not containing w, then H n Fq(G) rep-

resents a matroid isomorphic to G;
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(b) If b is a point in Fq(G) not equal to w, then Fq(G)/b ý- Fq(G/b), where the
right-hand side is the matroid obtained as follows: Intersect F,(G) with
a hyperplane H containing b but not u to obtain a matroid d isomorphic
to G in H. Contract PG(n, q) by b and frame the contraction C/b using
the apex w V b in the rank-n projective geometry PG(n, q)/b.

(c) Fq(G)/w •- G;
(d) JFq(a)1 = qJGJ + 1.

Given a minor-closed class C in C(q), we define Fq(C) to be the class of all
submatroids of matroids of the form Fq(G), where G is a matroid in C. By
(b),(c), and (d), this class is minor-closed and

h(YF(C); n + 1) = qh(C; n) + 1.

Now let A be a subgroup of the multiplicative group GF(q)×. Let Fq,n+i(A) be
the rank-(n+ 1) framed Dowling matroid Fq(Qn (A)). Framed Dowling matroids
are almost "upper homogeneous."

(4.10) LEMMA. Let a be a point not equal to the apexw in the framed Dowling
matroid Fq,n +i (A). The contraction Fq,n,+, (A)/a is isomorphic to Fq,n( (A). The
contraction Fq,n+I(A)/w by the apex is isomorphic to Q,((A).

A framed (A, q)-gain-graphic matroid is a matroid in the class F.q(Z(A)). Note
that

Z(A) C .Fq(Z(A)) C EX(PG(2, q)) n £(q)

and for n > 1,

h(.F(Z())n [F AI ' 1) +n-I 1+1.

Therefore, .'q(Z(A)) has quadratic size function strictly greater than h(Z(A); n)
for all n > 3. Starting with Z(A), the framing construction can be iterated k
times to obtain a minor-closed class in £(q) with size function equal to

q k [JAI,(n 2 k) + ] +q k-1 +qk-2+ +q+qk2AQk ±n-kj qk+ qk 2 +..-+q±l

when n > k.

4.6. Critical exponents

Growth rates and critical exponents are closely related by the following re-
sult. 16

1 6 The basic idea is in Jaeger's proof of the 8-flow theorem [39]. It is stated in terms of
growth rates in [50]. The result is stated here in a version due to Oxley [65,67].
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14.11) THEOREM. Let C be a submatroid-closed class in C (q). Suppose that
there exists a constant c such that for every matroid G in C, IGI <_ crank(G).
Then, for every matroid G in C, the critical exponent c(G; q) over GF(q) is at
most c.

PROOF. Because 1HI •5 crank(H) for all submatroids H in G, G can be
partitioned into c independent sets by the matroid partition theorem [30]. Since
independent sets are affine, G has critical exponent at most c. [2

From the proof, it is evident that the constant c is very rarely a sharp bound
because independent sets are the smallest possible affine submatroids. For -x-
ample, (1.1) and (4.11) imply that the critical exponent over GF(2) of the class
of planar-graphic matroids is at most 3. However, by the 4-color theorem, it is in
fact 2. On the other hand, the constant can be sharp. For example, the class of
cographic matroids has size function 3n - 3 and critical exponent 3 [39]. There
should be a more refined version of this theorem.

The critical exponent c(C; q) of a class C of matroids in C(q) is defined to
be the maximum max{c(G; q) : G E C} if it exists and is said to be infinite
otherwise. (4.11) implies that the critical exponent of a submatroid-closed class
C is bounded above by its maximum growth rate.

(4.12) CONJECTURE. Let C be a minor-closed class in C(q). Then its critical
exponent c(C; q) is finite if and only if its maximum growth rate is finite.

This conjecture is implied by technical versions of the growth rate conjecture. It
is inspired partly by Wagner's theorem [88]: There exists a constant 0(m) such
that, if the chromatic number of a graph r is at least 0(m), then F contains a
Km-minor.17 A stronger conjecture is the following.

(4.13) CONJECTURE. There exists a constant i/(m) depending only on m
such that for all prime powers q,

c(£XA(M(Kmn)) n C(q); q) _S V)(m).

Brylawski [20] has conjectured that the best constant is 2 when m = 4. Whittle
[97] has proved that c(T? f 1(q); q) = 2 for every q, where TIZ is the class of
transversal matroids.

The chromatic number 7r(C) of a class C of matroids is defined in [62,90,92,93]
to be the minimum positive integer k such that the value XG(i) of the charac-
teristic polynomial evaluated at i is non-zero for every matroid G in C and every
integer i > k, if such an integer exists; it is defined to be infinite otherwise.
Because there is no known analogue of (4.11) for chromatic numbers, bounds for
them are much harder to obtain. All the results so far rely on decomposition
theory. Two examples from [90] are:

7r(eX(F7 , M(K 3 ,3 )', M(K3 ,3 )) nC 1(2)) = 5;

ir(eX(F7-_', M(K 3 ,3 )L, M(K 5 )) 1nC(2)) = 5.

"17 Note that (2.3) and (4.11) imply Wagner's theorem. However, Wagner's proof yields the

better constant.
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Two attractive conjectures (also in [90]) are:

7r(EX(F7 , M(K5 )) f £(2)) = 5;

ir(SX(F7 , M(K 3 ,3 )) f /(2)) = 5.

Both conjectures are equivalent to Tutte's 5-flow conjecture.

5. EXCLUDING GRAPHIC MINORS

Most of the published theorems about excluding graphic minors are about
excluding small wheels. In this section, we shall describe these and other related
results. We shall conclude with a hitherto unpublished theorem about excluding
k-wheels from binary matroids. We begin by recalling some elementary facts
about wheels and whirls.

5.1. Wheels and whirls

For k > 2, the k-wheel is the graph obtained from a k-cycle by adding a new
vertex h called the hub and all possible edges between h and the vertices in the
cycle. The edges in the cycle are called rim edges and the new edges are called
spokes. The k-whirl is the (non-binary) matroid obtained by "relaxing" the
circuit formed by the rim edges: that is, the k-whirl is the matroid on the same
set with the same independent set as the k-wheel, with the exception that the
circuit formed by the rim edges is declared independent. In [861, Tutte proved
that k-wheels and k-whirls are the minimal 3-connected rank-k matroids.

The cycle matroid of M(Wk) is represented in rank-k projective space over
any field by the following 2k points:

ele2, --- ,ek,el- e2, e2--e3,3, ek-1- ekek--el,

where ei is the standard basis vector. The vectors ei represent the spokes and
the vectors ei - ei+i the rim. When k > 3, the k-whirl can be represented over
any field except GF(2) by changing, say, the vector ek - el to ek + ael, where
the non-zero scalar a is chosen so that the rim is independent.

This representation of the k-wheel motivates the following definition. A ring
R of k long lines is a matroid with a distinguished subset of points x1 , x 2 , .. -. Xk
such that (a) the lines x, Vx 2 , x 2 Vx 3 , -.- , Xk-1 VXk, and xk Vyx are long, and
(b) the point set of R is the union of these long lines. An easy but useful fact
is: A ring R of k long lines contains a k-wheel or a k-whirl if and only if R has
rank k.

One way to attempt to produce wheels or whirls is to first produce an eel. A
matroid E is said to be an eel of length I if there exists a distinguished basis
{xl,x 2 ,...,x1} satisfying: (a) the lines x, V x 2 ,x 2 V x 3 ,.. ,x- 2 V xL-1, and
xI- 1 V X1 (but not necessarily x, V xi) are long, and (b) if a point y in E is not
on one of the long lines xi V xi+,, 1 < i < I - 1, then the line y V xi is a long
line. The point x, is called the head and the point xl is called the tail of E. The
width of the eel E is the number C• of points in the cone at the tail xi.



40 JOSEPH P. S. KUNG

(5.1) LEMMA.

(a) Let E be an eel in U(q) of length I and width w. Then

I 1_ [logq[(q - 1)w + 1I].

(b) Suppose that G is a matroid in which the cone Ca at every point a contains
at least w points. Then G contains an eel-submatroid having width at least w.
In particular, if G E U(q) and IGI - IG/al > m + 1 for every point a in G, then
G contains a eel-submatroid E having width at least

M + + - +
q -1

PROOF. (a) The eel E has rank I and contains at least w points. Hence, by
(4.3), (qt - 1)/(q - 1) > w.

(b) We construct an eel E in G as follows: Start by choosing a point xi, the
head of E. Choose a long line e1 on x, and a point X2 on 41 distinct from x1 .
Supposing that fl, f 2,'-" , ti- 1 and x1 , X2 ," ", xi have already be chosen, choose
f, to be a long line on xi such that rank(, Vf2 V ... Ve- 1 Vii) = i + 1 if such a
line exists. If such a line does not exist, then all the long lines on xj are in the
closure of {x,x 2,... ,xi}. Let E be the union of the lines t4 and all the long
lines incident on xi. Because {X1,x2,".- ,xi} is a basis for E and ICx.I _> w, E
is an eel with tail x, having width at least w. The second assertion now follows
from (4.1b). 0

5.2. Excluding 3-wheels and 3-whirls

The 3-wheel W3 is isomorphic to the complete graph K4 . It is a natural candi-
date for an excluded minor. Results about excluding 3-wheels and 3-whirls from
matroids give a good overview of the two known general methods for studying
size functions of minor-closed classes: using decomposition theory and using long
lines.

We begin with an extension of Dirac's theorem to binary matroids.

(5.2) THEOREM.

h(EX(M(K4 )) n£(2); n) = 2n - 1.

There are three very different ways to prove this theorem. The first is to
observe that a binary matroid with no M(K 4 )-minor is graphic. This fol-
lows from the fact that M(K4 ) is a minor of all four binary forbidden minors,
F7 , F 7 ±, M(K 5)', and M(K 3 ,3 )-', in Tutte's characterization of graphic ma-
troids [85]. Hence, (5.2) is basically Dirac's theorem.

The second is to use Duffin's theorem [29] that graphs without M(K 4)-minors
are series-parallel networks. Using Tutte's characterization of graphic matroids
as in the first proof, we can restate Duffin's theorem as a decomposition theorem.
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(5.3) THEOREM. A matroid is 3-connected, binary, and has no M(K 4 )-minor
if and only if it is isomorphic to the 3-point line U2,3 or the single point U1,1.

Using (5.3) and induction, it is easy to show that a rank-n binary matroid with
no M(K 4 )-minor has maximum size if and only if it is a parallel connection of
n - 1 copies of 3-point lines. Hence, such matroids have 2(n - 1) + 1 points.

The first two proofs rely strongly on properties of M(K 4) and L(2). The third
uses long lines and is more "robust". We shall prove the following theorem due
to Hipp [37] using eels.

(5.4) THEOREM.

h(EX(M(W3 ), W 3 ) nf U(q); n) = q(n - 1) + 1.

A matroid in gX(M(W3), W 3 ) nU(q) has the maximum number of points if and
only if it is a parallel connection of (q + 1)-point lines.

Both parts of this theorem can be handled with one technical lemma.

(5.5) LEMMA. Let G be a U(q)-matroid. Suppose that every point a in G
satisfies the conditions: (a) IGI - IG/al Ž_ q, and, (b) a is on at least two long
lines. Then G contains a 3-wheel or 3-whirl as a minor.

PROOF. By (4.1a), IQal > q + 2 for every point a in G. Hence, by (5.1b), G
contains an eel having width at least q + 2. Let E be a minimal eel-minor in G
having width at least q + 2; let I be its length, x, its head, and xj its tail. Since
E/x1 is an eel-minor of G, it has strictly smaller width. Hence, there are two
points y and z on long lines through the tail xj that are identified when x, is
contracted: that is, x1 , y, and z are collinear in E. If y and z are on the same
line f,1 then xj, y, z, and x, are collinear and E contains an I-wheel or I-whirl,
where I > 3. Contracting if necessary, we conclude that C contains a 3-wheel or
3-whirl. If y and z are on distinct long lines R1 and t 2, then x, vye is a rank-3 flat
containing the long lines tj and f 2 through xj as well as the long line x, V y V z.
These lines form a 3-wheel or 3-whirl and we are done. 0

To prove the first part of (5.4), suppose C is a minor-closed class in U(q)
and there exists an integer N such that g(C; N) Ž> q + 1. Let G be a rank-N
matroid of maximum size in C. Then, for every point a in G, IGI - IG/al > q + 1.
Moreover, by (4.1b), a is on at least two long lines. Hence, by (5.5), G and hence
C contains a 3-wheel or a 3-whirl. Therefore, g(eX(M(W3 ), W 3 ) n U(q)) _< q.
From this and the fact that parallel connections of (q + 1)-point lines are in this
class, we concli-de that the size function is q(n - 1) + 1.

Now suppose that H is a rank-n matroid in EX(M(W3), W 3 ) n U(q) with
q(n - 1) + I points. Then there exists a point b in H on exactly one long line
f. [Otherwise, H satisfies both conditions in (5.5); hence, H contains M (W3) or
W3 as a minor.] Since JHI - IH/bI _ q, f is a (q + 1)-point line and is modular.
Next, we show that H\R does not span. If not, H\t contains a basis B. If
IBI = 3, then BU f contains a 3-wheel because e is modular. Otherwise, contract
points of B not on long lines in the submatroid B U t to reduce rank(B u e) to 3.

181n this case, xj may equal y or z.
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Because rank(H\f) _< n - 1, the partition (H\e, f) is a 2-separation of H and
H is a parallel connection one of whose parts is the (q + 1)-point line f. By
induction, H is a parallel connection of (q + 1)-point lines. This completes the
proof of the second part of (5.4). Since the 3-whirl is not binary, the case q = 2
of (5.4) is (5.2).

It is now natural to &sk what the size function is when M(K 4 ) is excluded
from U(q) or £(q). A somewhat crude bound is given in the next theorem [53].

(5.6) THEOREM.

(a) Let s be a positive integer. Then

h(£X(M(K4 )) l U(q); n) _• [6qq-l + 8q - 11n.

(b) Let q be a prime power. Then

h(EX(M(K 4)) n £(q); n) < [6q 3 - 1]n.

Similar bounds [53] hold for classes of matroids not containing M(K 3 [r]), where
K3 * tr] is the graph obtained by taking a graphical triangle K3 on the vertices cl,
c2 , C3 and r other vertices dj, d2 ,. • • , d, and adding all possible edges of the form
{c, dj }. These bounds yield linear size functions for the classes EX(M(K 3,3)) n
U(q) and ,X(M(K3, 3)) N £(q). In addition, the minor-closed class 8(0 of base-
orderable matroids and the minor-closed class 9A of gammoids are contained in
£X(M(K4 )); hence, the submatroid-closed class of transversal matroids T1Z is
also contained in EX(M(K 4)).' 9 Thus, (5.6) implies that intersections of these
classes with U(q) or C(q) have linear size functions. The exacL size functions of
OA n/.(q), 9A n L(q), T1Z nl U(q), and TJZ 1nC(q) are known. They all equal
q(n - 1) + 1; moreover, for all four classes, the rank-n matroids of maximum size
are parallel connections of n - 1 (q + 1)-point lines.

(5.7) •[iTk %(OREM.

h(9A n U(q); n) = (q - 1)n + 1.

The rank-n matroids in gAAlU(q) having maximum size are parallel connections
of n - 1 (q + 1)-point lines.

PROOF. We first show that h(9A nlU(q);n) S (q - 1)n + 1. We claim that
in any gammoid G, there exists a point a on at most one long line. To prove
this, let F be a graph and B and G subsets of the vertex set V of F such that
the independent sets of G are precisely those subsets in G linked to B. Three
points a, b, and c form a circuit if and only if there exists a cut-set {e, f} with
two vertices disconnecting {a, b, c} from B. In the strict gammoid on V, all five
points a, b, c, e, f are on the same line. From this, we see that if a is a point
having maximum graphical distance from B, then a is on at most one long line.
Now suppose that the growth rate g(gA n U(q); n) > q for some n. Then by
(4.1b), there exists a rank-n gammoid in which every point is on two long lines,
a contradiction. We can now complete the proof as in (5.4). -

"1gSee [17J or [91, Chap. 14] for details,
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The bounds given in (5.6) are probably far from exact. In fact, it is not
unreasonable to conjecture that

h(EX(M(K4)) n U(q); n) < A(q)n,

where A(q) is a linear function of q. Oxley has obtained a decomposition theorem
for £X(M(K 4)) n C(3). From this, he obtained the exact size function for this
class [65].

(5.8) THEOREM (OXLEY).

4n- 3 if n is odd
h(EX(M (K 4 )) C) L (3); n) 4n - 4 if n is even.

The matroids in &X(M(K, )) n L(3) attaining these bounds are paradel connec-
tions of copies of the affine ternary plane AG(2, 3) if n is even, and parallel
connections of copies of AG(2, 3) and a 4-point line if n is odd.

In the sam. paper [65], Oxley also obtained a decomposition theorem for the
Jass EX(M(K 4 ), W 3 ) n 1(4).

Another way to look at matroids with no M(K 4)-minors is to use the Crapo
beta invariant [23]. The beta invariant is defined on all matroids - simple or
non-simple - by thc formula:

13(M) = E (_1)rank(M)+IXIrank(X),
X:XCE(M)

Lhe sum being over all subsets X of the set E(M) of elements of the matroid M.
Crapo proved that if M is a series-parallel extension of N, then O3(M) = 3(N).
in particular, if M does not hWve loops, M and its simplification have the same
beta invariant. The beta invariant also satisfies the Tutte recursioii:2 if a is
neither a loop nor an isthmus,

3(G) = O(G\a) + /(G/a).

In addition, the beta invariant equals 0 for a rank-0 matroid and 1 for a loopless
rank-1 matroid. From this, we see that /3(G) _Ž 0 and O(G) Ž> O(H) if H is a
minor of G. Hence, the class C0<k of matroids having beta invariant at most k is
minor-closed. Because NU(U2,k-2) = k, Cl,<_k g 14(k + 1). Brylawski [181 showed
,hat C3, 1 equals £X(M(K4 )) n 2(2). Oxley [63] has studied the structure of
matroids in CO<k. Roughly speaking, the matroids in C0•k are series-parallel
extensions of a small set of matroids in CO<k. From this, one can show that the
size function h(CfO<k; n) is linear in n.

"°See [19,831 for the general theory of Tutte (-Grothendieck) invariants.
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FIGURE 1. Truing a bent wheel. The even circuit is {x2, x.1. x.,. i 1,
x 5 . x,1}. The edges represent 3-point lines. The interior points in
the lines represented by thicker edges are contracted.

5.3. Excluding the complete graph on 5 vertices

Except for the following theorem [52] (see also [501). not much is known when
one excludes the complete graphic matroids AI(K..) for rn > 4.

(5.9) THEOREM. The maximum growth rate of EX(M(K5 )) ,£(2) is at most
8.

(4.11) and (5.9) imply that the critical exponent of EX(M(K&)) n £(2) over
GF(2) is at most 8. Walton and Welsh [901 (see also 1941) have observed that
there are no counterexamples to the conjecture that it is 3,21

5.4. Excluding wheels from binary matroids

We conclude this section by presenting a new result about excluding wheels
from binary matroids.

(5.10) THEOREM. The maximum growth rate of the class EX(M(WO)) £L(2)
is at most 2 2k-3

To prove (5.10), we need to consider certain binary matroids which are "al-
most" wheels. A binary matroid U is said to be a bent wheel of rank I if there ex-
ist a basis {xI, X2,. ' - , x,} and an extra point xj± 1 distinct from the points in the
basis satisfying: (a) the fundamental circuit of x1+1 relative to {X], X2,. " , x1 I
contains an even number of points, and, (b) the remaining points in U are

X1 +X2,X2 +X3,'.- ,Xt- I+Xi,XI +X1+IX1+I +Xl.

In particular, the lines x, V X2, x2 V X3,'"' , x1+ V xi are 3-point lines and the
bent wheel U is a ring of I + 1 3-point lines of rank 1. Bent wheels can bc made
into true wheels by suitable contractions.

2 1 It is known f50,90] that c(CX(F7 , M(Kr,))fl(2); 2) = c(EX(F 7 -1 A.1(K5))nC(2); 2) = 3.
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(5.11) LEMMA. A bent wheel of rank I contains a M(11)0-minor, where

1+l
k= [--1

PROOF. The idea of the proof is illustrated in Figure 1. Let U be the bent
wheel of length I described earlier. Arrange the points x1, x2 ,... , X1+I clockwise
on a circle. If j = i + k(mod I + 1), where I < k < I + 1. then the arc fi,j) is
defined to be the set {x1, xi+,-..- , Ix I ,7x }. The set I of interior points is the
set {X1 + X2, X2 + X3, ,x*-.I + X1,X1 + x1+ 1 ,x 1+1 + x1 }. If [ij) is an arc, let

Int[i,j] be the set {xi+x 1+I,xi+I +Xi+2,"- , xj- +xj}. Using the fact that in
a binary matroid, symmetric differences of circuits are disjoint unions of circuits,
it is easy to check that the set

{xi} U Int[ij] U {xj} = {xi,x, + X1+I, xi+l} A {xi+l , x,+1 + x+ 2,x,+2 }

A .. A {xj-,xj + xj,xj}

is a circuit.
Let {X 1 ,Xi,,.. , Xij}, where il < i2 < = + 1 and m is even, be

the fundamental circuit of x1+ 1 relative to the basis {xl1X2,... . xj}. Let

S = Intfil, i 2] U Intli 3 , i 4J U ... U Int[i,,-_1, im].

Consider the set S and its complement I\S. One of these sets contains at most
I'+'] points.

Relabelling if necessary,22 we can assume that ISI _ [11. The set S is the
mod-2 sum of the circuits Xi, . {x1 i } U Int[i, i2] U {X12}, {3I } U

Int[i, i4] U {xi4 }, ". , and {xi, } U Int[i- 1, ir] U {xj,_ }; it is in fact a circuit.
Hence, rank(S) = ISI - 1 and the contraction U/S has rank t, where

t = I - ISl + 1 > .
2

Because U/S is a binary ring of t 3-point lines having rank t, U/S is a t-wheel.
Because t > k, U/S, and hence, U contains a k-wheel minor. fl

We shall now prove (5.10) by showing that a minor-closed class C of binary
matroids having maximum growth rate at least 22k-3 + 1 contains a k-wheel.
Let g(C; N) > 22k-3 + 1 and let G be a matroid of maximum size in C. Then for
every point a in G, IGI -- IG/al > 2 2k-3 + 1. By (5.1b), G, and hence C, contains
an eel having width at least 22k-2 + 1. Among all the eels having width at least
22k-2 + 1 in C, let E be one having minimum length 1. By (5.1a),

I > [log 2 [(22 '- 2 + 1) + 1]= 2k - 1.

2 2 Change the basis to {xTim+,- ,xl,x+t,xj,x2,. ,xi__t} and let xj,_ be the extra
point.
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z 2

2z

3I-I

FIGURE 2. A bent wheel in an eel.

Let {XI,X 2 ,... ,x1 be the distinguished basis, x, the head and xj the tail of E.
Since the contraction E/xl by the head is an eel of smaller length, E/xj has
width strictly less than 22k-3 + 2. Hence, two points Yl and zl on long liles
through the tail x1 are identified when x, is contracted: that is, the points xj,
Yl, and z, are collinear in E. There are two possible cases.

Case 1. The tail xt is on the line x, V yj V z1 . Then, x, V xj is a 3-point
line and the points X1,X 2 ,... ,XL form the spokes of an I-wheel. Since I > k, E
contains a k-wheel minor.

Case 2. The tail xj is not on the line x, V yj V zi. Let f, and t 2 be the
3-point lines xt V yj and x, V zi respectively. Let II be the plane spanned by
R, and 62. Note that x1 E R. Since E is binary, the 3-point lines f1 and 2 are
modular; hence, they intersect the copoint X of E spanned by x 1 , X2,'"- , X-I

at two distinct points. These two points are collinear with xl because they are
in the rank-2 intersection H n X. Now relabel the points in HI as shown in Figure
2 so that II n X = {xy, Yl, z I}. Note that X 1 , y2 and Z2 are also collinear.

Suppose that Yl is a point on one of the lines xi V xi+,, where I < i < 1.
If i > k, then the lines x, V x 2 , X2 V x 3 ,..., xi V xj+i, and Ixi yi, zi} form a
i-wheel, where i > k; if i < k, then the lines xj VXL+1, x1- VXL,-.-, Xi+I V Xi+2,

xi Vxj++, and fxi,yl, zi} form a i-wheel, where i > k; in both cases. E contains
a k-wheel minor. The same argument applies to zl. We can now suppose that
neither Yi nor z, is on one of the lines xi V xi+l.

Consider the fundamental circuit C of yx relative to the basis Ix x... •. , xi}.
Since yl is in the copoint X, xj is not in C. If C is even, then E contains a bent
wheel of rank I. (See Figure 2.) Otherwise, C is odd. Taking the symmetric
difference of C with the 3-element circuit {y ,y2,xj}, we obtain (C\{yl}) U

{Y2,xL}. This set is in fact the fundamental circuit of Y2 relative to the basis
{Xl, X 2 ,.-- xL}. This circuit is even and hence E contains a bent wheel of rank
1. In both cases, E contains a k-wheel minor by (5.11). This completes the proof
of (5.10).

Since the rank of PG(k - 2,2) is k - 1, it does not contain a k-wheel minor.
Hence, the maximum growth rate of £X(M(Wk))flL(2) is at least 2 k2 and it is
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probable that it is exactly that.23 With more attention to the small rank cases.
it is possible to improve the bound in (5.10), but not enough to attain sharpness.

From his decomposition theorem for the class EX(M(W4 )) l L(2), Oxley [67]
proved that

3n - 2 if n is odd
h(,X(M(W4 )) n£(2);n) - 3n -3 if n is even.

He also characterized the matroids having maximum size. Another result [681
of Oxley along similar lines is:

h 3n- 2 if n 1= I (mod 3)
h(eX(M(W 5 ) ) flZ; n) = 3n - 3 otherwise.

The matroids of maximum size are characterized. Other than this, no other exact
result about excluding higher wheels is known. Indeed, the exact size functions
of the graphic classes CX(M(Wk)) n 9 are not known for k > 6.24 Using long
lines and carefully analysing the rank-4, 5 and 6 cases, Hipp [37] obtained the
following related result: For n > 3,

h(FX(M(W4), W 4 ) n £(3); n) = 6n - 5.

The matroids of maximum size are not known in this case. Matroids attaining
this bound are parallel connections of copies of PG(2,3) and the matroid V19,
the rank-4 ternary matroid obtained by taking the points in two PG(2, 3)'s in
PG(3, 3) and removing three points from their line of intersection.

6. QUADRATIC GROWTH

6.1. Cones

A matroid C is said to be a cone if there exists a point w in C such that every
other point in C is on a long line incident on w, or, equivalently, C equals the
cone C, at w. The vertex w is called an apex of C. Examples of cones are the Fano
plane F7 and, more generally, any projective geometry. Gain-graphic matroids,
howcver, are never cones unless they are parallel connection of long lines at a
common basepoint. This is one reason why cones are useful for studying the
growth rate of classes excluding non-gain-graphic matroids. The following easy
lemma is useful when doing induction with cones.

(6.1) LEMMA. Let C be a cone with apex w and let U be a flat of C not
containing w. Then the contraction C/U is a cone with apex U V w.

Cones were implicitly used by Heller [36] and Mader [60]. We shall illustrate
how they are used by proving an extension of Heller's theorem.

2 3 Note that the maximum growth rate does not give sufficient information for calculating

the size fundtion exactly.
"24 See (6.16) for a partial result. Gubser [34] has recently obtained a sharp bound of

e(F) _< f(14v(r) - 27)/51 for a simple planar graph r with no 6-wheel-minor.
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(6.2) THEOREM. Let C be a minor-closed class in U(q). Suppose that for some
integer n,

g(C;n) > (q - 1)k(n).

Then C contains a matroid of rank k + 2 containing at least 2 k+2 - 1 points.

PROOF. Let g(C; N) > (q - 1)k(N), G a rank-N matroid in C of maximum
size, and w a point in G. Then IGJ - IG/wI > (q - ) k () + 1. Let C be the cone
at the point w. By (4.1b), the point w is on at least (q- 1)k-1(N) long !inos and
the number of points in C is at least

(q - I)k (N) + (q -- 1)'-1 + 1 = q(q --)k-( + 1

Ž_q(q - 1 )k-1 (rank(C)) + 1.

Thus, to prove (6.2), it suffices to show: if C is a cone satisfying

(*) ICI > q(q - )k-1 (rank(C)),

then C contains a rank-(k + 2) minor with at least 2 k+2 - 1 points.
We shall first tackle the induction step. Suppose k > 2. Let C be a minor-

minimal cone satisfying (*), w its apex, rc its rank, and a a non-apex point on
C. Because the contraction C/a is a cone (by (6.1)) and C is minor-minimal,

fC/al : q(q -1)k1 (rk- 1)

and

ICI - IC/al > q(q - 1)k-1 [(rc) (rc- 1)] = q(q - 1)k1 (rc-1)

As in an earlier step, the point a is the apex of a cone D with at least

q(q - 1 )k-I (rD-I + q(q - I)k-2 (rD--• + 1 =q 2 (q - I)k-2 rD + I( k - 1 ) +q 1 k -2 11 ) 1)_ kr -- 11)

points, where rD = rank(D). Hence, the image of D/w in the contraction C/w
is a cone having rank rD/W = rD - 1 and containing at least

q(q - 1 )k-2 (rD/i) + 1

points. By induction, Dw contains a minor E of rank k + 1 and size at least
2k+1 - 1. Since a minor of D/w is also a minor of D, E = F/X, where F and X
are sets of points of D, X C F, and w E X. Let P and .X be the closure of F and
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P7  G7  T7

FIGURE 3. Fans.

X in C and consider the interval [., F] in the lattice L(C) of fiats of C. Let U be
a complement of the point w in [0, 9] : that is, U is a flat contained in X, w ý U,

and U V w = X. The minor F/U of C is a cone with apex U V w. Moreover, F/X
is a submatroid of F/X and F/X = F/(U V w); hence, IF/(U V w)l -> 2 k+1 - 1.
Because every point in F/(U Vw) corresponds to a long line incident on U V W in
F/U, F/U is a minor of C containing at least 2 [2k+1 _ 1] + 1 = 2 k+2 - 1 points.

The proof for the case k = 1 is similar, except that we can take advantage of
the ranks being small to obtain better inequalities. Let C be a minor-minimal
cone satisfying JCl > qrank(C) and let w be its apex. As in the general case,
there exists a non-apex point a in C such that ]Cl - IC/al > q. By (4.1a), a is
on at least two long lines. Let f be a long line containing a but not w. Then the
plane w V t has rank 3 and contains at least 7 points. This allows us to start the
induction.

This completes the proof of (6.2). Note that this proof only used the fact that
IGI -IG/wI > (q- 1)k (N) for one point w; the full power of g(C; N) > (q- 1)k (N)

is not used. E1
A matroid F is said to be a fan if (a) rank(F) = 3, (b) F is the union of at

least three long lines with a common point w, and (c) there exists a long line in
F not incident on w. The proof of the case k = 1 actually yields: if C is a cone

satisfying ICI > qrank(C), then C contains a fan. There are five minimal fans:
the Fano plane F7, the non-Fano plane Fý, and the three matroids G7 , P7 , and

T7 shown in Figure 3. Thus, we have proved the following theorem:

(6.3) THEOREM.

h(EX(F7, Fý- G7 , P7 , T7) nU U(q); n) !_ (q -1)n +1).

Because only F 7 is binary, (6.3) for the case q = 2 and the fact that IM(K,+I)l
(n2 ) imply the following extension of Heller's theorem [9,61,75].25

(6.4) COROLLARY.

h(&X(F 7 ) lU(2);n) = (n 1).

2 5Murty's proof in [611 is essentially Heller's. Baclawski and White [91 started by proving
a version of (6.16) and then used multilinear algebra to finish their proof. The theorem also
follows from Seymour's decomposition theorem [751 for £X(F7 ) n £(2).



50 JOSEPH P. S. KUNG

Because 1U2 .4 1 = (3) + 1 1 F71 = (4) + 1, and all the rank-2 minors of F7 are
submatroids of U2,3 , (6.4) implies that EX(F7 ) fl U(2) is the maximum class
with size function ( )2

Observing that F7 is representable only over fields of characteristic two [98]
and that the four minimal fans not equal to F7 all contain the 3-whirl, we obtain
the following corollary.

(6.5) COROLLARY. If q is an odd prime power,

h(EX(W 3 ) n E(q); n) - (q - 1) n 1).

Once again, the bound in (6.5) is not exact. For q = 3, the exact size function
can be deduced from work of Oxley [66] (see also [89]):26 h(EX(W'3 ) nf (3); n) =
(,1+1) when n > 4, and 3(n- 1) + 1 when n < 3. This result makes the following

conjecture plausible: when q is an odd prime power, h(X(W•3 ) n C(q); n) -
2nl). Using another result of Oxley [69] and (6.4), we can deduce the following

exact results:27 (a) h($2X(W 3) f 1(4); n) = 2n - 1 when n > 4, and 4(n - 1) + 1
when n < 3, and, (b) h(EX(F7 ,1 3 ) n C(4);n) = (+1) when n > 6, and
4(n -1) + 1 when n < 6. We shall let the reader conjecture the obvious extensions
to C(2r).

We conclude this section with a result promised in §4.4. This result offers
significant supporting evidence for the growth rate conjecture.28

(6.6) POLYNOMIAL OR EXPONENTIAL GROWTH. Let C be a minor-closed class
in U(q). Either there exists a positive integer k such that, for all n,

h(C;n) < (q- 1)k(n+l)

and h(C; n) is bounded above by a polynomial in n, or, for all n,

h(C;n) > 2n -1

and h(C; n) is bounded below by a function exponential in n.

The lower bound of 2'• - 1 seems crude, but it is sharp since C can be the class
,C(2).29 For a class C in C(q), where q is a power of the prime p, the sharp

2 6 We use (3.1) in [66]: A ternary but non-binary 3-connected matroid having rank and
nullity at least 3 has a W 3 -minor. Hence, if G is a matroid in CX(W 3 ) n £(3), one of the
following holds:

(a) G E (42) n 4(3), and hence G is regular,

(b) G has nullity at most 2,
(c) G has rank 2 and is a line with at most four points, or
(d) G is not 3-connected and hence is a 2-sum or is disconnected.

The result now follows from induction and Heller's theorem.
27 Use (1.5) in [69]-
2 8 When q = 2, (6.6) can also be deduced from (2.6).
"29 If one wants a minor-closed class in U(q) but not in U(q- 1), then L(2)tU_{U2,q+l} is an

example. In this case, the bound will only be sharp for n > 3.
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lower bound of (pl - 1)/(p - 1) can be obtained using methods in [54] and the
following technical version of (6.2) obtained by t•xamining the proof: Let C be
"a minor-closed class in U(q) satisfying the hypothesis in (6.2). Then C contains
"a matroid G with rank k + 2 satisfying the property: there exist points Wk+ 2 ,

Wk+l, "" ", W2 in G such that G is a cone with apex Wk+2, G/wk+2 is a cone with
apex Wk+2 V Wk+l, G/wk+2 V Wk+1 is a cone with apex Wk+2 V Wk+1 V Wk, . •,
and G/wk+2 V Wk+I V... V") 3 is a cone with apex Wk+2 V Wk+1 V ... V W3 V W 2.

6.2. Excluding the dual Fano configuration

The results in this section are motivated by two exact results obtained by
decomposition theory. Let s(n) be the function defined as follows:

s(n) 2
7 if n =3.

The first result can be read off Seymour's decomposition theorem [75] for
£X(F7

1 ) n £(2). It contains (6.4) as an easy corollary.

(6.7) THEOREM.
h(EX(F

7±) n £(2); n) = s(n).

Since F7 - is a one-point deletion of the rank-4 affine binary geometry AG(3, 2),
it is natural to ask for a decomposition theorem for eX(AG(3, 2)) n £(2). This
problem is open. The following bounds for the size function are not hard to
obtain, but the exact result is elusive. Let V11 be the matroid obtained by
taking the union of two Fano planes in PG(3, 2), or, equivalently, removing a
4-point circuit from PG(3, 2).

(6.8) THEOREM.

(n + I < h(eX(AG(3, 2)) nC(2); n)

< h(EX(V 11 ) n£(2); n) ( 2 1) + n.

The lower bound follows from the observation that the binary rank-n matroid
represented by the (f+1) + 1 vectors el + e2 + e3, ej, 1 < i < n, and e, + ej, 1 <
i,j < n, does not have a AG(3, 2)-minor. The upper bound can be obtained
using cones and a connectivity argument.

The second exact result is due to Oxley [671 and follows from his decom-
position theorem for binary matroids excluding the matroid P9 and its dual;
here, P9 is the binary matroid obtained by adding the point el + e2 + C3 to the
GF(2)-represeritation of the 4-wheel given in §5.1.

(6.9) THEOREM (OXLEY).

h(&X( P9 , P., 1 ) nl £(2);n) = s(n).
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Both P9 and P9± contain Fr±; hence, (6.9) extends (6.7). The next result
is the "best" possible such extension. To state it, we first list all three non-
isomorphic binary rank-4 matroids on 11 points. They are

(a) V 1,
(b) M(K 5 )+, obtained by adding one point in PG(3, 2) to M(K&), or, equiv-

alently, removing a basis from PG(3, 2), and
(c) C11, obtained by removing a 3-point line and a point outside it from

PG(3,2).

(6.10) THEOREM.

h(EX(V 1 , M(K 5 )+, C11 ) n £(2); n) = s(n).

The proof is similar to that of (6.8). Both proofs are somewhat lengthy and are
omitted. It is easy to check that eX(V1 , M(K 5)+,C 11 ) n £(2) is a maximum
class. Hence, (6.10) cannot be extended further.

6.3. Geometric algebra

A Reid matroid3 ° R is a rank-3 matroid consisting of three long lines fl,
f2, and 63, such that the intersection f1 n e2 nf 0 is a point w and the line 03
is a 3-point line. Let w, a, and 03 be the threeý points on 03. The incidence
graph I(R) is the bipartite graph defined as follows. The vertex set is the union
(V1\{w}) U (%2\{w}). A vertex u in f1\{w} is connected to a vertex v in t2\{ w}
by an edge if u, v, and a, or u, v, and f3 are collinear. The vertices in I(R) have
degree at most 2 and I(R) is a disjoint union of paths and cycles of even length.

Let Rcycte [k] be the Reid matroid whose incidence graph is a cycle of length
2k and let Rpath[k] be the Reid matroid whose incidence graph is a path of
length 2k - 1. For example, Rccie[2] is the Fano plane F7 and PNath[2] is the
non-Fano plane F-. The Reid matroids code equations of the form k = 0 or
k $ 0. More precisely, R,31 I, [k] is representable over a field K if and only if k is
prime and K has characteristic k; RPNth~k] is representable over a field K if and
only if 2 $ 0, 3 : 0,... ,k -1 $ 0, and k $ 0 in K. In particular, RccI[k] is
not representable over the rationals Q.31 These facts are not hard to show using
determinants [33,54,98].32

6.4. Matroids representable over two different characteristics

Because Rcce [2] 2 F7 , the following theorem [54] is yet another extension of
Heller's theorem.

3°Reid's work, done around 1971, was unpublished. An account can be found in [33].
3 1Except when k = 2, it has not been proved that the matroid Rcyce[k] are non-orientable.

But this is almost certainly true.
3 2The idea of doing algebra with geometrical configurations goes back to the Greeks (see

Euclid's Elements). The idea used here first appeared in von Staudt [77]. We remark that the
equation (k = 1 can be coded by a submatroid of a rank-3 Dowling matroid, cf. (2.9). Gordon
[32) has shown that RcIIIk] is algebraic over a field if and only if that field has characteristic
k.
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(6.11) THEOREM. Let q be a positive integer greater than 2. Then

h(&X(Rcvcie[s] : 2 < s < q) nlU(q);n) 5 (q' - qv-l) (n + 1)-

where v = 2 q-1 - 1.

Even though the constant is extremely crude, the degree of n is exact. When
q = 3, an exact result is known [55,56].

(6.12) THEOREM.

h(EX(F7 , ResoIe[3])n fU(3); n) = 2() + n = n2.

When n > 4, a rank-n matroid G in 9X(F7 , Rcyce [3]) nl U(3) has n2 points if
and only if G is the Dowling matroid Q,(3). A rank-3 matroid G in this class
has 9 points if and only if G 2 Q3(3) or G • AG(2, 3).

Because of the representability properties of Reid matroids, (6.11) yields a
quadratic bound on the size function of the intersection of two incomparable
varieties of representable matroids. 33

(6.13) COROLLARY. Let q and r be coprime prime powers. Then

h(e(q) nC(r); n) < (qv - q'l) (n + 1) n- 2 - n,

where v = 2 q-1 _ 1.

(2.9), (6.12), and (6.13) inspired the following rash conjecture [54].

(6.14) CONJECTURE. Let p and q be distinct primes. Then

h(£(p) n£(q);n) - gcd(p - 1,q - 1) (n) + n.

For sufficiently large n, there is a unique rank-n matroid of maximum size, the
Dowling matroid Qn(A), where A is the cyclic group of order gcd(p - 1, q - 1).

Because it is an asymptotic result, (6.14) is probably quite difficult at present.
Part of the difficulty lies at the rank-3 level and suggests the following problem
of interest in its own right: For a given prime p, find the minimum number -y(p)
with the property: If G is a rank-3 C(p)-matroid and [G1 > y(p), then G can
only be represented over a field of characteristic p. The two known cases are:
-y(2) = 7 [98] and y(3) = 10 [55]. It is possible, however, to prove the following
related result. 34

3 3 Other consequences of (6.11) can be found in 1541. These include quadratic bounds on
the maximum number of projective inequivalent columns in totally T-adic matrices. Totally

T-adic matrices arc integer matrices all of whose subdeterminants are in a given subset T of
integers, Non-quadratic bounds for T-adic matrices can be found in [6,57,59].

3 4 The proof will appear elsewhere if enough people are interested in it.
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(6.15) THEOREM. Let q be an integer and let MI, M2, "" be all the rank-3
matroids in U(q) not contained in any rank-3 Dowling matroid QW(A), where A
is a quasi-group of order q - 1. Then

h(E•X(Ml, M2,.. n Ub(q); n) = (q -1) (n) + n,

The rank-n matroids of maximum size are precisely the Dowling matroids Qn (A),
where JAI = q - 1.

6.5. Binary classes not containing Fano planes

Reasonably sharp bounds on size functions of minor-closed classes of binary
matroids not containing a Fano plane can be obtained using the method in
§3.2. This method uses Seymour's decomposition theorem for SX(F7 ) nfC(2). A
more elementary approach is to use the following technical version of (6.4) due
essentially to Heller 136].

(6.16) LEMMA (HELLER). Let C be a binaiy cone with apex w such that the
contraction C/w contains a circuit. Then C contains a F7 -minor. In particular,
"a binary rank-n cone with at least n 3-point lines incident on its apex contains
"a F7 -minor.

To show how this lemma is used, we shall prove the following variation on
(5.10).35

(6.17) THEOREM. The maximum growth rate of SX(F7 , M(Wk)) n L(2) is
exactly k.

PROOF. Let C be a minor-closed class in EX(F 7) n C(2) having maximum
growth rate at least k - 1. We shall show that C contains F7 or M(Wk).

By (5.1b), C contains an eel having width at least 2k + 1. Among all the
eels having width at least 2k + 1 in C, let E be one having minimum length I.
Let x 1 , x 2 ,.'. ,xL be the distinguished basis, x, the head, x, the tail of E. In
addition, let x' be the third point on the line spanned by x, and x 2. Because the
cone C,1 at the tail contains at least k 3-point lines, either E has a F7-minor,
or, rank(C.,,) > k + 1. Hence, we can suppose that I > k + 1.

By minimality, the contractions E/xj and E/x' have widths strictly less than
k + 1. Hence, two points yi and z, in the cone C. at the tail are identified when
xt is contracted: that is, the points x1, Yl, and z, are collinear in E. Similarly,
x' is collinear with two points y' and z' in Cz.

If the tail xj is on one of the lines x1 V yl or x' V y', then E contains a
M(Wk)-minor. Now suppose that x, is on neither x, V yj nor x' V y'. Let Y2

and Z2 be the third point on the lines xl V yj and x, V zi. Then the six points xj,

Y1, Y2, z1 , Z2, and xL form a submatroid isomorphic to M(K4). Similarly, x', y',
and xt span a plane containing an M(K 4). There are now two cases to consider,
depending on whether the two M(K4 )-submatroids intersect. These two cases

3 5 Other results of the same type can be found in [50).
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Z12

1l Z1 _

FIGURE 4. Two configurations containing F 7 -minors.

are shown in Figure 4. It is easy to check that, in both cases, E contains an
F7-minor. 0

Since graphic matroids have no F7-minor, we obtain the following result in
extremal graph theory.3 6

(6.18) COROLLARY. Let e(r') be the maximum number of edges in a simple
graph r, on v vertices with no k-wheel minor. Then

(k) [L- 1j (k + 1).

2 k-1 <5 e(r )< kv- (k "

The lower bound is derived from the fact that parallel connections of K1 contain
no Wk-minors.

6.6. Beyond cones

As observed at the end of the proof of (6.2), the method of cones does not
make full use of the growth rate being large. One way to go further is look
at "cones" with two or more layers. With this idea, I have proved that the
classes EX(PG(3, 2)) nL(2) and &X(PG(2,p)) n£C(q), where q is a p-power, have
quadratic size function. I hope that this will lead to a proof of the quadratic-
exponential gap for £(q).

7. DIRECTIONS AND MODULAR COPOINTS

Not all of extremal matroid theory is concerned with size functions. In fact,
the chapter entitled "Extremal Problems" in Welsh's book [911 has empty in-
tersection with this survey and is devoted to "internal" extremal problems. We
shall discuss one such problem which originated in the direction problem (§2.3)
in classical combinatorial geometry.

36This result is not hard to prove graph-theoretically. It is stated using the notation in

1131.
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A direction in affine real space R' may be defined as an equivalence class
of parallel lines, or, equivalently, as a point in the hyperplane at infinity in
projective space PG(n, R). Scott's direction problem (§2.3) can be reformulated
over any field K as follows [21,22,44]. Let S be a set of s points in affine n-space
AG(n, K). A point a in the hyperplane H at infinity is said to be determined by
G if a is the intersection of H with a line I spanned by two or more points in
G. Given n, s and K, an extension of Scott's problem is to find the minimum
number 6n(s) of points on the hyperplane H at infinity determined by a set G of
s points in AG(n, K). Note that if all the points HG determined by G on H are
added to G, then we obtain a matroid GU Hg in PG(n, K) containing a modular
copoint Hg.

The only known result about this problem is Ungar's theorem (2.7). There
does not seem to be a reasonable conjecture for 6n(s) over R when n > 3.
However, for complex n-space Cn, there is a natural conjecture because there
are candidates for the direction-critical matroids.37

(7.1) CONJECTURE. Let G be a spanning set of points in Cn containing a
modular flat H, s be the number of points outside H, and 6 the number of points
in H. Then

6Ž- (q- 1)(n) +n,

where

n
The critical configurations are isomorphic to the rank-(n + 1) Dowling matroid
Qn+i(Cq), where Cq is the cyclic subgroup of C× consisting of all the qth roots
of unity.

Because Qn+ (Cq) is K-representable whenever K contains all the qth roots of
unity, (7.1) should hold over any field containing all the roots of unity. Note
that this conjecture has not been verified for the complex plane.

8. CONCLUDING REMARKS

It might be appropriate to end with some informal observations. Results about
size functions proved using long lines are almost never exact; on the other hand,
the proofs are robust: they generally work for all q for both U(q) and £C(q). Thus,
one trades exactness for generality. Two developments which may lead to sharper
results are possible. The first is in decomposition theory. Here, bounds on size
functions can be useful in indicating the form of the decomposition theorem. For
example, with hindsight, Heller's theorem that h(IZ; n) = (n+l) suggests that
graphic matroids "predominate" in the class R of regular matroids and points
the way to Seymour's decomposition theorem. Analogously, but alas, much more
speculatively, (6.12) indicates that a similar decomposition theory, with signed
graphs instead of graphs, should exist for the class of ternary matroids with no
Ry,1,[3]-minor. Similk speculative ideas are suggested by the results in §6.2.

3 7 0ur conjecture was partly inspired by Jamison's work in [45]
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Because the size function of EX(VI 1,M(K 5)+,C11) n £(2) equals ('+1) when
n > 4, it is probable that for such integers n, the rank-n matroids of maximum
size are graphic. A decomposition theorem for this class should follow the same
pattern as the theorem for EX(F7

1 ) nfC(2). However, the matroids of maximum
size for EX(AG(3, 2)) nl £(2) are not graphic. One would expect, therefore, that
a decomposi- -)n theorem for this class would have Fme new features. Although
there are deep results38 and a lot of current activity in decomposition theory,
ba.sic questions, such as what is the right notion of k-sum and k-connectivity in
this context, remain to be answered. It is also evident that becal-se many small
examples r.-ed to be examined, some computer assistance will be needed. This
important area has not been adequately surveyed in this paper, partly because
it is still in flux and mostly because I do not know it well enough. We refer the
reader to two fornLcoming books [70,801.

The second development is in random matroid theory.39 Random graphs
are useful for finding lower bounds in extremal graph theory [15] and random
matroids should perform the same r6le. However, there is a major hurdle for
anyone doing random matroid theory - or any matroid theory: the absence of
vertices. It is easy, for example, to write down the probability that a random
graph does not have a Km-minor (see, for example, [78]) because vertices exist;
to write down the prcvability that a random subset of points in PG(n, 2) does
not contain a F7-minor is ha-d (at least for me). Perhaps a theory of random
rank functions may work bettei.

There are obviously more fundamental quesions in extremai matroid theory
than there are known methods. This is an exciting state for a subject to be in.
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Truncations of Jones-type Polynomials
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ABSTRACT. We show that an essential part of the new (Jones-
type) polynomial link invariants can be computed in subexponential
time. This is in a sharp contrast to the result of Jaeger, Vertigan
and Welsh that computing the whole polynomial and most of its
evaluations is #P-hard.

1 Introduction

The discovery by V. Jones, in 1984, of a new powerful knot invariant led to

a rapid growth of research in knot theory and elevated the theory of knots

and links from its relative isolation. In particular, it has been noted that tile

"objects" similar to the Jones polynomial were studied in graph theory (the

"Ichro"atic polynomial) and statistical mechanics (e.g. the partition function

for the Pott's model of anti-ferromagnetism). Jones type invariants of knots are

widely used: from solving old problems in topology to applications in physics,

chemistry, and biology (compare [11,37,40]).

The roots of this paper lie in a practical need for computing polynomial

invariants for knots and links that have a large number of crossings. All cur-

rently known algorithms for th-, new knot polynomials have exponential time

complexity with respect to the number of crossings ( we consider a functionl

f(n) to have exponential growth if f(n) - 2-"08)). In practice, computing such

a polynomial for a knot with more than 35 crossings is unrealistic.
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One call even argue that the main difference between old and new invariants
of links is their computational complexity: practically all old link invariants

(e.g. the Alexander polynomial, and the classical signature ) can be comaputed

in polynomial time while the Jones type invariants (i.e. the Jones, skein and

Kauffman polynomials) are ArP-hard and therefore are believed not to have

polynomial time algorithms. In fact it is believed that problems that are AfP-
hard have at least exponential complexity (compare [18]).

It has been shown by Jaeger [25], in 1987, that the problem of computing

the skein (Homfly) polynomial is A•P-hard. This result has been strengthened

by Vertigan [77,78] in 1990 by proving that computing most of the evaluations
of the Jones polynomial is #P-hard. Thus computing Jones type polynomials

might still be intractable even if P =' AFP. In fact there are only a few eval-
uations of the Jones polynomial that can be computed in polynomial time.

Interestingly all these evaluations have been well understood before.

In this paper we describe other restrictions of the Jones type polynomials
which cati be computed ii subexponential time but still leave new and useful

link invariants.

The paper is organized as follows:

In the second section, we describe two methods of translating graphs to

knots and vice versa. We introduce also the important notion of a "matchILd

dizagrai.

In the third section, we describe polynomials of graphs (including chromatic
or weighted graphs) emphasizing the dichromatic polynomial.

In the fourth section, we sketch the constructions of Jones type polynomials

and describe the evaluations of these polynomials which can be computed in

polynomial time.

In the fifth section, we analyze relations between link and graph polynomials.

In the sixth section, we show how to compute useful "quotients" of polyno-
mial invariants in polynomial time.

In the seventh section, we show how to compute a part of the dichromatic

polynomnial in subexponential time. Then we describe the analogous result for

the skein polynomial of links.

In the eighth section, we illustrate how our results are used for practical

problems in knot theory (e.g. for computing braid index, and checking am-

phicheirality and periodicity).

In the last section, we discuss possible generalizations.
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2 Dichromatic graphs and link diagrams

We consider two methods of assigning a link diagram to a plane graph. The
first method is a classical one and was discovered by Tait more than a hundred

years ago (see [5,9,33]). The second method is based on the idea of Jaeger [25).
First, we establish some notation and terminology. We should stress that

the definition of a dichromatic graph which we give below has been chosen to

reflect the dependency between knots and graphs.
By a graph G = (V(G), E(G)) we understand a finite graph (we allow

multiedges and loops). By JV(G)j (resp., IE(G)I) we denote the number of
nodes (resp., edges) in G. The number of connected components is denoted by

p0 and the cyclomatic number by p, (i.e. pi = IE(G)I - IV(G)I + po).
An edge e is called an isthmus of a graph G if its removal disconnects a

component of G. A loop is an edge (v, w) such that v = w.
We use G - e to denote the graph obtained from graph G by removing

edge e, and G/e to denote the graph obtained from G - e by identifying the
endvertices of edge e (contracting e).

The notion of a chromatic (or weighted) graph has been considered already
by Kirchhoff [34]. Our definition is motivated by a connection between graphs

and link diagramss, which will be explained later.
A chromatic graph is a graph with a function c on the edges, where c

E(G) ý-* Z x {d,l}. The first element of the pair c(e) is called the color and
the second the attribute (d - for dark, I - for light) of the edge e. Note that

chromatic graphs are extension of signed graphs where the attribute of an edge

corresponds to its sign (plus or minus).

A plane graph is a planar graph with its embedding on the plane.

The dual to a connected chromatic plane graph G is the graph G" =

(t7(G*), E(G')) where V(G*) and E(G*) are defined as for non-chromatic
graphs and the edge e* dual to e has assigned the same color as e and the
opposite attribute. It is convenient to consider a plane graph G to lie on the
sphere S2 , then the dual G* is uniquely embedded in S2 . The dual of a non-
connected graph is the disjoint sum of duals of its connected components.

By a link (resp., oriented link) we understand several circles (resp., oriented

circles) embedded in S3 . Two links L1 and L 2 are (ambient) isotopic if and only

if there exists an isotopy F : S' x I 1-4 S3 such that F0 = Id and Fi(Li) = L 2.
If the links are oriented the isotopy must preserve the orientation. Informally
two links are isotopic if and only if one can be continuously transformed to the

other.
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By a link invarzaiit we mean a fink isotopy class invariant.

A diagram D of a link L is a regular projection of L into tihe plane (i.e. a

4-valent graph) together with an overcrossing-undercrossing StrUCture denoted

as in Figure 2.1.

>4 ><
Figure 2.1

We can analyze properties of links up to isotopy by considering their diagrams

exclusively. This is the e ,e because of the following classical theorem of Rei-

demeister [60,21 (see also t9]; Proposition 1.14).

Tlieorem 2.1 (Reidenicister) Two link diagrams (resp., oriented link dia-
gramis) represent isotopic links if an' only if they can be coiinected by a finite

sequence of Reldemeister moves Q1'1 (i = 1,2,3) shown in Figure 2.2 (in an

oriented case we allow a1ny con.lstent orientation of diagrams).

Figure 2.2

Now, we describe the classical correspondence between graphs and links.
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Consider chromatic plane graphs with one color and attributes denoted by A
and B. We call such graphs A, B-graphs. We can associate with an A, B-graph
aii unoriented link diagram, DN(G), together with a chessboard-like coloring
of the plane, according to the rules presented in Figure 2.3.

Figure 2.3

Observe that DN(G) DN(G*) (as diagrams on S 2 ) with the role of white and
black colors switched in the chessboard-like coloring.

G the righttff)ded trefoil knotGz

G* D(G*)

B B

-~ D(G)
the left handed trefoil knot

G* D(G*)

Figure 2.4
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Let G be the graph obtained from an A, B-graph G by switching attributes of

edges. Then DA'(G) = DN(G), where D denotes tie mirror image of D (i.e

overcrossings are changed to undercrossings and vice versa); compare Figure 2.4.

We use DN, Do, D,, to denote three link diagrams that are identical, except

near one crossing point where they look like in Figure 2.5.

X/
DN Do

Figure 2.5

Let C be a plane A, B-graph and e E E(G) be an edge that is not a loop.

If the crossing of DN (see Figure 2.5) corresponds to the edge e then

(i) if the attribute of e is A then D, (G - e) = D,, (G) and DN (G/e) Do (G);

(ii) if the attribute of e is B then DA,(G-e) = Do(G) and DN(G/e) = DC(G).

Finally, note that if we ignore the crossing structure of D(G) we get the

medial graph of G.

Now, we describe a correspondence between graphs and oriented links that

is based on an idea of Jaeger (251.

Consider a chromatic graph with two colors. WVe call such a graph a dichro-
matic graph. The two colors of a dichromatic graph are denoted by + and -.

We use d+ (resp., d- ) to denote an arbitrary dark edge of color + (resp.-).

By 1+ (resp., I- ) we an arbitrary light edge of color + (resp. -). Let G be a
dichromatic plane graph. We can associate with G an oriented link diagram,

D(G), and a chessboard-like coloring of the plane, according to the rules shown
in Figure 2.6. (i.e. an edge (v, w) is replaced by one of the diagrams shown in

Figure 2.6 in such a way that v and w remain in the black regions).
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2.2

W V• W

2) v d w

"3) v w V W

4) V I- Vw

Figure 2.6

In particular we have:

F+

Figure 2.7
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We use the convention D(.) = o (i.e. the trivial knot diagram, o, corresponds

to the one vertex graph). Diagrams of links obtained in the above manner are

called matched diagrams [4] 1 Matched diagrams have the following duality

property:

Property 2.3 If G is the dual to the dichromatic plane graph G then D(G)

-D(G*) with black and white regions exchanged, whcre -D ts obtalnd form D

by reversing the orientation of each component of D.

Let D+, D-, Do denote diagrams of links that are identical, except near one

crossing point where they look like in Figure 2.8. We associate a sign (+ or -)

to each crossing according to the convention presented in Figure 2.8.

7
D+ D Do

Figure 2.8

If one considers link diagrams up the second Reidemneister move then we have tile

following useful correspondence (edges d+, l+, d-, I- correspond to crossings of

D+, D- in Figure 2.8; we choose (either) one of the (two) crossings in D+(G)):

Property 2.4 For any edge that is not a loop we have

(i) D(G - d+) = Do(G) D(G/d+) = D- (G)

0i) D(G-d-) = Do(G) D(G/d-) = D+(G)

(iii) D(G - l+) = D-(G) D(G/l+) = Do(G)

(iv) D(G- I-) = D+(G) D(G/I-) = Do(G).

It is an open question whether every link has a matched diagram. It is

very unlikely that it is the case. Nevertheless any 2-bridge link [9] possesses a

matched diagram.

Consider the following move on an oriented link diagram (called in [54] a

X concept similar to matched diagrams was also considered by Conway in late 1960's

(personal Communlication, Seattle, July 1991).
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t3-move).

t 3 -move

Figure 2.9

The following conjecture can be stated:

Conjecture 2.5 ([58]) Any oriented link has a diagram 13 -Cqui1a1l1t to a

matched diagram (i.e. any oriented link has a diagram that can be tranusformed

to a matched diagram by ta moves, their inverses, and Ileidemeisthr moves).

For us, the importance of t3 moves is implied by the following observation.

If G' is obtained from G by changing an edge d- into 1+ (or any, ,f -. c following:

d+ into 1-, 1+ into d-, I- into d+) then D(G) and D(G') are t3 -equivalent as

illustrated in Figure 2.10.

/ 
-move I

I isotop 3 /

D(G) D(G')

Figure 2.10

This idea was used in [58] to prove partially the conjecture 14C in t421.

\Ve use t 3-equivalence of link diagrams to obtain the following commutative

diagrami betweNen graphs and link diagrams. We will refer to Iigure 2.11 when
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comparing various invariants of graphs and links.

d I -
B

dichromatic d" 1 +-4 --

graphs A,B-graphs

G I0IF

D(G) • G
D(G) eMeting one crossing from .N('

matchcd diagrams orientation unoriented link

diagrams

matched diagrams

up tO t 3 equivalence

Figure 2.11

3 Polynomial invariants of graphs

Let 7-(G) denote the complexity of graph G, that is, the number f its spanning
trees, invariant r was introduce,, and studied by Kirchhoff [34]. It has been
noted in [7] that if e is an edv," .sI G that is not a loop ! hen

r-(G) = r(G - e) + r(G/e) (1)
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As noted by Tutte ([76); p5l), this equality had been long familiar to tle

authors of [7]. It was the equality (1) that inspired Tu"lue to iuvestig;ite gr<iphs

iin'ariants, 11(G), which satisfy the following identity

W(G) = W(G - e) + w(G/e) (2)

This led to the discovery of the dichromatic polynomial and its variant, the

Tutte polynomial [73,75]. 2

Fortuin and Kastelyn generalized the dichrornatic polynomnial to chromatic

(weighted) graphs [16] (compare also iLeilnann [19]). The research of [16,19]

was motivated by "statistical mechanics" considerations. One should stress here

that only slightly earlier Temperley discovered that the partition function for

the Potts model is equivalent to the dichromatic polynomial of the underlying

graph [13,65].

The dichromatic polynomial for chromatic graphs gained new importance

after the Jones discovery of new polynomial invariants of links arid the obser-

vation of Thistlethwaite that the Jones polynomial of links is closely related to

the Tutte polynomial of graphs. Several researches rediscovered the dichroni ic"

polynomial and analyzed its properties [32,46,72,51,85,88].

The following version of the dichromatic polynonial is niot.nvaled by con-

nections between graphs and links.

Theoremn 3.1 Theie eC2wss an invariant of chromatic graphs R(G) =

1?(G;p/, r, , r?, Ai, Bi) which is uniquely defined by the following propcrties:

1. ]?(7,) -u -: where 7,, m the n-vcrtex graph with no edycs,

2.

R(G) = -)<•d•)J,?(G - d,) + r'( A'ilR(Gl/d,)

R(G) : (L)'")AiR(G - 4j) + 1-2 BiI?(Gla)

wh e re

) 0 ife is not an isthmus
(e) { 1 if e is an isthmus

)f0 fe is not a toop
( { if r is a loop

211.Whitney [80.811 was considering graph invariaits ?n,., which are essentialy Ithe ,•-fi-

,Lents of the dichromatiw polynomial. He also invlyzod closer tih leq t logiral graph invaliants

m, whizh roriresporid s to the coefi'i ent of the fiow 1,,,ynorinal [83] t..M.lost e ni iced 1S81

that rn,,, invariaits satisfy ,,(Cl -- ,,. ( ' -- 4) -m , (C/c)
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Our variables have been chosen in such a way that the invariants for a plane

graph G and its dual G* are symmetric in the following sense:

Lemma 3.2 If G is a plane graph then

R(G) = R(G; p,rl, r2,Ai, Bj) = R(G*;p,r.2 , r, Ail, B1)

Note, that R(G) is a 2-isomorphism invariant of connected chromatic graphs.

Generally, when G is not necessarily connected and i i4 1 then the polynomial
measures also the number of connected comp nents of the graph. If we put it =

1 then the dichromatic polynomial, R, and its property described in Lemma 3.2
can be extended to matroids (see [88] for a full analysis of the Tutte polynomial

of colored matroids) or more generally to colored Tutte set systems (se [53]).
Let S denote a subset of edges of a graph G. By (G : S) we denote the

subgraph of G which includes all the vertices of G but only edges in S. '[he
polynomial R(G) has the following "state model" expansion:

Lemma 3.3

R(G;i ,rl, r2 , Ai,Bl) =

po(G)-1 (G S)-po(G)p(G: J +,+, 3,3'

SE2E(G) tz1

where the sum is taken over all subsets of E(G), and a, is the number of dark

edges in S of the Zih color, ci is the number of light edges in E(G) - S of the
ph color, 13i is the number of dark edges in E(G) - S of the ith color, and 3i is

the number of light edges in S of the iPh color.

In the above lemma we consider a subset S of the set of edges to be lhe
state of G in the sense that edges in S are marked to be contracted and the

edges in E(G) - S are marked to be deleted.

Below we list a few easy but useful properties of R(G).

Lemma 3.4
(i) R(G; p~r, r2, Ai, Bi) = R(G; p, rl , r-, Bi, A,)

(ii) For any i, the number of i0h colored edges of G is equal to ni + o' +3, + 3'

which is equal to the highest power of Ai in R(G)

(iii) If G, * G2 is a one vertex product of G, and G2 and G1 U (;, zs a disjoint

sum of G, and G 2 then

R(GC1 Li G2) = pR(GI * G 2 ) = pR(G1 )R(G 2 )
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(iv) If G is a loop or isthmus then we have

R(-4d,) ý B, + r2.Ai

R(At,) = Ai + r 2 Bj

R(-.d.) Ai + r1 B,

Rý-ýjj Bi + r1 Aj

where di (resp.,li) denotes a dark (resp., a light) edge of the i"h color.

(v) If Q(G;t, z) is the Traldi's version of the dzchromathc polynomial [72] then

Q(G; t, z) = tR(G; p, r1, ,r 2 , Ai, B,)
-L B,(G)

where r,1 = = t, r 2 = z, Ei(G) denotes the number of i"' colored edges

in G, and the weight, w(e), of an edge e of G Is defined by:{ A, ife is a di edge

w) if e is an li edge
A.

Note that both versions of the dichromatic polynomial are equivalent be-

cause, by Lemma 3.3 (ii), Ej(G) is determined by R(G). Furthermore Q(G; t, z)

determines Ej(G) and po(G).

4 Polynomial invariants of links

4.1

In 1928 J .W.Alexander found the Laurent polynomial invariant of oriented links

and proved that polynomials of L+, L-, Lo (compare Figure 2.8) are linearly

related [1]. In early 1960's, J. Conway rediscovered Alexander's formula and

normalized the Alexander polynomial, AL(t) E Z[t+l/ 2], defining it recursively

as follows:

(i) A,(t) = 1, where o denotes a knot isotopic to a simple circle

AxL, - AL_ = (V- )AL

It was already known to Alexander and Conway that computing AL(t) has

polynomial time complexity. This follows from the fact that the computation

of this polynomial can be reduced to the computation of the determinant of a

certain matrix.
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4.2

In the spring of 1984, V.Jones discovered his invariant of links, Vi.(t) E Z[t:i 1/2],

and in July 1984 Jones [27], and Lickorish and Millett proved that the Jones
polynon,-.l is defined recursively as follows:

(i) V" - 1,

(it) 1 VL+(t) - tV 1,-(t) = (/It- I )VLo(t).
Jaeger, Vertigan and Welsh [26] proved that computing VL(t) is #P-hard.

This result has been strengthened by Vertigan f77,78], who showed that com-
puting VL(c) is #P-hard for any non-zero complex number c except for c =

-1, ±i, ±e?'2i/ 3 , ±4- 47i/ 3 where the time complexity is polynorriia.

4.3

In the summer and the fall of 1984, the Alexander and the Jones polyno-

inials were generalized to the skein (named also Flypmoth, IHomfly, generalized

Jones, 2-variable Jones, Jones-Conway, Thomflyp, twisted Alexander) polyno-

mial, PL E Z[a+1, z+ 1], of oriented links. This polynomnial is defined recursively

as follows [15,59]:

(i) P =;

(ii) aPL+ + a-, PL_ = ZPLo.

In particular AL(t) = PL(i,i(V - -)), L( PL(
Jaeger [25] proved that computing PL(a, z) is A[P-hard. This result was gene-

ralized by Vertigan [77,78] to show that computing PL(ao, zo) is #P-hard for
any non-zero complex numbers ao, z0 except

1. ao = ±i, (then PL reduces to the Alexander polynomial),

2. z0 = ±(aO + a)
3. (a o, z ) = (±-1,4-v/"2)

4. (ao, zo) (=-,±1)

5. (aO, zo) = (±e+'i 6 -1)

where ±'s are indepencdent.,

4.4

In 1985 L.Kauffman found another approach to the Jones poly:ionial, It, starts
from an invariant, < D >E Z[jp, A, B], of an unoriented link diagram .) called

the Kauffman bracket, [31]. The Kauffman bracket is defined recursively by:



SUBEXPONENTIALLY COMPUTABLE TRUNCATIONS 77

(i)

< o ... o0 =: Ai-

(ii)

<(>= B <-> +A <1(>

(iii)

<,C>= A <=> +B <i(>

where >,g X and • denote four diagrams that are identical except

near one crossing as shown on the diagrams, and < .. o > denotes a diagram

of i trivial components (i simple circles).

The Kauffman bracket is 4 source of our version of the dichromatic polyno.-

mial of chromatic graphs.

If we assign B = A-' and #u = -(A 2 + A- 2 ) then the Kauffman bracket

gives a variant of the Jones polynomial for oriented links. Namely, for A = f-4

and D being an oriented diagram of L we have

VL(t) = (-A 3  (D) < > (3)

where w(D) is the planar writhe (twist or Tait number) of D equal to the

algebraic sum of signs of crossings.
It should be noted, as observed first by Kauffman, that bracket < >M,,AB

is an isotopy invariant of alternating links (and their connected sums) under

the assumption that the third Tait conjecture (recently proven by Menasco and

Thistlethwaite [40]) holds.

4.5

In the summer of 1985, L.Kadffman discovered another invariant of links,

FL(a,z) E Z[a~'),z±], generalizing the polynomial discovered at the
beginning of 1985 by Brandt, Lickorish, Millett and Ho [6,201. To define the
Kauffman polynomial we first introduce the polynomial invariant of link dia-
grams AD(a, z). It is defined recursively by:

(i) A,(a,z) = 1,

(ii) A•(a,z) =aA$ (a,z); A, (a, z) = a- A (a,z),

(iii) A,<(a, z) + A>(a, z) = z(A.,,(a, z) + AI(a, z)).
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The Kauffman polynomial of oriented links is defined by

FL(a, z) = a-w(D)AD(a, :)

where D is any diagram of an oriented link L. It was observed in [66] that
computing FL(a, z) is NP-hard. This result has been strengthened by Vertigan
[77,78,79] to show that computing FL(ao,zo) is #P-hard with some excep-
tions. Most of these exceptions were already studied and understood before

(see [37], and [29,64] for the additional case (ao, zo) = (1, 2 cos-)). The excep-
tion (ao, zo) = (_ql, q + q-') where q3 = -1 seems to be noted in [77,78,79]
for the first time.

5 Relations between link and graph polyno-

mials

The two correspondences between graphs and link diagrams described in Sec-
tion 2 led to relations between polynomial invariants of links and graphs (de-
scribed in sections 3 and 4). Such a relation was observed for the first time by
Thistlethwaite [66].

We take Figure 2.11 as the base for our comparison.

I. Starting from the skein polynomial of links (in particular of matched

diagrams) PD (a, z), we can define the dichromatic plane graphs invariant W(G)

by putting
W(G) = PD(G)(a, z).

Then the following holds (see Section 3 for notation):
5.1

W(G) = a-zW(G - d+) - a_ 2W(G/d+)(a + a- )6(d+)

W(G) = -a- 2 W(G - l+) + a-'zW(G/l+)( a + a-1 )6(t+)
z

W(G) = azW(G - d-) - W(G/d-)(' + -aa_ (/d()6(d-)
z

W(G) = -a 2 W(G - -) + azW(G/1-)(
0 + a) 6 (I-)

a+a-1
W(TO) = ( -- -

z
One can easily recognize that W(G) is a special case of the dichromatic poly-

nomial R(G,IA,rl,r 2 ,A±, B±), for r, = = r 2 A+ = -a- 13+ =
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a-'zA- = -a 2 ,B_ = az. The equality r, = r 2 reflects the fact that D(G)

-D(G') (see Property 2.3)

II. A relation of the skein polynomial of D(G) to the Kauffman bracket is
presented in the following lemma:

Lexiiia 5.2 Let G be a dichromatic plane graph, let G' be the correspond-

zng A, B-graph (see Figure 2.11), let DN(G') be the unoriented link diagram

obtained from G' by rules from Figure 2.3 and let D(G) be the oriented link

diagram obtained from G by rules described in Figure 2.6. Let in+ (resp., in-)

be the number of positive (resp., negative) edges of G. Then for B 1 = A =

al/2 u -- -A 2 - A- 2 the following holds:

< DN(G') >= (-a2)'n+-n- PD(G)(a,-1) = (--a2) 2 ()) PD(G) (a, -1).

Proof: Note that for z = -1 we can rewrite 5.1 as follows (see formulas (i) -

(iv) of Section 2)

'Ia PDý(,-1 ' DGd)a 1+- PD(Gld+)(a, -1I)(- (a+ a- 1))b(d+)

-a' PD(G)(a, -1) = a-• PD(Gl+)(a, -1) + a½ PD(Gp+)(a, -1)(-(a+ a-))6(1+)

-U-* PD(G)(a, -1) = a-7PD(Gd-)(a, -1)+a½" PD(G/d-)(a, -1)(-(a+a-1)),(d-)

-- PD(G)(a,--1) = a'l PD(G-1-)(a,--1)+a-½ PD(a/t-)(a,-1(-a -))(-

PD(T,)(a,-) =[-(a+ a-I-1.

The lemma follows by comparing the above formulas with corresponding

formulas for the Kauffman bracket < DN(G') >. 0

If we orient DN(G') to get Do(G') in such a way that the orientation agrees

with that of D(G) (i.e. positive crossings of D or(G') correspond to positive

crossings of D(G)) then the following holds:

Corollary 5.3 For a = t-2,

YD-(G,)() W= PD(c)(a, -1).

In [36] there are given necessary and sufficient conditions for existence of

DA,(G).
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We have mentioned before that it is unlikely that every link has a matched
diagram (i.e. has a diagram of a form D(G)). One can hope to use Lemma .5.2

and some properties of skein polynomials and the Kauffman bracket to find a
link without a matched diagram.

One observation should be made. If G is obtained by changing an edge -
to d+ in a planar graph, G, then the associated nonoriented diagramns are equal

(i.e. DN(G') = DA'(G')) and therefore < DA(G') >=< DN(C&) >. Now, by

Lemma 5.2, PD(,)(a, -1) = a-3 PD(a)(a, -1). The last equality can be put

in a more general context. Namely, D(G) and D(G) are t3-equivalent (see

Figure 2.9) and it can be easily checked that for any t3 move on a diagram D,

P,3(D)(a,-1) = a-aPD(a,--1) (compare [54]).

6 Polynomial algorithms

We express the time complexity of our algorithms as a function of the number

of crossings, in, and we assume that the number of link components, com(L),
of a link L is less than or equal to the number of crossings .

The main goal of the paper is to show that a substantial part of the skein

(llomfly) polynomial PL(a, z) can be computed in subexponential time (more

precisely in 0(m"cJn "')). We will discuss the corresponding algorithm in the next

section. In this section we show that "essential parts" of the new polynomial

link invariants can still be computed in polynomial time (so faster than in

O()IInn) time) where"essential" can be interpreted as useful for nontrivial

applications, as discussed in Section 8.
Because of the recursive definition of the new link invariants, the conmputa-

tion of such an invariant can be visualized with the help of a resolving tree. In a
resolving tree of a link polynomial (resp., of a graph polynomial) each internal

node corresponds to one application of the recursive formula and each leaf is

labeled with a polynomial of a trivial link (resp., of a graph whose polynomial
can be immediately computed).

Theorein 6.1 Let s > 2 be a natural number and let ((t - 1)') be the ideal in

Z[0t2] generated by (t - 1)'. If VL(t) is the Jones polynopual of a link diagram

L them

VL(t)mod ((t - 1)')

can be computed in 0(m7) time, where m denotes the number of crossings of L.

3This inequality is implied by an assumption that no component of a diagram is a simple

circle, so there is no real loss of generality.
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Proof: The theorem can be derived from the analogous theorem for the skein

polynomial (Theorem 6.2). However, as a warm-up, we give a separate proof,

using the Kauffmnan bracket < L >E Z[A'ýl] and unoriex-ted link diagrams.

From the identities

<>(= A <-> +A- <)(>

and
<)<'>= A-' <--> +A <)(>

we get

A <\'(> -A-' <)<>= (A 2 - A- 2 ) <=> (4)

This formula can be used to build a b..iary resolving tree for L, leaves of which

can be used to compute < L >. An internal node of this tree looks as in Figure

6.1 and leaves represent descending diagrams (see [22,39,59] for the definition of

a descending diagram; the important fact is that descending diagrams represent

trivial links) for which

< D >= (-A3)w(D)(-A
2 - A-2)com(D)-1

where w(D) is the writhe (or Tait) number of D and com(D) is the number

of (link) components of D. One can easily show (compare [22,39,59]) that the
depth of the resolving tree is less than m.

x x
/ \4 

or

X x
Figure 6.1

The crucial observation is that if DI is a leaf of the resolving tree such that the

path joining the root with this leaf goes at least s times to the right then the

polynomial introduced to < D > by D' is divisible by (A 2'-A- 2 )s. Therefore if

we are interested in < D > mod ((A 2-A- 2)s) we can ignore such a leaf. Thus to

find < D > mod((A 2 - A- 2)y) it suffices to consider at most n) ( )
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0(m- 1 ) leaves. Therefore thc number of nodes of the resolving tree required

by the computation of < D > mod((A 2 - A- 2 )-) is 0(m').

Furthermore all possible polynomials for the leaves can be tabulated in

O(m 2) time. For each leaf we compute, based on the path from that leaf

to the root, the polynomial by which the given leaf is multiplied in the process

of computing the whole polynomial. To keep the algorithm within O(m') time

complexity we tabulate values of polynomials (A2 - A- 2 )i, (-A 2 - A- 2 )j, i =

1 ... m,j = 1,...,s. Then, for every leaf, we can compute the corresponding

polynomial in 0(smn) time and order the sum of the leaves in 0(ni2 ) time using

the classic linear time integer sorting algorithm.

Now, the theorem follows from the fact that

VD(t) = (-Aa)-w(D) <D> for A=t-¼.

Our result should be compared with that of Jaeger, Vertigan, and Welsh

[26,77,78] (see Section 4). Namely, Theorem 3 of [26] (see 4.2) can be inter-

preted as an answer to the question: For which polynomial w C Z[t], without.

multiple roots, can the Jones polynomial modulo the ideal generated by U.
(VL(t)mod(w)) be computed in polynomial time. We allow u, to have multiple

root. Then Theorem 6.1 gives an example of w with multiple root (t = 1)

for which a polynomial time algorithm exists. The simplest open question is

whether VD(t)mod((t + 1)-) can be computed in polynomial time for s > 2.
Theorem 6.2 Let VZ be the subring of the ring Z[a±l, z:':] generated by aý",
a+- ' and z, then for any oriented link- L:

z

(a) the skein polynomial PL(a, z) G R, and

(b) PL(a, z)mod (z-) E l/(z')

can be computed in polynomial time (more precisely in 0(mr') time) where

(z') is the ideal ofRl generated by z- and in denotes the number of cross-

ings of L.

Proof.

(a) The proof of this part follows by an easy induction on the depth of the

binary resolving tree for L (see [.57]: Lemma 1.1).

(b) We proceed as in the proof of Theorem 6.1. The relation aPL+(a, z) +
a- 1 PL_ (a, z) = zPLj(a, z) allows us to build, for any link diagram L, a

binary rcsolving tree with leaves representing descending diagrams. As in

Theorem 6.1, the depth of the tree is less than rn and the number of leaves
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which contribute to PL(a, z)mod (z3) is no more than j2i=0 ( )
Therefore the numlber of internal nodes of the resolving tree introduced

in the computation of PL(a, z)mod(zS) is O(m-).

0

The following useful criterion (which is a slight modification of Lemma 1.5

of [57]) can be used as a tool to see how much of the skein polynomial survives

if we consider it modulo (z') in R.

Lemma 6.3 Let w(a, z) E It and w(a, z) = v(a)z' where vi(a) G Z[a±1].

Then w(a, z) is in the ideal (z') if and only if for all i < s, vi(a) is in the ideal

((a + a-l)-i) of Z[a~'].

Proof. Let TV denote the ring 7R treated as a Z[a±1] module. Let I, be thle

ideal in R' generated by the elements zi(a + a-1)'-', (i < s) and z?,(i > s).

Because I, was chosen so that w(a,z) E Is if and only if vi(a) E ((a+a-')'-'),

where i < s, it th.erefore suffices to prove that I1 = (z').

First note that I1 C (z') because zt((a + a-1)5-') = zs(-+a-)3-' E (z$).

On the other hand I, which is an ideal in TV, is also an ideal in 7, and contains

z'. This is the case because z(zi(a + a-l)-i) = zi+l((a + a-')$-'-l)(a +

a') E Is(i < s),z(z2 ) = z'+' E Is (i > s) and ' (z(a + a-' )')

zi- (a + a-1)si-+l E 1,(i < s). Therefore I1 - (z-). 0

As noted in 4.3 (point 1), PL(a,z)mod(a 2 + 1) can be c)mputed in poly-

nomial time. This follows from the fact that this formula i), equivalent to the

Alexander polynomial. It is however an open question of great interest whether

PL(a, z)mod((a 2 + 1)y) can be computed in polynomial time. Similarly, from

the condition 4.3 4. we deduce that PL(a, z)niod(a 2 
- 1, z 2 

- 1) can be coin-

puted in polynomial time. Now considering the map from oriented matched

diagrams to unoriented diagrams, D(G) • DN(G') (see Figure 2.11), and

using the relation of Lemma 5.2, we can show that for matched diagrams

PL(a, z)mod((a 2 
- 1), z2 

- 1) can be computed in polynomial time. Theorem

6.2 and Lemma 6.3 are related to a recent work of P. Traczyk on the Poincar6

Conjecture [71).

Namely, Traczyk essentially shows that the third skein moduh. 4 of a homo-

topy 3-sphere, S.3 (E3), is generated by the unknot if considered modulo (z.).

Traczyk is testing various available homotopy spheres to check whether the un-

4 A skein module is a generalization of the skein polynontial to any oriented 3-manifold.

For an overview of skein modules see [56,23].
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knot is a free generator of S3(E3 )mod (zs) (if it is not, a counterexample to the

Poincar4 Conjecture would be found).

More generally, if a 3-manifold, AM, is simply connected (not necessarily
comapact) then S3 (M)rnod(z') is generated by the unknot. This can be used to
prove that for uncountably many Whithehead type manifolds the third skein
module S3 () is not free (compare [241).

The main idea behind theorem 6.2 was to see how much of the skein poly-
nomial of the link is preserved if we ignore nodes which can be reached from

the root by going s or more times to the right. In terms of link diagrams this

s equivalent to saying that we perform at most s - 1 smoothings on a link dia-
gram. We can weaken this condition in two ways: (i) by allowing at most s - 1

smoothings of selfcrossings of a link diagram (this is the idea behind Section
7), or (ii) by allowing at most s - 1 smoothings between different components

of a link. The later idea awaits exploration; however, for a fixed number of link
components we get a polynomial time algorithm.

Theorem 6.4 The Kauffman polynomial FL(a, z) is an element of the ring R

and it can be computed mod(z3 ) in a polynomial lime (mnore precisely in 0(771')
timhe).

Proof: It is convenient to work with AL(a, :) which is an invariant of unoriented
link diagrams (up to Reidenieister moves II and III). The fact that AL(a, z) E
follows by an easy inductive argument: this is obviously true when L is a trivial
link diagram and from the fact that this is true for three diagrams ,',)(
or Y,,-"I]of Figure 6.2 it follows that it is true for the fourth diagram of
Figure 6.2.

Figure 6.2

To compute ALt(a, z)mod (z'), we build a trinary resolving tree for L, leaves
of which represent descending diagrams (so their polynomial can be immediately
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found). The internal nodes of the tree look as in the Figure 6.3.

X X

Figure 6.3

As in Theorem 6.1 and 6.2, the depth of the tree is less than m, where m is the
number of crossings. Furthermore the leaves of the tree that can be reached

from the root by going at least s times right ( i.e following the right or the center

branch of a tree presented in Figure 6.3), not necessarily in consecutive steps,

introduce to AL(a, z) a polynomial divisible in , by z'. Thus these leaves can be

ignored in computing AL(a, z)mod(z 3 ). Therefore to find AL(a, z)mod (z-) we

need to consider at most Z <)leaves, wherei( , 2

"Therefore the number of internal nodes of the resolving tree

,ivolved in the computation is 0(m 3 ). El

7 The Q(nclnm ) algorithm

As we mentioned in the introduction, computing Jones type invariants is #P-

hard. However two non-isotopic knots (resp., non-isomorphic graplhs ) can

be often diFtinguished by computing only a part of an invariant. One way

of doing this is to compute some evaluations of a polynomial of a graph or

knot.. However by the result of Vertigan [77,78], this approach does not lead to

efficient algorithms (except for few specific evaluations). In the previous section
we presented polynomial time algorithms to compute various link invariants

modulo some ideals. In this section we take an alternative approach. Namely

we discuss complexity of computing the s first, coefficients of the dichromatic

polynomial for chromatic planar graphs.

We assume that the number of connected components in the graph is 0(m).

The algorithmn which we present has an intriguing complexity of 0(mrhlIn"')
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whe're m is the number of edges. Thus it is subexponential but not polynomial.

The proof, we present, translates directly to matched diagrams of links.

A number of useful properties of R(G) were given in Lemmas 3.3 and 3.4

We will change the variables in the dichromatic polynomial of chromatic

graphs so that the variable p corresponds to the variable z- 1 of the skein

polynomial.

Let B• = Bip, A' = Ai, and r' = rlp- , rl = r2 P-1. Then by rewrit-

ing the recursive definition of R(G) (see 3.1 ) we obtain the invariant f1 E

Z[PLu1, r-, , A,, B] with the following recursive properties:

1. R(Tn) = p'-1; where T, is the n-vertex graph with no edges,

2,

if?(G) - (7")((d),PlBR(G - di-)1+ (r+2p)(d)AR (G/di)

J?(G) + (r)•) -'BR(G/Ii)

Denote by Gd (resp.GI) the graph obtained from G by removing all light

(resp. dark) edges (but retaining all vertices) and by deg, P the maximal degree

of p in the l)olynomial P. Write

R(G)- q1 (r•. r2, A', Bý)Pj

j.<deg, P(G)

We abbreviate q0-', r', A', B') to q,.

The , owing two lemmas will be proven by a joint inductive argument.

Lemma 7.1 deg,,R(G) = po(G%'-d) -p(Gd) - 1.

Leiiimia 7.2 Let I (resp., d) be a light (resp., dark-) edge, then

deg i?(G - 1) = deg, iR(G)

deg,, (G/d) + 6(d) =deg,(G)

fdegpiR(G) + 1 if both endverticces of 1 are in the

degR(G/l)+6(1) = same connected component of Gd

deg,,h(G) - 1 otherwise

deg,1 f?.( - d) { deg_ ?(G) + I if d Zs an isthmus of Gd
I deg;, 1(G) - I otherwise
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Proof- (of Lenlna 7. 1 and Lemma 7.2 - sketch) Wk. prove both l-miln.s l•

induction onl the number of edges in G. For a graph without. edges LcI unl

7.1 is obvious and Lemma 7.2 is an emply statement. "lThe inductive stc"

for Lemma 7.2 follows from the inductive hypothesis for Lemma 7.1. Then thli

inductive step for Lemma 7.1 is an immediate consequence of the inductive step

for Lemma 7.2 and the defining recurrence for R? (note that all componients of

the sums are positive, and thus we do not have cancellations). 03

The above lemma and the recursive definition of R? give the following:

Corollary 7.3 All powers of it with non-zero coefficients have the saint parity.

Let b(G) - po(Gd) + p1(Gd) - 1. Note that in Lemmas 7.1 and 7.2 only the

attribute of an edge was important, not its color. In particular if G = Gd (or

G = GI) (i.e all edges have the same attribute) then, using the argument from

the previous section, one shows that the cost. of computing qb(G-2, is polynomial

of order Q(iW+i) (provided s is a constant). Namely, we need to consider only

these p)aths of the resolving tree of the full polynomial that go at most s tiues

right.

Our algorithli to compute the st, highest coefficient. qt,•_j,, is also based

on the observation that the resolving tree for computing such a coefficient can

be made considerably smaller than the resolving tree for the full polynomial.

In fact we will show that this tree belongs to a certain family of trees and we

show an upper bound on the number of leaves for a tree in this family.

We consider a family of trees in which each non-leaf node has one distin-

guished child called the left child. A child which is not a left child is called a
right child. An edge from a node to its left child is called a left edge and all

edge from a node to any of its right children is called a right edge. If u and r

are two nodes of a tree, T, then the right distance between u and v is defined to

be the number of right edges on the unique path in T between u and v. Each

internal node has associated with it a type that is an element from a finite set.

The type of an edge is equal to the type of the corresponding parent node.

Before we describe the family of trees which contains resolving trees con-

structed by our algorithm, we define a simpler tree for which the number of

leaves can be easily approximated.

Definition 7.4 Let sI,s2,m,k be non-negative integers such that k > 1. A

rooted tree 7' is called (si, s2,in, k)-unbalanced if and only if it satisfies the

following conditions:

1. If n = 0 then 7' is the one vertex tree.

2. If 17 > I then the root oft has as the left child (., s 1, m-I, k)-unbalanced
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tree, and the set of right children depends on the type of the" root ti thu

follo Ivng way:

(i) s, > I and there is one right child which is a (sm - 1,sin k-

unbalanced tree, or

(ii) s2 > I and there arc k right children which art (sl, s-, - I in - 1.k)-

unbalanced trees, or

(iii) s, = s2 = 0 and there is no right chdd.

An example of an (1, 1, 3, 2)-unbalanced tree is given in Figure 7.1

(1,1,3,2)

(1,1,2,2) (0,1,2,2)

(0,1,1,2) (0.1.1,2) (0,0,1,2) (0,0,1,2)

(1012) (0102) (0102) (0002) (0002) (0102) (0002) (0002) (0002) (0002)

Figure 7.1 An example of an (1, 1,3,2)-unbalanced tree

Informally, an (s1 , S2, mt, k)-unbalanced tree is a tree of height m such that

the right distance from the root to any leaf is bounded by sI + S2. Furthermore,

a path from the root to a leaf contains at most S2 right edges of type (ii).

We should stress that in our main theorem (Theorem 7.10 ) we use un-

balanced trees with k = 1, that is, binary trees. This simplifies some of the

considerations. In particular, Lemma 7.5 is simpler for k = 1. We keep the

option k > I for possible improvements of the main theorem (one such im-

provement is presented in Theorem 7.11).

Lemma 7.5 Let F(si, s2, m, k) denote the maximal number of leaves in an

(s2, s2, m, k)-unbalanced tree. Then

F(sI 1,s 2 , k,mn) k' ( rn ) + k*2.

]n particular.,
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(a) If si K s'l, s., < s.,, in < rn', k < k' then it'(s. , s, k.7 m) < ].'(.•' ,S,. k', ,n')

(b) F(s,s ,k. n) K k'i-"n'l+'2 + 1 and equably holds if and only if uztht,

sl + s2, = I or in = k = 1,s + s- > 1, or in = = lisi > I

Proof: Given any In, we build an (s, s,, rn, k)-unbalanced tree with hlt- maxi-

real number of leaves in a top down fasshion, following the recursivc defit(toll

creating type (ii) nodes whenever it. is possible. For a tree obtaine in this way

we can compute precisely the number of leaves for which the right subpathp

from the root to a given leaf has length j (compare Section 6), Namiely we get

if j < s 2 then the number of such leaves isk( m ), and if s',)< j f, s-, + s,

then it iskS( n1 ) The point (b) of the second part of the lenma follows

from the observation that for in > j>, ( m ) < n _-' (-1)._

We will describe now a family of rooted trees, called a-trees, whirli strictly

generalize the computational tree used in our algorithm. We .will apprt, xilate

the number of leaves of an a-tree by th ý number of leaves in an appropriate

unbalanced tree-

Definiition 7.6 Let S, 7)., 771d, h, k be non-negative Integers such that k > I

and a be a real number, where 0 < o < 1. A rooted tree T is called (II

(s, W, rd, k, h, a)-tree (or shortly an a-tree) if and only if it satisfies the followr-

ing conditions:

1. If in = 0 then 7T is the one vertez tree.

2. If m > 1 then the root of T is a node of type (i), (n), (iii) or (iv) described

below. It has as the left child an (s, in-, mrn, k, It, a).tree where ,n" <_ "d,

or an empty tree; and either

(i) there is one right child which is an (s - 1,m -1, rn' , k, h, a)-tree and

"I'd < nd, h' < h or

(ii) 7nd > 1 and there are at most k right children each of them being ao

(s, in', mrd, k, h, a)-tree, where rni < amd, m' < m or

(iii) rnd > 1 and there is one right child which is an (s, n- 1, rad, k, h,o)-

tree where m' < md, or

(iv) s = 0 and there is no right child,

3. Let v be any node of T, whose right distance from the root is greater than

It and let it be the root of an (s', i', m', k, h,a)-tree. Then either
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(a) s' < s, or

(b M', <_ (lMd.

Leinuxa 7.7 The n unber of leaves of an (s I?, md, k, I, i)-tre s less than or

equal to F(sl,,ss, m7 k) where s, = (h+ 1)s+h[log.0. mdJ +h, s21 = Llogil mdJ + I

In particular an (s. m, Id, k, h, rt)-tree has a! most

l•log.L V,,] +1 (h+1)(s+ oL.O9,, ,,jJ+I)k oT + I

leaves.

Proof: It suffices to show that the number of leaves of our tree is at most
the maximum number of leaves of an (s), s2, in, k)-unbalanced tree with si,s.,
defjned as in the lemma. To show this we consider a path for the root to a leaf
and will approximate the maximal number of right edges in such a path. T/'h,
number of right edges of type (in) is at most S2 = Llogi ,nd]+ 1 By Condition 3.

the total number of right edges is bounded by s 1 +s 2 = (h± 1)(Z+ [log± rmdI + 1),

Thus our tree has no more leaves than an (s, s2, ni, k)-unbalanced tree wvit

sl,s2 defined as in tlie lemma. C3

Now we state and prove our key lemma.

Lemma 7.8 Let G be a planar chromatic graph with ni edges and Ind dark

edges. Then one can construct a resolving tree, 7', to Compute . such

that 7' is an (s, m, Md, 1, 1, !)-tree where each node of 7' has associated ivth it
a planar chromatic graph and the following conditions are satisfied:

"* the root of T has associated with it the graph G,

"* each leaf of T has associated with it a set of isolated vertices, 5

"* a coeffic2ent of the graph associated with an Internal node can be com-

puted from the corresponding coefficients of the graphs associated with its

children using a constant number of algebraic operations on polynomials.

"* the graph associated with a non-root node can be computed from the graph

associated with the parent node in O(m) time.

Proof., We proceed b% induction on the number of edges, mu, of the graph G.

If m = 0 then the lemma follows immediately from the definition of an
a-tree. Thus assume that the lemma holds for any m', 0 < an' < mu.

We consider the following cases:

5 Note that we can reduce slightly the size of a computational resolving tree if we allow,

in the leaves of the resolving tree, forests with selfloops and compute polynomials for them

using a direct formula.
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Case 1: G has a dark edge, d, Hot being anl isthmius of Gd. By Lemmail

i.zý and recursive formulas for H? it followvs that het( de~grvo tf le( -- d) i'

equal to the degree of H?(G) rmitus two. NMore generally, in thils cas~e

Iiu)-.2+ i~)()~q .where (1, is a dJark udg o I"'clo

Thus to compute q,,,- We uDeed to compute q;,. 1 ad if >~ .

By~~ 3 thle indid ctive hvpothlesis oneC canl Construct aretdint -

T, to compute qbl~,such that T, 1 isa5s h 1 . e.Fr

tliermiore_ if s > I then one canl con~struct a resolving tree- 7", for G -- bSuch

that T-2 is an (S - 1,m 1 m - 1, 1, 1, !)-tree. Thus if s > I we cau let the

root of the resolving tree for G be a node of type (i) and let the roots of T, and

T1 be left and right children respectively. If S =(0 theni we# let ti~ root. Of t!A,e

resolving tree be of type (iv) with T, as the left child. By the definition of an

oa-tree, the resulting resolving tree for G Is all (S, )II, Mdl, t.1.~ Wre.

Case 2: There exist a light edge, 1,joining different colinponlents of Gd. Thenc

the degree of iThG/I) is equal to the degree of H?(G) mninus, two or mnior generally

q~()2 --: (r' )f(()Ajqb(c;_)_ 2, + f1qb(Gt :- where I Is a light 'edg'- of the i"1

color. Thus we let 71 be the r--solving tree for G 1, which by the iiiductivc. hy-

pothesis is an. (s, In- 1, M1 d, 1, 1, !)-tree, and (if s > I1) we( let T, be the rosolv`..g

tree for G11, which by the inductive hypothesis is, an (s - 1. 1n11 111dn, 1. 5. -

tree. Again, by definition, the resultiMg t ree is ;11 (-5, 771, Md. ,I.~)-tree with

thle root of type (i) or (iv),

Case 3: Gd is a forest, no light edge joins different components of Cd, andl

there exist a dark edge, d, suich that Gd - d call be partitioned into two groups
of connected components each having at mrost :'"Id edges.

We let the root be of type (iii) and we associate wvith its left child the graph)

Gid and with the right child the graph G - d. The resolving tree for G/d is

constructed inductively to be an (s, m - 1, ?m,j - t1,,1, or) tree and thle resolving

tree for G - d is constructed as follows:

Let 1k, h where k- > 0, be the set of light edges connecting two tree-s

from different groups of the partition. We iteratively delete/contract. edges 4i

associating thie graph obtained by removing 1, with the left stihtrees and( the

graph obtained by contracting 1i with the root of the right subtree (see Figure

7.2 ). The resolving tree for the right subtree is then found inductively (we

lower the value of the parame~ter s). The resolving tree for the left suhbtree Is a,

subject of the next iteration. If all edges 1, are remove(] then, by the definlition
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of d, the connected comipollents of of the reŽsulting graph call be partitioned

into two groups each of which hai at jios',S 1t dark edge. We associate thit.

subgrapli with larger number of dark edges, say .; with thi, left subtrec anl

the subgraph with smaller number of dark edges, say Gb, with the right. suhirue

The resolving trees for these two graphs are known 1y the inductive assumption

To see that Conditioni 3 of the definition of an n -iree is satisfied note that at

any step of the abc.ve coastruction, the graph asso ",tted with a right su btrce is;

obtained from the graph associated with the parent node either h\ contract ing0

a light edge connecting two different connected conmp)onent of the dark forest,

or (in the last iteration) by dividi:ng t lie graph into two subgraphs each of which

has at most 17md dark edges.

G

Gi'd G- d

G/\/
G- d- 1 G-dd12

-d'"12G-d-1 I1

Ga \Gb

Figure 7.2. Construction of the resolving tree in Case 3

Case 4: Cases 1-3 do not hold.

For simplicity of the presentation we assume that Gd (and therefore G) is

connected. The generalization to non-connected G is straightforward.

We will use the following well known fact:

Lemma 7.9 If Gd is a tree then either

(i) there is an. edge d in Gd such that no component of Gd - d has more than

(1 - ý)md edges, where mtd is the number of edges of Gd, and 0 < ý < -1

oil
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(ii) for any plane embedding of Gd there is a vertex v of Gd and three pairuise

disjoint (except v) curves yl, y2 and -.'3 from v ,, infinity (-,,G nG =;)

which split Gd into three connected sibgraphs, G1 ,G 2 and GQ1,each of which

has no less than 0 = (I - ')rnd edges.

Let G be a chromatic plIne graph. Assume that the case (ii) of Lemma 7 9
holds for Gd. Let w be a point in the unique r-'gion of ?2 - G which touches

Gi - v for any i. We can assume that 7i goes from v to w , cuts light edges

perpendicularly and any light edge is cut at most once. It is useful to think of

71 U 72 U 73 as a subgraph H of the graph dual to G, composed of edges which

are dual to light edges joining different components Gi (and disjoint from v).

Let w be the vertex of H corresponding to the face containing point w. If w

has valency less than 2 then G can be split along v into two subgraphs no one

of which has more than (1 - 6)md dark edges, Otherwise w has valency 2 or

3. Consider the case of valency 3 (the case of valency 2 being analogous). Let

el, e2 and e 3 be light edges of G dual to edges adjacent to w in H. Let c, be

the unique cycle of Gd plus ei, and D, the region bounded by ci (including the

boundary) with w outside of it (see Figure 7.3). Let G' = Gd D1 i and Gý'

Gi - Ui=1 ,2,3 G'. Then Gý has no more than (1 - /)Md edges and there is some

i, say i = 1, such that G' U Ui= ,2,3 G"' has at least /3 rnd edges.

. 0

:.:2

\V

...... ..........

e ........... .........::::

Sa "dark edge

--------. a light edge

Figure 7.3 Splitting a graph in a vertex
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Froin this there follows immediately the following fact of great iniportance

for oii algorithm. Let G/rj be a plane graph obtamned from (G hY c'ontracting

all edges of the cycle c1 . Then the 2-connected con pontents of (;/c can be

grouped into five subgraphs of G*/cl none of which has iliore than (I - 3d11j

dark edges- namely, (Gn D, )/c, , G", G", G' and G.' containing all other edges
of the graph G/cl. It follows from this that the 2-connected components of

G/lc can be grouped into two subgraphs GQ and G, none of which has more

than (1 - /3)md dark edges. Notice that f?(C/cl) = I?(G,,)I?'(Gb).

We use the above facts to build a resolving tree for G satisfying the condi-

tions of Case 4.

We let = whi,-h gives/3 = g ( this leads to n = = 1 - We1 -3). We

consider the following cases depending on the valency of w:

Case a: w has vaiency at most 1. This means that at most one -1, cuts light

edges of G. Thus the remaining two curves partition the biconnected comnpo-

nents of G into two groups each. having at mijiust -. nd edges. We as.,ociale one

group of these components with the left child of G and tile other with the right

child of G.

Case h: w has valency 3 (the case when tv has valency 2 is analogous and

is omitteJ). Let, as before, el be the light edge of G and cl the cycle of Gd UeI

such that the 2-connected components of G/lc can be grouped into two sub-

graphs of Gicl each of which has at most 177d dark edges. WVe associate the

graph G- el with the root of the left subtree and the graph G/ej with the root

of the right subtree. As in the Case 3 we construct a resolving tree of G/ei

that guarantees Condition 3 of the definition of an a-tree iteratively.

Let dl,. . .d, where k > 0 be the dark edges of the dark cycle, c1l/e, intro-

duced by contraction of el. We iteratively delete/contract edges d, associating

the graph obtained by removing di with the root of the right subtree and the

graph obtained by contracting di with the root of the left subtree. (See Figure

7.4) If all edges di are contracted then by the definition of cl, the biconnecte,'

components of the resulting graph can be grouped into two subgraphs neither

of which has more than 401d dark edges. We let the subgraph with the larger

number of dark edges be in the left subtree and the subgraph with the smaller

number of dark edges be in the right subtree. Using an argument similar to the

one used in Case 3 we can argue that Condition 3 of the definition of an a-tree
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is satisfied.

G

G-ej • Gle1

G/ Gle '-dj

G11 Id2 Ge, Id, -d2

G/q .I.. ./dk

Ga Gb

Figure 7.4 Construction of the resolving tree, Case 4.

Finally, using standard graph algorithms for planar graphs (see, for example

[12,211) we conclude than each step of the construction can be carried ill 0(m)

time. In particular a plane embedding of a planar graph can be found in 0(m)

time. We represent an embedding by cyclic ordering of edges adjacent to any

vertex of the graph. 0

Now we are ready to prove our main theorem.

Theorem 7.10 Let G bc a planar chromatic graph with 7i edges, Illd > 0 dark

edges, aq-, 0(m) ,o,,'te, rnmpn is. Then the coefficient q,,,..,, con be
2(s+Liog.%rndJ)

computed in 0((s + 1)2din'm 4 ) time,

Proof: By Lemma 7.8, one can construct a resolving tree, 7T, to compute q•(G,_,

which is an (s, in, md, 1, 1, 1)-tree. By Lemma 7.7 this tree has at. most most
2(s+Logz 1 &nmj- + 1) ? 2(s+- og• ,dJ )

t m 4 + m - rm 4 + I leaves.

Each path from the root to a leaf has length at most mn. TI'hlos 7T has

at most ml + I nodes. Computing a coefficient in a leaf takes 0(1) time.

Since we are interested in sth highest coefficient we need to compute at most

s highest coefficients in every node. Thus computing coefficients ill one node

takes 0((s + 1)2) algebraic operations on polynomials. Since for any internal
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node of the resolving tree the graphs as.-,-iated with the left and riglht subtree

of the resolving tree can be found in 0(m) time, the result follows.

\Vc need to note that the resulting polynomial is not presented in ordered

form. C3

One can slighlly improve the above theorem. We sketch this imnprovement

for 0.

Theorem 7.11 (a) There is a resolving computational tree for qb,((;) of depth.. log• rnd n•,

no more than na and number of leaves of order 0(2 7 r1)

(1) qb(GJ can be computed mt O(nd32 Iogj mdr ,Iogj )] ) tinme

Proof(sketch) A careful analysis of our algorithm allows us, for s - 0. tv

build an (0, Ti, md, 2 , 0, 4) resolving tree for G. Therefore by Lemma 7.7, the

number of leaves of this tree is bounded by 2 tIog, ,,I+I (Lk4, ,,,J+1+

As In the proof of Theorem 7.10 we get that the time complexity for qb((;) Is

0(71132 1091 "-1 0 ,ndJ

Remark. Using a more involved computation we call improve further

Theorem 7.11 by approximating the number of leaves In a (0, 711,md, k. 0, )-

'ree slightly tighter. Namely we get that, for sufficiently large Iha the number

of leaves of the tree is bounded from above by the function ek,,("n, m,) where
logm Iog.L - logj In md +aOk,. O"Ond) = kl~- . n . a Md cl',

where a = T---(li In -L + 1) and t is any real number greater than 0.

To accomplish this we perform computation in three steps:

STEP 1. We note that the number of leaves in a (0. M, drn, k. 0, a)-T ree is

bounded from above by the function f(nm,rndr) defined recursively a, follows:

f(mu, 0) = f(m1,mn) = I and f(P77, zd)= f(y - 1, Ind) + kf(m - 1, [o"ndJ)-

STEP 2. Let !I,,k(J',Y) = g(x,y) be a continuous (smooth with respect to

y) function defined for x > y > 1 by the initial condition

g(x, 1) = 1+k

the partial differential equation

9g(x, y)

(9x

and the condition that g(x, y) is non-decreasing with respect to y. g Then fkr

'lfweconsider the regiontx > i,y > 1 and g(1,y) t +k, g(x,-) = k(1+k)r-(k-t)(,-+1)

and assume that g is linear with respect to y, for I < y K ± then 9, satisfying otir a.sumptiens.

is uniquely determined.
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ally natural 71d,

19 g A.Y 10 . - lc .ITg ) I;,+ a ll
STEP 3. Let o(4,r y ,: g ' ( hIr' a, I a'. ,I,-

before. Then we shov. that for y large enough , > ko(ja'. o ) in id finail!dr

lill 6(x,Y) _ oo.
Y- A(.r, Y)

Now, combining the results of steps 1-3 we obtain the detsired bound for the

number of leaves of a (0, 711, Md, k, 0, a)-tree.

'Tlieorems 7.10 and 7.11 have an immediate application to knot theory. \Ve

use the fact that every dichromatic planar graph defines a matched diagram of

an oriented link. So we can translate Theorem 7.10 to polynomials of links a.s

follows:

Corollary 7.12 Coz;sider a watched diagram D of an onented link L asid its

'kcin polyn ow al P1 (a. z) Z'!,n P,(a)z' where Pm(a), Ijfi (a) 9 0. Then

(i) [39] in = 1-comtL) where co0n(L) is the number of components of the link

L.

(ii) t',,+2, (a) rim be conpided in tlime O(n(D)r)Inn(D)+2%) where c ,s souu

constant and ( (D) > 0 denotes the number of crossings of ther mat2hd

diagrain 1)

Proof: Point (i) follows from Lemma 7.1. Namely, if G is a planar dichromatic

graph and D(G) is its matched diagram then po(Gd) + pl(G-d) Is equal to III

number of components, com(D(G)), of the link with matched diagram D(G;)

The variable z in Pl)(G)(a, z) is proportional to the variable p- in R(G), nIore

exactly: f?(G) = PtD((;)(a, z) for p = (a + a- )z- , r ='2 = 1, ,+ = -(-2,

A' =-a 2 . B'+ 1 + a-', B' 1 + a'. Therefore in > I - coi(1)(G)).

Now if we consider PL(O, z) in the ring R (as in Theorem 6.2), and then take

PL(a, z) mood (:) we get Pl(a, z) -= ((a+a-W)z-lyom(L)- 7 mod (z). Therefore

n <_ 1 - coin(D(G)).

Point (ii) follows from Theorem 7.10 and the relation between the bracket

R(G) of a planar dichromatic graph G and the skein polynomial PD(G)((;)(a. :)

of the corresponding matched diagram. 0

It. remains an open question whether Corollary 7.12 (ii) holds for any oriented

link diagram. Comiputations performed so far support the positive answer.
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8 Applications

A, w envuRik.ild at Ilh-i lvginnng, this rese'arch is tiotivated by ,i practical

need to conipu, the, Wnw uolnnnoinial invariants of links (fo.r liink, with umaui

M, reer the, reaer to ¶1,3] or PQ:] fr i he doliitiniis of'srml of tle Iermii

used in Itiis Sectioll.

Our application.- can bhe dividedv into Ohree groups:

A. ie(, recognit ,n problhni (i.c..the problem whether two link diagrams re-p-

resent the same link). In particular we are concerned with the following

questions

1. Is a given link amlihicheiral, (i.e. isotopic to its mirror image)?

2. Let K and WIbe a pair of nmtant knoits Do the (k, 7)-cablbs ahout

these knots hawe thlie same polynoinial i ivariants?

B. Appliationu of t" li new link polynomiial to cla.,,sical propertiezs of lirk, Ill

p)articular

I Periodicity of links (v. for a link L and a nuinner n. is there a Z,,

action oil S"4 with a circle as a fixed point, set which mnaps L. oneto

itself and such that. 1. is disjoint from the fixed point seti)

2. Con-mputing the braid index of a link L (h.e.the miniial irnunber ni

such that L canl bh realized as a closed n braid).

C. Pecognition problem for 3-manifolds using \itten- !esh:tikchii-raev [84.

62] invariants.

Before we aumalyy" the ab)ove problems with more detail we should explain

why the links we are interested in may have so many crossings (> 35) while

the original questions can be asked for relatively srnall links (e.g links that are

already tabulated). The polential of the neilhod wv, use was first recognized by

Ii.Morton and 11 Short [43,11]. Assume, for example. that we try to distinguish

two links L1 and L2 that have the same polynomial invariants. If the links are

in fact isotopic then the same is true for the cables about. them. Therefore if

sonic lpolyioimial invariant. dis-o>iguish.es cables about L1 and L2 then L, and

[L2 are not isotopic- However if n((L) is the number of crossings of a link L
then the natural diagraum of the k-cable about L has at least, k2 l,((L) crossings

and thus may exceed ibe number 35 below which the computation of the full
polynonmial is feasi!ble.
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Now)% we explain probhk ms A(lI)( 2). Hl(I)(2), and C

A( 1) !f T\ K- iii. mirro r Inneof a knot 11 w

Therefortc if K Is. an anlipilciiceiral kniot, lie

1PK (a, Z) 7PIK (a -I Z.4

This gives a criterion for anihicheirality. Howe~ver a knot. rii~v not be am-

pliichieiral even whon the above, equality holds, The following. stroinger

criterion inay also be used. If IK is aitiphliciiral, so Is thw (k-,() c a-

ble about N. 'This method was used for thme first time, by Mortun and

Short, [431 for the k not 9.-1 Ol(ii theC not at ion of Ii olfsl- [GJ N: l

PQ,.. (a, z) =P? 4 . (a - .z) but the polvnoimmal of the (2. 0) cable about.

is not svillilletr mc withi respe~ct to a %lMorton anid Short had t~o face,

Ihli prolbken that Ownatumrail diagram of the (2.0) cabld about 9 4-ý a

:37 crossing-. InI t heir sohut ion, tliry used the fact thfat tInis kuot Ii a.s a

present~atioji as anl 8- braid and they found a quadratic time algorithm to

compute I'jj a, _) unIde.r the a~s,,unpt ion thiat (th- nuriumber of braid string!s,

s, is fixed. H owever, due to a preprocessing step t hat consists of bulid-

ing of a data Ibas.' of polYnomtials, of a cer a. . famnily of links, thli st crage0

requiremen(It of their a Igorldmt n grows exponeinta liv wit'il S. Thbus fthe

practical limiti of this algorditm is when s is equal to 9. Ini cont rast., if

we use an algorithim suggested by Theorem 7.1 1 for flit, first t~wo termls

of time skein polynmomnial of tilie (2.0) cable about, 91- thenm we can) excludle

amnpilmiceiralityv of this knot in less than one second.

A (2) It has been proven in) [38] and [55) that if two knot~s K and Ik" are mutants

of each other thlen their 2-cables have t lie samneskenin polvmlollnitals. Morton

and Traczy k [410] proved that any cable ab~out N and K, have t hp saile

Jones polynmomnial. It was conject~ured thfat, this Is not true, for thle skein

polynomiual. The simplest pair of mnut ants whiichI proves this conjec iire

are ti,li Conwav and] N inoshi ta-Trerasa~ki knoi s. Ti ev htave( 11 the crossings

eacI.C anl braid inidox .1 Thius a, 3-c able aboumt each of I hem h a's at least

9 -11 coimgsanmd thle braid Index is, expecteId to be 12. Mortoii and

Traczyk utsed a sperliad trick to (listimigit shi thIese k nuts. Ourm algorithmiii

allows t~o (list In gim isli theml by a rel at ively short. commpu tat iou. TYhe same

obsorvat ion is tine for- tile 1Kauf fina ii polynomiail.
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B(1) There are various criteria for periodicity of links for which our method

can be used In particular it can be used for two criteria introduced L'

Murasugi and Traczyk [45,681 that use the Jones polynomial. \Ve focus

our attention on the criterion described in [57] that uses the skein poly-

ILUrnial PL (a, z) E T., as this criterion is the motivation for our Theorem

6.2. Combining this theorem and Theorem 1.2 of [57] we obtain.ý

Theorem 8.1 Let L be an r-pertodic link, where r is a prime number.

Then the skein polynomial PL(a, z) satisfies

PL(a,z) = PL(a-',z)rnod (r,Zr)

where (r, z') is the ideal tin P generated by r and z'. Furthermore

PL(a, z)mod (r, z') can be computed in polynomial time.

The power of Theorem 8.1 lies in the fact that if K is an r-periodic linlk

then, for properly chosen 17, the (k, in) cable about A' is also r-periodic.

The criterion of Theorem 8.1 was generalized by Traczyk [70] and Yokota

[87] as follows:

Theorem 8.2 Let PK(a, z) = P2 i(a)z 2 ' and K be an r-pernodtc

knot (7r t 2) such that the linking nuinmber of K with the axis of rotation

is equal to k. Then

(a) [70] The polynomial Po(a) = to d2ja2 i satisfies d2, =- d2 ,+2 mod r

except possibly when 2i + I =± kmod r.

(b) [87] P2j(a) -C 2 APo(a)mod r for some constant c2i and 2i < r - 3.

Traczyk wrote a computer program that, using ideas of our O(nilog'n)

algorithm, computes the first few terms of P22 . He ran this program on

165 ten-crossing prime knots listed in (63]. Two of them are known to

have period 5. Traczyk found [70] tl~at for the remaining 163 knots, the

criterion of Theorem 8.2 (a) immediately excludes 149 knots; using 2-

cables excludes 9 knots of the remaining 14 and using 3-cables excludes

the remaining 5. Note that 3-cables about a 10-crossing knot are expected

to have at least '10 - , imngs.

13(2) The theorem of Morton [41] and Franks-Williams [17] says that the braid

index, b(L) of a link L satisfies

16(L) > -spanaPL(a, z)+ 1 5
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For alternating links tabulated in knot tables this inequality becomes

equality. Thus it was conjectured that if L is an alternating link then (5)

becomes an equality. The conjecture was disproved in [48]. To check a

possible knot counterexample the author- of 148] had to use equality (5)

for a certain 72-crossing knot. Using ideas described in Section 7, JjIoste

wrote a program (in Spring 1989) to compute the first ternis of TL(a, z).

'lte smallest link counterexample found in [48] has 15 crossings and the

smallest knot counterexample has 18 crossings (see Figure 8.1, where the
graph G is drawn together with the diagram D = D,(G) which describes
our oriented knot A'D).

' .1.

Figure 8.1

One can easily find that b(KD) _< 6 [48]. On the other hand,

ispanaPKO (a, z) + 1 = 5. To prove that b(KD) > 5 the authors of [48]
use the idea of Morton and Short of considering a 2-cable K' about KD
(if b(KD) = 5 then b(K2) < 10). J.Hoste computed the first 2 terms of
P(a, z) of the simplest 2-cable (with 4.18 = 72 crossings) and found that
spanPK2 (a, z) _Ž 20, and so b(K') > 120+1 = 11. Therefore b(K1) > 5.
The computation took 37 minutes on a Mac plus personal computer.

C To compute the Witten-Reshetikchin-Turaev invariant of a 3-manifold given
by a link surgery description, one has to find the Jones polynomial of
the link and its parallel copies at p'h root of unity. So we are essentially
interested in 1/(t)mod(1P - 1). By Theorem 6.1 we can compute V(t)

mod (t - 1)P in polynomial time. For prime p, tP' - 1 = (t - 1)Pmod p.

Therefore we should be able to compute the Wit~ten-Reshetikchli-Turaev
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invariant modulo p (i.e. an element of Z[ttl]/(p, tP - 1)) in polynomial
time, In fact, there is a good chance that an Invariant analogous to

the Witten-Reshetikchin-Turaev invariant of a 3-manifold can be defined
with values in the ring Z[t' 1 ]/(t - 1)P. These ideas are currently being

developed in [30].

9 Generalizations of the polynomial R(G)

We propose in (53] two ways of generalizing the dicliroinatic polynomial. The
first of them is to define polynomials on supergraphs (called also set systems

or shortly setoids). The notion of a supergraph is more general than that of
a matroid. However, because of the generality of this notion, the deletion-

contraction rule cannot be always used as a computation method alternative to

the state model formula.

The second generalization is based on the deletion-contraction rule but in-
stead of linear formulas as in Theorem 3.1 we use operations in an abstract

algebra.

With the above generalizations essential parts of corresponding invariants

can be still computed in subexponential time.

Acknowledgments. We thank the referee and the editors for helpful coin-
ments and suggestions on the earlier version of the paper.

Added ii proof. D. Vertigan has announced a polynomial time algorithm

to compute Pm+ 2i(a) for any link diagram (letter of March 26, 1992).
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Knots and Braids:
Some Algorithmic Questions
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1 Introduction

In this lecture I shall discuss some problems with an algorithmic flavour
which arise in combinatorial knot theory.

A link with c(L) components in the three-sphere S3 is a smooth submanifold
that consists of c(L) disjoint simple closed curves. A knot is a link with one
component. Two links K, L are ambient isotopic if there exists a homotopy
ht : S 3 

-. S 3 (0 < t < 1), such that each ht is a homeomorphism, h0 = I and
h1 (K) = L. We restrict attention to tame links and thus we may assume that
for each link L considered, the projection r/L/ of L to R2 is a finite 4-regular
plane graph. The link diagram D(L) of L arising from 7r[L] is obtained by
indicating at each crossing which one of the two curve segments goes over the
other.

Let D be any link diagram. The underlying 4-regular plane graph G is
Eulerian and the dual plane graph, whose vertices are the faces of G, is bipartite.
Thus the faces of G can be 2-coloured. We colour the boundary faces black,
and if two black faces share a crossing we join them by a signed edge according
to the convention shown in Figure 1. In this way, given any link diagram D we
get a plane signed graph G(D) in which each edge corresponds to a crossing in
D.

Conversely, given any plane signed graph G we can associate with it, in a
canonical way, a link diagram D(G) such that G(D(G)) = G. The construction
is easy; draw the medial graph m(G) of G (see for example [9]) and this will be
the link diagram where the over/under nature of the crossings is determined by
the sign of the appropriate edge in G.
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- VC+ Ve Figure 1:

We use L(D) to denote the link having diagram D, and if G is any signed
plane graph, then L(G) denotes the link L(G(D)).

The terms unknot and unlink have their obvious meaning. A link diagram
D is alternating, if the crossings are alternately over/under/over... . This
corresponds exactly to the associated graph G(D) having edges of only one
sign.

The fundamental theorem of Reidemeister [151 states:
(1.!) THEOREM. Two links K and L are ambient isotopic if and only if a

link diagram of K can be transformed into a link diagram of L by a finite
sequence of the moves (RI), (R2), (R3) and their inverses.

(Ri)

(R 2) V V

(R3) / %

Figure 2:

These moves, known as the Reidemeister moves, are applied locally. In each
case, away from the crossings to which the move is being applied, the diagram
remains unchanged.

It is an easy exercise to check that the Reidemeister moves (R1)-(R3) on
a link diagram D correspond to the following moves and their inverses on the
signed graph G(D).

(I) Delete a loop 'which bounds a face and contract an edge which has an
endpoint of degree 1.
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(Hi) Delete any pair of oppositely signed parallel edges which bound a face,

(II') If u is a vertex of degree 2 and zu and uy are opposite signs, contract Zu
and uy.

(HI) For any triangle which bounds a face and is signed as shown perform the
signed star-triangle interchange shown in Figure 3.

A -

l-i

Figure 3:

We will use SG to denote the class of signed graphs, and PG to denote the
set of planar graphs.

A fundamental algorithmic question already raised in [21] is:

(1.2) PROBLEM. Find a function f such that any diagram D on n crossings
which is isotopic to the unknot can be shown to be so by a sequence of not
more than f(n) Reidemeister moves.

This question is readily transformed into a question about SQ and the moves
(1-111). We shall return to this problem in §5. First we consider the problem
from an alternative perspective.

2 Braids and the braid group

A braid on m strings is constructed as follows.
Take m distinct points Pl,..., P,, in a horizontal line and link them to n

distinct points Ql,...,Q m lying in a parallel line by m disjoint simple arcs
(strings) fi in R 3 , with fi starting at Pi and ending at Q,(i) and where vr
is a permutation of (1,2,... ,m). The fi are required to "run downwards" as
illustrated in the example shown in Figure 4a.
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The collection of strings constitutes an m-braid. The map i I. 7r(i) is the
permutation of the braid. The braid will be closed bŽ joining the points PiQi
as illustrated in Figure 4b.
(2.1) Each closed braid defines a link of p components, where p is the number

of cycles in the permutation 7r.

The oriented link formed by closing the braid a will be denoted by &. The
trivial m-braid is a configuration in which no crossing of strings occurs. For
example Figure 4b shows a braid on 3 strings representing a link of two com-
ponents and having crossing number < 5. Hence trivially every closed braid is
a link. The converse also holds.

(2.2) THEOREM (Alexander). Every link can be represented as a closed braid.

II $

€ / ,, I/ I

S!fI i ,

4(a) 4(b)

Figure 4:

There is an obvious way in which braids on the same number of strings can
be composed. Namely, if z is a braid having end points Q1,..-.Qm and z' is
a braid having initial points P, .... , P,,, their composition zz' is obtained by
identifying Qi with PF' for 1 < i < m; the resulting braid has :,iitial points
P1,_.., Pm and endpoints Q',..., &Q'. It is straightforward to check:

(2.3) Under the above composition the isotopy classes of m-braids form a
group, called the braid group Bin.

It is also clear that the braid group B, is generated by the elementary braids
ai, 0'" (1 < i < m - 1) representing simple interchanges.
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Figure 5:

Defining relations for Bm were proved by Artin to be

aio', = ajai if Ji- jI > 2

and
=i~i 1 •i"" +i-b jf i+l1

Also, there exists a "Reidemeister type" theorem for braids due to A.A.
Markov. This is in terms of moves of the following kind:

Markov Moves

TYPE I: Replace braid a E Bm by a conjugate 3ya-y- 1 E B,,, with -Y E Bin.

TYPE II: Replace a E Bm by aen E Bm+1 or aOa-1 E Bm+i.

TYPE II1-: Replace a braid of the form acrm E Bm+i, respectively cwro 1 E
B.+,, by a E B, provided a is a word in the generators ri,...
only.

(2.4) THEOREM. Two braids have closures which are equivalent as links if and
only if they are connected by a finite sequence of elementary moves of type I, II
and I- 1 .

A given link can be represented in infinitely many different ways over many
different braid groups and if a E B, and I E B,, have isotopic closures then
the sequence of Markov moves transforming a to 3 may be long and go through
several different braid groups.

A proof of Markov's theorem is given in the book of Birman [2].
Pictorially, Markov's moves are easy to understand. The conjugacy relation

represented by a type I move is nothing more than the observation that the
closure of the braid -ya-- 1 is isotopic to o since closing the braid allows -y-1 to
cancel out the effect of -.
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The type II moves are just the moves representing the introduction of a
new string (or its inverse). However it is these moves which cause difficulties,
because they change the number of strings and thus stop the problem being a
"simple conjugacy problem"! For although deciding conjugacy in a given braid
group is difficult, Makanin [10] and Garside [61 independently give algorithms
which decide whether two given braids are conjugate or not. However these al-
gorithms are complicated and Paterson and Razborov [12] have recently proved
the following interesting result which may have some implications for the knot
equivalence question. Consider the following computational problem:

NON-MINIMAL BRAIDS
Instance: A braid group B and a word w, in the standard generators of B.

Question: Is there a -' -)rter word w' which is equivalent to w in B?

(2.5) THEOREM: NON-MINIMAL BRAIDS is NP-complete.

Note: Unlike the majority of NP-completeness results, perhaps the more
surprising aspect of this result is that NON-MINIMAL BRAIDS belongs to
NP. Artin's original algorithm for the word problem in the braid group involves
generating a canonical form which is exponential in the length of the original
word. However, due to recent (as yet unpublished) work of Thurston [17] there
is a polynomial time algorithm for the word problem in B. Hence this can be
used to show that NON-MINIMAL BRAIDS belongs to NP.

To show it is NP-compl'te, Paterson and Razborov use a reduction from

NON-MINIMAL FEEDBACK ARC SET
Instance: Digraph G and subset A of edges such that each circuit in G contains
some edge of A (i.e. A is a feedback arc set).

Question: Is there a feedback arc set A' with IA'I < JAI?

The analogue of (1.2) can equally well be posed for braids. Specifically we
can ask:

(2.6) PROBLEM: Find a function g such that given a word w, of length n in
the standard generators of the braid group Bin, if its closure is isotopic to
the unlink then it can be demonstrated in at most g(n) Markov moves.

A more precise form of (2.6) would be the following
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(2.7) PROBLEM: Does there exist a polynomial g satisfying the conditions of
(2. 6)?

It would be reasonable to expect some relationship between the number of
Markov moves and the number of Reidemeister moves needed to show equiva-
lence to the unknot.

For example the following question does not seem quite as difficult as some
we have been considering.

(2.8) PROBLEM: Does there exist a polynomial time algorithm which will trans-
form a link diagram to an isotopic closed braid with the same number of
crossings?

The constructions obtained by adapting the proofs of Alexander [1] and
Yamada [23] can give closed braids with substantially more crossings than the
original link diagram. However in a recent paper Vogel (20] gives a polynomial
time construction which only adds 2 crossings to the diagram.

3 The braid index and the Seifert graph of a
link

As we have seen, each link in 3-space has many different representations as
a closed braid. The minimum number of strings in any braid representation of
L is known as the braid index of L and is denoted by fl(L). In other words 3(L)
is the smallest m for which there exists a E Bm with &, isotopic to L.

The braid index characterises the unknot in the following sense:

(3.1) K is the unknot iffl3(K) = 1.

Thus any polynomial time algorithm which determines the braid index
would be of great interest.

A classical theorem about links is the following.

(3.2) Any oriented link L is the boundary of a compact connected orientable
surface.

A canonical way of constructing such a surface, was given by H. Seifert in
(1934) and the resulting surface is known as a Seifert surface. The key step
in the construction of a Seifert surface from an oriented link diagram D is to
"split" each crossing of D in the obvious way shown in Figure 6 and then to
glue the resulting set of disjoint discs together using twisted bands to preserve
orientability. For more details see [8 Chapter VJ.
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/\.
Figure 6:

The Seifert graph 17(D) of an oriented link diagram D is a signed graph
whose vertices are the Seifert circles (or discs) constructed in the above splitting
process and with signed edges joining two circles whenever they share a crossing.
The sign of the crossing is determined by the following convention.

Figure 7:

An easy property of I7(D) is that:

(3.3) Any Seifert graph is planar and bipartite.

PROOF (sketch) Planarity is obvious; to show that it is bipartite assume
there is an odd circuit. This forces a contradiction on the clockwise/anticlockwise
orientations of the Seifert circles. 0

Other properties of the Seifert graph pointed out in [11] are the following:

(3.4) If the Seifert graph is nonseparable it uniquely determines the underlying
link.

(3.5) The Seifert graph of a closed rn-braid is the block sum of m - I graphs,
each consisting of parallel edges. Thus the "natural diagram" of a closed
m-braid has exactly m Seifert circles.

An immediate consequence of this is:

(3.6) Every link L has at least one diagram Do for which the number of Seifert
circles s(Do) equals the braid index O(L).

In 1987, S. Yamada proved the following striking result:

(3.7) THEOREM. For any diagram D of L, s(D) > /3(L).

Combining this with (3.6) gives
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(3.8) 3(L) = min s(D)D

where the minimum is taken over all diagrams D representing L.

An extension of Yamada's theorem has recently been obtained by Murasugi
and Przytycki [111 using the following combinatorial concept. Define the cycle
index or index, ind(G), of a graph G by:

(3.9) ind(G) = max lXi : IX n CI < ICI /2, for all circuits C of G.
XgE(G)

The index of a link diagram D is the index of the unsigned version of F(D)
and is denoted by ind(D).

This is not the original definition of Murasugi and Przytycki but for bipartite
graphs it is equivalent to it by a theorem of Traczyk [181.

In [11] it is shown that

(3.10) THEOREM. For any link diagram D of a link L,

fl(L) • s(D) - ind(D).

Since ind(D) is nonnegative, this extends Yamada's theorem, and moreover
it is conjectured in [11] that

(3.11) CONJECTURE. For an alternating link diagram D of an (alternating)
link L,

O(L) = s(D) - ind(D).

From the complexity point of view this is interesting, for if we suppose that
the conjecture is true, then determining the braid index of an alternating link L
given an alternating diagram representing L, reduces to the problem of findirng
the index of a planar bipartite graph. Having tried unsuccessfully to develop
such an algorithm it did not seem unreasonable to make

(3.12) CONJECTURE: Finding the index of a bipartite planar graph is NP-hard.

Since I first raised this question in [22] Fraenkel [3] has shown that finding
the index is NP-hard for bipartite (not necessarily planar) graphs, and he and
Loebl [4] now have a proof of the full conjecture.

If both conjectures (3.11) and (3.12) are true it would mean that:

(3.13) Determining the braid index of an alternating link L, even when pre-
sented with an alternating diagram, is NP-hard.
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However, there is a curiosity here, in that Frank [5] had previously found a
polynomial time algorithm which will solve the following problem

(3.14) maxiXJ: IX n C5 _ ICI /2 for all circuits C of G.

Thus this is an interesting example of a situation where a very small change
in the constraints has a drastic effect on the difficulty of an optimisation prob-
lem.

4 Classes of linklessly embeddable graphs

An embedding of a graph G in W3 is a mapping 0 of the vertex set and edge
set such that

(a) each vertex is mapped to a distinct point in R.3 ;

(b) the edges are mapped to piecewise linear non-self-intersecting curves such
that edges meet only at the images of vertices and such that if (u, v) is
an edge, its image is a piecewise-linear-curve joining 0(u) to 46(v).

A pair of vertex disjoint cycles of G is said to be linked in the embedding if
there do not exist disjoint topological balls in R 3 containing them.

A graph G is linklessly embeddable if it has an embedding in R 3 in which
no pair of cycles is linked. We denote the class of such graphs by £L.

In this section we shall not be concerned with CC (for a recent survey see
[15]) but with two distinct subsets of it which are of interest in their own right.

We call G an apex graph if by the deletion of at most one vertex it becomes
planar. If A denotes this class then it is easy to see:

(4.1) A is a proper subset of CC.

Call G a delta-wye graph if G can be reduced to a graph with no edges by
a finite sequence of the following operations:

I Delete loops and contract isthmuses.

I Replace a pair of parallel edges by a single edge

IIH' If u is a vertex of degree 2 and zu, uy are its incident edges, delete them
and insert a single edge zy

I1 Perform any star-triangle interchange as illustrated in Figure 8.
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Figure 
8:

It is known that:

(4.2) If Pg denotes the class of planar graphs and DY the class of delta-wye
graphs then Pg Cg DY C CC and in each case the inclusion is strict.

It is also well known that:

(4.3) Both A and DY are closed under the taking of minors.

Thus by Robertson-Seymour theory there is a polynomial time, 0(n3), al-
gorithm for deciding membership. However, as far as I know, the (finite) list of
forbidden minors for membership of either class is not known.

The relationship between A and DY is not clear.
If Ks,s\M denotes the graph obtained from KS,s by deleting the edges of a

perfect matching then in [14] and [19] it was observed that:

(4.4) Ks, 5\M is linklessly embeddable but it is not even wye-delta reducible
to an apex graph..

It is easier to find examples of delta-wye graphs which are not apex graphs.
Thus we have two reasonably attractive, minor closed, classes of graphs

lying between the two sets Pg and £C. Moreover we know that neither class
can contain as a minor K6 or the Petersen graph P10 .

It is tempting therefore to make

(4.5) CONJECTURE: If G E DY and has no loops then G is 5-vertez colourable.

(4.6) CONJECTURE: If G E DY and has no isthmuses then G has a 4-flow.

Note: any counterexample to these conjectures would provide a counterex-
ample to Hadwiger's conjecture and Tutte's 4-flow conjecture respectively.

Assuming the 4-colour theorem, it is clear that all apex graphs are 5-
colourable. However the analogue of (4.6) for A is very appealing.

(4.7) CONJECTURE: Every apex graph having no isthmuses has a 4-flow.

However Paul Seymour has pointed out to me that Conjecture (4.7) turns
out to be equivalent to the following long standing conjecture of Gr6tzsch.
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(4.8) CONJECTURE: A planar graph with all vertex degrees at most 3 and with
no subgraph in which one vertex has degree 2 and all others have degree 3
is 3 edge-colourable.

This suggests that proving (4.7) may be quite difficult. Accordingly, the
following weakening of (4.7) (which is even more certainly true), and which was
suggested by a question of U.S.R. Murty at this meeting, is the following:

(4.9) PROBLEM Prove that every apex graph with no isthmus has a 5-flow.

5 Reidemeister graphs

We close with a brief description of some recent joint work with W. Schwairzler
[16].

For C, H C S9 we say that G is R-equivalent to H, written G - H, if G
can be transformed to H by some finite sequence of the moves (I), (II), (11*),
(III) defined on page 3 together with their inverses, where (11*) is the following
transformation.

(1"*) Contract any pair of oppositely signed edges which form an edge-cutset.

Note that (II*) is the exact matroid dual of (I1) and is a slightly more
powerful version of (II') which is the move corresponding to a Reidemeister
move for link equivalence. Accordingly it follows that

(5.1) If D and D' are different link diagrams representing the same link then
G(D) - G(DY).

Call G E S9 a Reidemeister graph (R-graph) if G - K1 . Thus R-graphs are
the graphic equivalents of the unknot. They include many non-planar signed
graphs; for example 260 different signed versions of K5 are K-graphs.

It is easy to see that .- is an equivalence relation on S9; formally it bears
some resemblance to AY equivalence discussed earlier. However, algorithmi-
cally it is much harder to handle. For example we know of no algorithm which
will decide whether, for G, H E S9, G - H.

Accordingly we have to rely on partial invariants which at least are able to
detect non-equivalence. The most useful of these turns out to be the extension
of Kauffman's bracket polynomial which we show in [23] can be defined for any
signed matroid (E, M) by

(M; A) = AI E-J -tE+-2r(M) >3 A4(r(X)-Ix-1)(_A4 _ 1)r(M)+IXI-2r(X)

XCE

where r is the usual rank function.
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(M is a signed matroidif its groundset E is partitioned into positive and neg-
ative elements, and X+(X-) denotes the subset of positive (negative) elements
of X.)

Then if G is a graph with k(G) components,

(G;A) = (-A- 2 - A 2)k(G)-I (M(G);A).

When D is a link diagram representing the unlink with p components, we
know that

(5.2) (D) = (G(D)) = A'(-A 2 - A- 2 );-'

where a is an integer.
A major open question about the bracket (or equivalently the Jones) poly-

nomial of a link is the following:

(5.3) PROBLEM. Does there exist a link L which is not the unlink but which
has bracket polynomial satisfying (5.2)?

The bracket polynomial itself is not invariant under -. However we show
in [16] that if

span (M) = max degree (M) - min degree (M)

then:

(5.4) THEOREM. If G and H are R-equivalent then span(G) = span(H).

Another key property of (G) is that:

(5.5) When G is planar and p denotes the number of components of the link
L(G), then for all signings

I(G: 1)1 = 21"

Now when G is planar it always has a signing under which L(G) is the unlink
with p components, where p is determined by

2"-1 = IT(G;-1,-1)1,

and where T is its Tutte polynomial, (see for example [7]). It follows that for
planar graphs

(5.6) min span(G) < 4(p(L(G)) - 1)
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where the minimum is taken over all possible signings. However many other
non-planar graphs also satisfy (5.6).

A curious feature of our investigation into the bracket polynomial is that so
far, computer search for minimal graphs not satisfying (5.6) has yielded just the
7 graphs which are the known minor minimal graphs not linklessly embeddable
in RL3, namely Ks, the Petersen graph P10, and the 5 other graphs obtainable
from these by triangle to star and star to triangle unsigned transformations

As yet we have no satisfactory explanation of this.
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1. INTRODUCTION

All spatial embeddings are assumed to be piecewise linear. If C, C' are disjoint
simple closed curves in S3, then their linking number, lk(C, C'), is the number
of times (mod 2) that C crosses over C' in a regular projection of C U C'. In
this paper graphs are finite, undirected and may have loops and multiple edges.
Every graph is regarded as a topological space in the obvious way. We say that
an embedding of a graph G in S3 is linkless if every two disjoint circuits of G
have zero linking number. The following is a result of Sachs [16] and Conway
and Gordon [4].

(1.1) The graph K1 has no linkless embedding.

Proof. Let 0 be an embedding of K6 into S3 . By studying the effect of a
crossing change in a regular projection, it is easy to see that the mod 2 sum

, lk(O(C 1), O(C2)), where the sum is taken over all unordered pairs of disjoint
circuits C1 , C2 of K6 , is an invariant independent of the embedding. By checking
an arbitrary embedding we can establish that this invariant equals 1. 0

A graph is a minor of another if the first can be obtained from a subgraph
of the second by contracting edges. Our main result is a theorem that a graph
is linklessly embeddable if and only if it has no minor isomorphic to Ks or six
other closely related graphs. However, we find it much easier to work with the
following stronger concept, suggested by B6hme [1] and Saran [181. We say
that an embedding 0 of a graph G in S3 is fiat if for every circuit C of G there
exists an open disk in S3 disjoint from O(G) whose boundary is O(C). Clearly
every flat embedding is linkless, but the converse is false. However, we shall see
later that a graph admits a linkless embedding if and only if it admits a flat
embedding, and so the classes of embeddable graphs are the same. The reason
why we prefer flat embeddings is that they work better. For instance, there is a
uniqueness theory parallel to the theory of planar embeddings, and a theorem
which characterizes flat embeddings in terms of the fundamental group of the
complement.

If G is a graph and X is a vertex or a set of vertices, we denote by G\X
the graph obtained from G by deleting X. A graph G is nearly-planar if there
exists a vertex v of G such that G\v is planar. It may be helpful to notice the
following fact.

(1.2) Every nearly-planar graph admits a fiat embedding.

Proof. Let G be nearly-planar, and let v be such that G\v is planar. We may
assume that G is simple, because it is easy to construct a flat embedding of a
graph given a flat embedding of its underlying simple graph. We embed G\v in
the zy-plane in R3 C $3, embed v anywhere not in this plane, and embed all
edges from v to the planar graph as straight line segments. It is easy to check
that this defines a flat embedding. 0

The following lemma was proved by B~hme [1] (see also [18]).
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(1.3) Let 4, be a f#at embedding of a graph G into S', and let C2,C 2 ,...,Cn
be a family of circuits of G such that for every i:$ j, the intersection of Ci and
Cy is either connected or null. Then there exist psirwise disjoint open disks
D1, ID2..., D,, disjoint from O(G) and such that 4$(Ci) is the boundary of Di
fori= 1,2,...,n.

An embedding 4 of a graph G in S3 is spherical if there exists a surface
E C S3 homeomorphic to S2 such that O(G) g E. Clearly if 4 is spherical then
G is planar. We illustrate the use of (1.3) with the following, which is a special
case of a theorem of Wu [22].

(1.4) Let 4 be an embedding of a planar graph C in S 3 . Then 0 is fiat if and
only if it is spherical.

Proof Clearly if 4 is spherical then it is flat. We prove the converse only
for the case when G is 3-connected. Let C1, C2,... , C,,, be the collection of
face-boundaries in some planar embedding of G. These circuits satisfy the
hypothesis of (1.3). Let D1 , D2,..., D, be the disks as in (1.3); then 4(G) U
DI U DI U-. U D,, is the desired sphere. 0

The paper is organized as follows. In Section 2 we present a characteriza-
tion of flat embeddings in terms of the fundamental group of the complement,
in Section 3 we discuss a uniqueness theory of flat embeddings, in Section 4 we
state our main result, an excluded minor characterization of linklessly embed-
dable graphs, and finally in Section 5 we discuss three conjectures and some

algorithmic aspects of flat embeddings.

2. THE FUNDAMENTAL GROUP

The following is a result of Scharlemann and Thompson [19].

(2.1) Let 4 be an embedding of a graph G in S3 . Then 4, is spherical if and
only if

(i) G is planar, and
(ii) for every subgraph G' of G, the fundamental group of S3 - O(G') is free.

The "only if" implication is easy to see. The point of the theorem is the converse.
It is easy to see that (ii) cannot be replaced by the weaker condition that the
fundamental group of S 3 - 46(G) is free. We use (2.1) to prove the following
generalization.

(2.2) Let 4 be an embedding of a graph G in S 3. Then 4, is fiat if and only
if for every subgraph G' of G, the fundamental group of S3 - 4,(G') is free.

Proof Here we only prove "only if." Let G' be a subgraph of G such that
7r,(5a - O(G')) is not free. Choose a maximal forest F of G' and let G" be
obtained from G' by contracting all edges of F, and let 4" be the induced
embedding of G". Then Wr(S 3 - 4,"(G")) = wl(S3 - O(G')) is not free, but
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G" is planar, ind so (' is not flat by (2.1) and (1.4). Hence 4 is not flat, as
desired. 0

Let G be a graph, and let e be an edge of G. We denote by G\e (G/e) the
graph obtained from G by deleting (contracting) e. If 4 is an embedding of G
in S3 , then it induces embeddings of G\e and (up to ambient isotopy) of Gle
in the obvious way. We denote these embeddings by 46\e and 4'/e, respectiveiy.

(2.3) Let 4' be an embedding of a graph G in S3, and let e be a nonloop edge
of G. If both 4'\e and 0'/e are fat, then 4 is fiat.

Proof. Suppose that 4 is not flat. By (2.2) there exists a subgraph G' of G
such that wr(S3 - O(G')) is not free. If e 0 E(G'), then O\e is not flat by (2.2).
If e E E(G') then 4'/e is not flat by (2.2), because ri(S3 - (4'/e)(G'1/e)) =

3 - 4,(G')) is not free. 0

We say that a graph G is a coforest if every edge of G is a loop. The
following follows immediately from (2.3).

(2.4) Let 4 be an embedding of a graph G in S3. Then 4' is fiat if and only if
the induced embedding of every coforest minor of G is flat.

3. UNIQUENESS

We begin this section by recalling the following two classical results. The first
is Kuratowski's theorem [8]. (A graph H is a subdivision of a graph G if H can
be obtained from G by replacing edges by internally-disjoint paths.)

(3.1) A graph is planar if and only if it has no subgraph isomorphic to a
subdivision of K5 or 16s,3.

Let 4' be an embedding of a graph G in S'. Let P be a simple closed curve
in S2 meeting O(G) in a set A containing at most two points. Let D be a chord
of P (that is, a simple curve with only its distinct endpoints in common with
P) and assume that every member of A is on D. Let B be the open disk of
S2 - P containing the interior of D. Let 4" be an embedding obtained from 4'
by taking a reflection through D in B, and by leaving 0 unchanged in S2 - B.
We say that 0' was obtained from 4 by a 2-switch. The second classical result
is a theorem of Whitney [21], perhaps stated in a slightly unusual way.

(3.2) Let 01, 4'2 be two embeddings of a graph in S2. Then 4'1 can be obtained
from 42 by a series of 2-switches.

We shall see in (3.10) that a similar theorem holds for flat embeddings.
Let 01, 02 be two embeddings of a graph G in V3. We say that 01, 02 are

ambient isotopic if there exists an orientation preserving homeomorphism h of
S3 onto 93 such that 4'1 = h0'2. (We remark that by a result of Fisher f5l h can
be realised by an ambient isotopy.) The following follows from (1.4) and (3.2).
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(3.3) Any two fiat embeddings of a planar graph are ambient isotopic.

(3.4) The graphs K5 and K3,3 have exactly two non-ambient isotopic fiat
embeddings.

Sketch of proof. Let G be K3 ,3 or K5 , let e be an edge of G, and let H be G\e.
Notice that His planar. From (1.3)it fAollows that if 0 is a flat embeddir.g of G,
then there is an embedded 2-sphere E C S3 with O(G) n E = O(H). If 01 and
02 are flat embeddings of G, we may assume (by rcplacing 02 by an ambient
isotopic embedding) that this 2-sphere E is the same for both 45, and 02. Now
01 is ambient isotopic to 02 if and only if 0 1(e) and 02(e) belong to the same
component of S 3 

- E. 0

As a curiosity we deduce from (3.1), (3.3) and (3.4) that a graph has a unique
flat embedding if and valy if it is planar.

Our next objective is ,o determine the relation between different flat em-
beddings of a given graph. We denote by fIX the restriction of a mapping f
to a set X.

(3.5) Let 01,102 be two Bat embeddings of a graph G that are not ambient
isotopic. Then there exists a subgraph H of G isomorphic to a subdivision of
Ks or K 3 ,3 for which 4*1iH and 021H are not ambient isotopic.

A question arises if there is any analogue of (3.5) when the embeddings are not
necessarily flat. The following follows immediately from (2.4).

(3.6) Let 01, 02 be two embeddings of a graph G such that they are not
ambient isotopic and exactly one of them is fiat. Then G has a coforest minor
H such that the embeddings of H induced by 01 and 02 are not ambient isotopic.

We do not know if (3.6) remains true when none of 01, 02 is flat.
We denote the vertex-set and edge-set of a graph G by V(G) and E(G)

respectively. Let G be a graph and let H1 , H2 be subgraphs of G isomorphic to
subdivisions of Ks or K3,3 . We say that H1 and H2 are 1-adjacent if there exist
i E {1, 2} aad a path P in G such that P has only its endpoints in common
with Hi and such that H3 -i is a subgraph of the graph obtained from Hi by
adding P. We say that H, and H2 are 2-adjacent if there are seven vertices
Ui ,U3 ... , i7 of G, and thirteen paths Lij of G (I < i < 4 and 5_j < 7, or
i = 3 and j = 4), such that

(i) each path L5, has ends N/, uj,
(ii) the paths Lil are mutually vertex-disjoint except for their ends,

(iii) H1 is the union of Li for i = 2, 3, 4 and . = 5, 6, 7, and

(iv) H2 is the union of L1j for i = 1, 3, 4 andj =5, 6, 7.
(Notice that if HI and H2 are 2-adjacent, then they are both isomorphic to
subdivisions of K 3 ,3 , and that L 34 is used in neither H, nor H 2 .) We denote

by K(G) the simple graph with vertex-set all subgraphs of G isomorphic to
subdivisions of K5 or K3 ,3 in which two distinct vertices are adjacent if they
are either 1-adjacent or 2-adjeaent. The following is easy to see, using (3.4).
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(3.7) Let 0P,,42 be two fiat embeddings of a graph G, and let H,H' be two
adjacent vertices of K(G). If 401 H is ambient isotopic to 0 2 JH, then 4'1 JH' is
ambient isotopic to 4,2 IH'.

We need the following purely graph-theoretic lemma.

(3.8) MfG is a 4-connected graph, then K(G) is connected.

We prove (3.8) in [12] by proving a stronger result, a necessary and sufficient
condition for H, H' E V(K(G)) to belong to the same component of K(G) in
an arbitrary graph G. The advantage of this approach is that it permits an
inductive proof using the techniques of deleting and contracting edges.

If 4 is an embedding of a graph G in S3 we denote by -0 the embedding
of G obtained by composing 4$ with the antipodal map. The following is our
uniqueness theorem.

(3.9) Let G be a 4-connected graph and let 4,1, 02 be two fiat embedding, of
G. Then 46, is ambient isotopic to either 02 or -2.

Proof. If G is planar then 41 is ambient isotopic to 42 by (3.3). Otherwise
there exists, by (3.1), a subgraph H of G isomorphic to a subdivision of Ks or
K 3 ,3 . By replacing 102 by -42 we may assume by (3.4) that 0,1H is ambient
isotopic to 4,2 H. From (3.7) and (3.8) we deduce that 0 1JH' is ambient isotopic
to 024 H' for every H' E V(K(G)). By (3.5) 01 and 02 are ambient isotopic, as
desired. 0

Actually, the 4-connectedness is not necessary for (3.9). It turns out that
what is necessary and sufficient for the conclusion of (3.9) is, roughly, that no
two subgraphs isomorphic to subdivisions of Ks or K3 ,3 are "separated" by a
separation of order at most 3. Let us call such graphs Kuratowski 4-connected.

We now state a generalization of (3.9). Let 4 be a flat embedding of a
graph G, and let E C S3 be a surface homeomorphic to S2 meeting O(G) in
a set A containing at most three points. In one of the open balls into which
E divides S3, say B, choose an open disk D with boundary a simple closed
curve 9D such that A C 8D C E. Let 4' be an embedding obtained from 4,
by taking a reflection of 4, through D in B, and leaving 4 unchanged in E - B.
We say that 4,' is obtained from 4 by a 3-switch. The following analog of (3.2)
generalizes (3.9).

(3.10) Let 41,4,2 be two fiat embeddings of a graph G in S3 . Then 4, can be
obtained from 4,1 by a series of 3--switches.

4. THE PETERSEN FAMILY

Let G be a graph and let v be a vertex of G of valency 3 with distinct
neighbors. Let H be obtained from G by deleting u and adding an edge between
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every pair of neighbors of v. We say that H was obtained from G by a YA-
exchange and that G was obtained from H by a AY-exchange. We say that
two graphs are YA-equivalent if one can be obtained from a graph isomorphic
to the other by a sequence of the following operations and their inverses:
(i) Deleting a vertex of valency < 1,

(ii) suppressing a vertex of valency 2 (that is, contracting an edge incident to
it),

(iii) deleting a parallel edge or a loop,
(iv) YA-exchange.

(4.1) If G, H are YA-equivalent, then G has a fiat embedding if and only if
H does.

It follows from (4.1) and (1.2) that if a graph is YA-equivalent to a nearly-
planar graph, then it admits a flat embedding. The converse is false, because
Kss minus a perfect matching is a counterexample.

The Petersen family is the set of all graphs that can be obtained from
K6 by doing YA- and AY-exchanges. There are (up to isomorphism) exactly
seven such graphs, one of which is the Petersen graph. The Petersen family is
depicted in Figure 1. The following is our main theorem.

(4.2) For a graph G, the following conditions are equivalent.
(i) G has a fiat embedding,

(Bi) G has a linkless embedding,
(iii) G has no minor isomorphic to a member of the Petersen family.

Here (i) => (ii) is trivial. Sachs [16] has in fact shown that no member of
the Petersen family has a linkless embedding, from which (ii) =: (iii) follows
because the property of having a linkless embedding is closed under taking
minors. (Sachs stated his result in a weaker form, but the proof is adequate.)
The hard part is that (iii) ==. (i), which we now briefly sketch.
Sketch of the proof that in (4.2), (iii) =: (i). Suppose that G is a minor-
minimal graph with no flat embedding. It can be shown that G is "basically
5-connected", which is a certain weaker form of 5-connectivity (see the next
section for a precise definition). From (4.1) we may assume that G has no
triangles. Suppose that there are edges e, f of G and an end v of e not adjacent
to either end of f such that G\v, G\e/f, G/elf are all Kuratowski 4-connected.
Since G is minor-minimal with no flat embedding, there are flat embeddings
4i, 02, 0)3 of G\e, C/e, G/f, respectively. By (3.9), since 0b3\e and 0i/1f are both
flat embeddings of the Kuratowski 4-connected graph G\e/f, we may assume
that 0 3\e L- 41If/, and similarly that 03/e -_- 02/f. (Here and later = means
"ambient isotopic to.") From the first equation there is a 1-edge uncontraction
of 0.3\e which yields an embedding ambient isotopic to 0i, and similarly there
is a 1-edge uncontraction of 0b3/C yielding 4)2. These two uncontractions can
be viewed as "local" operations at a vertex common to 0)3\e and 03/e, and it
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Figure 1: The Petersen Family

can be argued (the details are quite complicated, see [141) that they are the

"same" uncontraction operation. Let 0 be obtained from 03 by performing this

uncontraction; then O\e = 01 and O/e = 02. Since 01 and 02 are flat, so is

4 by (2.3), a contradiction since G has no flat embedding. Thus no two such

edges e, f exist. But now a purely graph-theoretic argument [13] (using the

non-existence of such edges e, f, the high connectivity of G and that G is not
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nearly-planar) implies that G has a minor in the Petersen family. 0

There have been a number of other attempts [10, 18, 2] at proving (iii) =*

(i) and (iii) ==. (ii). However, none of them is correct. The question whether
(iii) =:. (i) was first raised by Sachs [161, and that (i) and (ii) are equivalent was
conjectured by B6hme (1].

We mention the following corollary, which is vaguely related to the so-
called "strong embedding conjecture." Let 0 be an embedding of a graph G in
a surface (=compact 2-manifold without boundary) E. We say that vA is k-
representative if every non-null-homotopic closed curve in E meets O(G) at least
k times. The strong embedding conjecture states that every 2-connected graph
has a 2-representative embedding in some surface. It is also possible that every
3--connected graph has such an embedding in a nonorientable surface. From
(4.2) we deduce the following.

(4.3) If a graph G admits a 3-representative embedding into some nonori-
entable surface, then G has a minor isomorphic to a member of the Petersen
family other than KZ,4 (K 4,4 Yrn us an edge).

Proof. Let 1P be a 3-representative embedding of G in a nonorientable surface
E. By [15, Proposition 7.31 we may assume (by taking a minor of G) that G
is 3-connected. We first show that G has a minor isomorphic to a member
of the Petersen family. By (4.2) it suffices to show that G has no flat embed-
ding. Suppose for a contradiction that G has a flat embedding 0 into S3 . Let
C1, C2, ... , C,, be the collection of face-boundaries in the embedding 0; since
G is 3-connected and 4' is 3-representative, C1, C2 , ... , C, are circuits and sat-
isfy the hypothesis of (1.3). Let D1, D2,..., D, be the disks as in (1.3). Then

4'(G) U D, U D2 U... U D,, is homeomorphic to E, a contradiction because E
has no embedding in S.

Thus G has a minor isomorphic to a member of the Petersen family, and
so we may assume that it has a minor isomorphic to KZ4 and to no other
member of the Petersen family. Now it is easy to show, using the splitter
theorem [20] of the second author, that G is isomorphic to KZ,4. But K, 1 4has
no 3-representative embedding in any nonorientable surface, and the theorem
follows. 3

Conversely, every member of the Petersen family except KZ4 admits a 3-
representative embedding in the projective plane.

5. REMARKS

It would be nice to have a structural description of all linklessly embeddable
graphs. Let us say that a graph G has a hamburger structure if either IV(G)I <
4 or there are vertices lV3,...,ts of G and three subgraphs G1,G 2 ,G3 of G
such that
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(i) G1 UG2 U G3 = G,
(ii) V(Gi)fnV(Gi)= {uv 2,...,vsJforij, and

(iii) each Gi can be embedded in a closed disk with vertices V1, v3,..., US (in
this order) on the boundary.

It is not difficult to see that if G has a hamburger structure, then it has a flat
embedding. We say that a graph G is basically 5-connected if G is simple,
3-cconnected, and cannot be expressed as a union of two subgraphs G, and G2,
where E(G,) n E(G2) 0, and either
(i) IV(GI) n V(G2)I = 3 and IE(Gl)I, IE(G2)I > 4, or
(ii) IV(G1 ) n V(G 2)1 = 4 and IE(Gi)I, IE(G2)I > 7.

(5.1) Conjecture. Let G be a basically 5-connected, triangle-free linklessly
embeddable graph. Then either there are two vertices u, v of G such that
G\{tu, v} is planar, or else G has a hamburger structure.

From (4.1) we see that the requirement that G be triangle-free is not restrictive.
One can also modify the definition of "hamburger structure" so that (5. 1) could
be true for all basically 5-connected linklessly embeddable graphs. The point
of (5.1) is that if G\{u, v) is planar then there is a simple polynomial-time
algorithm to test if G has a flat embedding. The algorithm is based on a study
of homotopy of paths joining the neighbors of u and v in G\{u, t}.

A second relevant conjecture is the following, due to Jorgensen [7].

(5.2) Conjecture. Let G be a 6-connected graph with no minor isomorphic
to K6 . Then G is nearly-planar.

This was motivated by Hadwiger's conjecture [6]. One case of the latter states
that every loopless graph with no minor isomorphic to K6 is 5-colorable. Mader
[9] showed that every minor-minimal counterexample G is 6-connected, in which
case (5.2) and the Four Color Theorem would imply that G is 5-colorable, a
contradiction. However, we believe that we have now obtained a proof of this
case of Hadwiger's conjecture, without proving (5.2). We do not even know if
(5.2) holds for linklessly embeddable graphs.

Our third conjecture relates linklessly embeddable graphs and a graph
parameter p(G) introduced by Colin de Verdiere in (3]. We refer the reader
to that paper for a definition of p(G) (an English translation appears in this
volume), which is in terms of the multiplicities of the second largest eigenvalues
of certain matrices associated with G.

(5.3) Conjecture. A graph G has a Bat embedding if and only if p(G) <_ 4.

The "if" part of (5.3) follows from our main result, and so the problem is about
the converse.

Finally, let us mention two algorithmic aspects of flat embeddings. In [19]
Scharlemann and Thompson describe an algorithm to test if a given embedding
is spherical. Using their algorithm, (1.4) and (2.4), we can test if a given
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embedding is flat, by testing the flatness of all coforest minors. At the moment
there is no known polynomial-time algorithm to test if an embedding of a given

coforest is flat, because it includes testing if a given knot is trivial. On the other
hand, we can test if a given graph G has a flat embedding in time O(IV(G) I3).
This is done by testing the absence of minors isomorphic to members of the
Petersen family, using (4.2) and the algorithm [11) of the first two authors.
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It should also be noted that the conjecture is weaker than Hadwiger's
conjecture [TE p. 52; OE p. 146].

1. Construction of s(I')

This construction is based on a property of transweraality introduced by Arnold
[AD] and called in [CV3] the Strong Arnold Hypothesis (SAH).

We start by defining some terms:
r is a finite, connected, undirected graph without loops;

V(l) or V is the set of vertices, of size vr or v;

E(1) or E is the set of edges, of size er or e;

S. is the set of symmetric real v x v matrices.

We denote by Or the set of matrices in S. such that if A = (auj) E Or, we

have
(i) aij < 0 if [i~JJ E E

(ii) ai 3 = 0 if {i, j}i E and i j.

To every measure v = E--V V6(i) (Vi > 0) on V we associate a bijection
A ý-+ qA from Or to the set Qr of quadratic forms on )RV - L2 (V, v) of the
form

iEV {i,j}EB

where the cii{j are > 0; this bijection is defined by

(Az I Y)L2(,) = qA(Z, y).

As r is connected, it is well known and easy to check that the spectrum
of A E Or is of the form X, < Aa -_ -.. <- A, where the values are repeated
according to their multiplicities (usual convention).

The Strong Arnold Hjpotheais. Let Ao E MR, no >_ 0 an integer, and consider
the submanifold Wxo,,• C S, of symmetric matrices having A0 as an eigenvalue
of multiplicity no; we say that the eigenvalue Ao of multiplicity no of Ao E Or
satisfies the SAB if Or and W),.,, intersect transteroally in A0 . Since the
codimension of W1.,,). is no(no+l)/2, this is only possible ifi+e > 1 no(no+l).

Let L : TA, Or --4 Q(Eo) (with Eo = Ker(Ao - Ao0) and Q(Eo) the space
of quadratic forms on Eo) be defined by

L(dA) = (dA. I )ia0

where the scalar product is that of L2(V, v). Then we have
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Criterion (*). SAM is equivalent to the surjectivity of L.

Now let us define:

Definition. p(r) is the greatest integer no for which there exists Ao E Or for
which the second eigenvalue A2 is of multiplicity no and satisfies SAH. Such an

Ao is said to be optimal for r.

Some examples:

1. If KN is the complete graph on N vertices, p(KN) = N - 1. Indeed

TA0KN, = Sly and then L is surjective for every A0 . It suffices to take for A0

the matrix each of whose entries is equal to -1 and having spectrum -N <

0 = 0 = 0 = ... = 0. Conversely, if A2 is of multiplicity vr - 1, r is the

complete graph K.: indeed, the eigenspace Ex. is the space orthogonal to the
eigenfunction Oo E E)1 . For f E Ex2 we have

Za if(i) -Z pof(1);
i=2

then if there exists an i such that ali = 0, there is another relation (in addition

to the orthogonality to Oo) between the values of f(i): thus for all i, a1 $ 0,

so we see that r is complete.
2. If K 3 ,3 is the complete bipartite graph on 6 vertices, we have ;(K 3,3) = 4

(Figure 1).

Figure 1

Indeed, 1.(K3, 3 ) • 4 by the preceding remark. Let Ao be such that aii= 0

and Gj = -1 if and only if {i,j) E E. The spectrum of Ao is -3 < 0 = 0 =

0 = 0 < 3. The eigenspace Eo = Ker Ko is defined by

Eo = {(Z,) I X1 + 22 + X3 = 0, X4 + Zs + X6 = 0}.

Let Li(z) = zi; then L 1, L 2,L4, LE form a basis for E0. It is clear that
L, L,2 L 4 1  , L•Lls, L2L4 and L 2L5 are in the image of L; further-
more, L1L2 and L4L5 are obtained by the restriction of z2 - (:• + z•)2 and

me = (24 + Z5)2 to o0.
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3. If 1N is a path on N vertices (N > 2) then g(IN) = 1.
4. If CN is a cycle on N vertices (N > 3) then u(CN) = 2.

5. If r is a star with 3 branches, p(r) = 2.

2. Properties of IA(r) Relative to Reductions and Contractions

2a. Reduction (Deletion). A reduction ri of r is a connected graph defined
in the following manner: E(ri) C E(P) and v(ri) are the vertices in v(r)
which are the endpoints of at least one edge of E(Ji). We delete the edges of
r\rl and then we delete those vertices of r which are isolated by this operation
(Figure 2).

3 3 3

2 4 2 -,4 2 4

11•/ 1

Figure 2

Theorem 2.1. if r, is obtained from r by reduction (connected) then we have
g 1) :5 I(r).

Proof. Let n = IA(rl) and Ao be optimal for ri. We define, for each A E Or,
and for each e > 0, a quadratic form of Qr by

qe,A((zi)) = CE2'z• + EE"(Zi - Zj)2 + qA((Zt))

where EV runs over v(r)\v(r1 ), E"' over E(r)\E(ri) and qA is the quadratic
form associated with a measure Ao on v'(rl). We choose on v(r) the measure
vo = Ao + EV6(i) and C larger than all the eigenvalues of qA for A close to A0 .

For c = 0, the spectrum of qo, A0 relative to L2(V(r), vo) has A2 = A2(Ao)
as second eigenvalue with multiplicity n. We also have the SAH for this eigen-

value relative to deformations of Or. This property is clearly true for q,,A.
(e > 0) and A. chosen sufficiently close to A0 . But for e > 0, q 4,A. E Qr.

Lb. Contractions. Let r be a connected graph. We shall say that r 0 is
a contraction of r if ro may be defined in the following fashion: Let V(r) =

,'=I A, be a partition of v(r) into connected non-empty pieces (Figure 3);
then
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(i) v(ro) = {1,2,...,N},

(ii) {i,j} E E(ro) if and only if there exists an edge {a,,i} E E(F) such that

---- A2• -A1 an3 *"A3

,, ' ! 2 3

". j "-----------.

Figure 3

We denote by:
Eij C E(I) the edges which join vertices of Ai to vertices of Aj;
ni, = # E,;
Pi the graph such that V(ri) = A, and E(Ji) = Ei,i (i > 1);
p the natural projection of V(F) onto V(ro);
V = cv(r) 6(a) and vo its image under p: vo({i})

Then we have

Theorem 2.2. if ro is a contraction of r, then p(r) > M(ro).

Proof. Let Ao E Or0 be optimal, qU. E Qr. the associated quadratic form
relative to vo, Az(Ao), Po = Ker(Ao - A2I), and ,mo = p(ro) = dim(Fo). The
space L2(v(r0 ), vo) is naturally identified with, and isometric by f '-* f o p to
the subspace Eo of functions L2(v(r), v) constant on each Ai.

To each quadratic form q E Qr, it is then natural to associate a lifting,

p*(q), a quadratic form on L2(V(L), Y) satisfying p*(q)(f o p) = q(f). For
example, we may define p" by extending linearly the formulae1 z2

p.(4,) = N E a,
aEAi

p.((M, _ Zj)2) = 1 E (,y. _ ,p)2.
Ni i j a ,0 E f i0•

Now let q1 E Qr. (i > 1) be defined by

i(y , E (y,.
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To each A E Or,, with quadratic form qA E Qr'0 , we associate, for each f > 0,

the quadratic form q9,A E Qr defined by

N

qo,A qj + ep'(qA).
i=1

When e = 0, the spectrum of qo,A consists of the eigenvalue 0 of multiplicity
N and eigenvalues > 0 (those of qj on ri). Since q.,A is an analytic function

of e and of A, we may apply the theory of analytic perturbations of Kato
[KO]; if we denote by E,,A the sum of the eigenspaces of q1,A corresponding
to the N smallest eigenvalues of q.,A where c is small, E1 ,A is close to E0 and

we may denote by U,,A the "small" canonical isometry of E0 onto E,A and

q,,A = U.,A(q.,AjD.,A). The family iF,,A of quadratic forms on E 0 is analytic in
e and A and has as eigenvalues N least eigenvalues of q9,A. Further, io,A = 0

and so r=,A = (I) i,,A is also analytic in e and A.
We have ro,A = qA. Indeed ?O,A is the derivative of i.,A with respect to e at

e = 0 which is thus equal (see [CV21 for a similar calculation) to the derivative

of qe,AJ, 0 ; that is to say p*(qA)IBo = qA identifying E0 and L2(V(ro); Vo).
Thus by SAH for A0 , for sufficiently small c > 0 there exists an opera-

tor A, E O r, close to Ao such that r,,A. has A2 as its second eigenvalue with

multiplicity moo, and then 9,,A has eA2 as its second eigenvalue with the same
multiplicity. The SAH for this operator is shown using the uniqueness of de-

formations of Or. at the origin; indeed the linear map L, of criterion (*) of § 1,
L, : TA.Orj --+ QF. depends continuously on e and is suL±>ctive for c = 0 since

Ao satisfies SAH.

2c. Topological invariance. Looking at the preceding results, it is natural
to ask whether /(r) is a topological invariant of r. Recall that two graphs are

said to be homeomorphic if we may subdivide their edges to obtain isomorphic
graphs. That (I(r) is not a topological invariant may be seen from the following:

p(r1 ) = 3 and A(r 2) = 2 (Figure 4).
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G1 G2

Figu•e 4

3. Relations Between I(r) and the Embeddings of r in a Surface

Recall [CV1, CV4] that we may associate with every compact manifold X an
integer invariant m(X) defined in the following fashion:

m(X) is the maximal multiplicity of the second eigenvalue of a positive
elliptic second order symmetric differential operator having real coefficients act-
ing on C¶(X; IR). Known results on m(X) are the following: m(SP) = 3 [CG],
m(p2(IR)) = 5 and rn(R 2/2Z 2) = 6 [CG, BN], if B is the Klein bottle, m(B) = 5
[CV4], and if X is the orientable surface of genus g, m(X) < 4g + 3 [CG, BN].
On the other hand, if dim(X) > 3, rn(X) = +oo [CV2]. We have

Theorem 3.1. Hf r is an (injective) embedding into X, 14(r) !5 m(X).

Theorem 3.2. r is planar if and only if p(r) < 3.

Theorem 3.1 is proved in [CV4, Theorem 7.1 and Corollary 7.3] by con-
structing a Schr&dinger operator given that the multiplicity of the second eigen-
value is p(r), to give an embedding of r on X. Since p(S) = 3, we see in
particular that if r is planar, 14(r) < 3; in particular neither Ks nor K3 ,3 are
planar, following the calculations in §1.

It remains to prove that if r is not planar then p(r) > 4. This is a conse-
quence of the results of §2 and the version of Harary and Tutte of Kuratowski's
theorem.

Theorem 3.3. ([H-TI) if r is non-planar, there exists a graph ri, isomorphic
to K 3,3 or K5 which is a reduction of a contraction of r.

The proof (that planar t* j(r) < 3) is complete with the remark of §1:

,(K3, 3) = u(Ks) = 4.
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It would be of interest to have generalisations of Theorem 3.2 to other surfaces
than the sphere.

4. Variants of 1(r)

Let r be such that p(r) = m and let Ao be optimal for r. Let X C V(r);
we shall say that X is generic if the linear forms, La : Eo -- IR defined by
L.(O) = 0(a) for a E X generate the dual E* of E0 . We shall say that X is

positive generic if X is generic and there exists a linear relation aEX ar La = 0
in E0* with a. > 0. Necessarily # X > m + 1.

Now let ro = Sx(r) be defined by adding a vertex 0 to r, together with
the edges {0, a} for a E X; then we have

Theorem 4.1. If X is positive generic then

IA(sx(r)) = I(r) + i.

Proof. 1'* Step. Let A0 be optimal for r; construct an operator Bo E Or.
having A2 = A2 (Ao) as its second eigenvalue of multiplicity m + 1 with SAH.
Let q,,A be a quadratic form on L2 (V(ro), vo) defined for c = (co, (c.)aEx) and
A E Or by

qf 3A(ZO, (Mi)) = (Ak2 + eO~z - E@Z0Zc + qA(Zi).
aEX

Then let c. > 0, q,,A E Qr0 . For e = 0, qo,A0 has A2 as its second eigenvalue,
with multiplicity m + 1. Further, this eigenvalue satisfies SAH relative to de-

formations A E Or, e E rR+*x; indeed the linear map L used in criterion (.)
is L(dA, de) = (de. -zX-,2 X d.a zo 2a + dqA)2F0 , where F- = ao ® Eo

with vo(i) = 6oi, which is surjective on Q(Fo) since X is generic.

Since there is a linear relation between the (LQ)aEx we have in fact the

existence of a germ of the submanifold of Wx,m4+4 1n S +1 in the neighborhood

of qo,A0 : the tangent space to this manifold contains the vector given by

do = 0,

dA = 0,

which is in Ker(L). As the a, > 0, this manifold meets Ore.

2 "d Step. The second step depends upon:

Theorem 4.2. If r is obtained from Po by the deletion of the edges adjacent

to the vertex 0, then u(ro) = p(r) or ,(ro) = A(r) + 1.

Proof. We know already from §1 that p(r) < u(ro). Let A 0 be optimal

with A0 and let Eo be the corresponding eigenspace. Let Fo C E0 be the
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set of 4 E E 0 such that 0(0) = 0. F0 is clearly the second eigenspace of an

operator B 0 of Or (in the matrix A 0 suppress all the entries aG0 and aoi) and

thus satisfies the SAH, as we see using the criterion (*) since L(LoLi)1Po = 0 (i

a vertex adjacent to 0).

We may also obtain an interesting corollary: denote by cr(r) the minimum

number of crossings in a planar embedding of r; then

Corollary 4.3. p(r) < 3 + cr)

In particular, if cr(r) = 1, we see that p(r) = 4. This is the case for K3 ,3

and Kr, as the following embeddings show (Figure 5).

33 K5

Figure 5

5. n-Critical Graphs

Recall [TE, p. 32 and following] that there is a natural order relation on (the

isomorphism classes of) graphs given in the following way:

Definition 5.1. r, is a minor of r if r1 is a reduction of a contraction of r.

It is natural then to make

Definition 5.2. r is an n-critical graph if A(I) = n and for every minor r1 of

r, not isomorphic to r, g(r 1) < A(r).

Then we have:

Theorem 5.3. For a graph r, p(r) ? n if and only if there is a minor ri of

r which is n-critical.

General (and difficult) results in graph theory [R-S] imply that, for each

n, there are only finitely many n-critical graphs. These are known for n < 4.

Theorem 5.4. The n-critical graphs for n > 4 are the following

for n = 0, K 1;

for n = 1, K 2 ;



146 YVES COLIN DE VERDIMRE

for n = 2, K 3 and K 3,1 ;
for n = 3, K4 and K3,2;

for n = 4, K6 and K3,3.

For every n, K,+i is n-critical

Proof. The cases n = 0, 1 are trivial. The case n = 4 has already been dealt
with (Theorem 3.2). It remains to deal with n = 2 and n = 3: for n = 3 we use

the notion of outer-planar graphs [C-H].

Definition 5.5. r is outer-planar if r is planar and there exists an embedding

j of r in R2 such that the vertices of r are all in the closure of the unbounded

connected component of ]R2\j(r). Then

Theorem 5.6. r is not outer-planar if and only if r has a minor isomorphic

to K 4 or K3 ,2.

Since u(K 4) = IA(K3,3) = 3 we have the more precise result.

Theorem 5.7. r is outer-planar if and only if q(P) <. 2.

Proof. Indeed, if r is not outer-planar, I(r) _> 3 from 5.6 and the calculations

of p for the graphs K4 and K3,2. Conversely, if r is outer-planar, let J7i = Sx (r)

where X = v(r); then r1 is planar (Figure 6) and g(r 1 ) = A(r) + 1 from 4.1,

since v(r) is positive generic. Thus p(r) + 1 < 3.

From the above we see that the 3-critical r are K4 and K3 ,2 . The 2-critical

case is clear: g(r) > 2 if and only if r is not a path; that is, if it contains K3

or K 3,1 as a minor (Figure 6).

F Ii 6 S

Figure 6
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Four Problems on Plane Graphs

Raised by Branko Griinbaum

OLEG BORODIN

ABSTRACT. The following four problems on coloring and structure of plane
graphs raised by Branko Grinbaum and contributed to or solved by the au-
thor are discussed: (a) acyclic coloring , (b) the three color problem, (c) cyclic
connectivity, and (d) the number of light edges.

Grufibaum's problems on colorings and structural properties of plane graphs
have attracted me from my very first steps as a mathematician. Therefore, being
here in the University of Seattle where Branko Griinbaum has been working
more than a quarter of a century, I would like to discuss some of these problems.
Graphs considered in the paper are assumed to have no loops or multiple edges.

1. Acyclic coloring

In 1973, Griinbaum introduced [13] a new class of vertex colorings in which
various restrictions were placed on the structure of all 1-, 2-, and more chromatic
induced subgraphs. Acyclic coloring is that one among them in which every 1-
chromatic subgraph is an independent set of vertices, and every 2-chromatic
subgraph is an acyclic graph (i.e., a forest). The main justification for introduc-
ing this concept was (see [13 ,p.390]) the following.

CONJECTURE 1. Every planar graph is acyclically 5-colorable.

It should be observed that a slightly stronger kind of coloring in which there
should be no 1-chromatic K 2 , no 2-chromatic C2 t, and no 3-chromatic outer-
planar subgraph, may require arbitrarily many colors for some planar graphs
[20].

Conjecture I led to a number of intermediate results. First, Griinbaum
proved [131 that 9 colors suffice, then Mitchem [24], Albertson and Berman [4],
and Kostochka [19] step by step reduced this upper bound to 6. At last, in [6,7]
I succeeded in proving Conjecture I: in [6] there is only a sketch of the proof
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with the main ideas and precise formulations of all lemmas, but [7] contains
the whole proof. The proof consists of constructing an unavoidable set of 450
reducible configurations. It should be noticed that at that time I was unaware
of the Four Color Theorem by Appel and Haken [5], which appeared about the
same time.

Now I would like to describe one feature of the proof in [6,71 which may
turn out to be of use elsewhere. Some of these 450 configurations are related
to each other, in the sense -that they all may be generated from the simplest
configuration "a 4-vertex (i.e., a vertex of degree 4) adjacent to three 6-vertices"
by replacing two of these 6-vertices by some "weak" vertices. The latter are
defined to be major vertices adjacent to sufficiently many minor vertices (i.e.
those of degree 4 or 5). The point is that the reducibility proof was done for
the whole family at once, and it was 6 or 7 pages long. Who knows, perhaps
some such trick could be used to simplify the proof of the Four Color Theorem
[5] too?

Next I wish to formulate some unsolved problems concerning acyclic coloring.
In 1976, Albertson and Berman [3], and independently myself, conjectured that
for each closed surface SN except for the plane P, its acyclic chromatic number
is the same as its usual chromatic number:

if SN t P then x4 (SN) -= x(SN) = P(7 + /49 - 24N)/2j.

As far as I know, this conjecture still remains open.
Recall that a graph is called k - degenerate if it can be destroyed by consec-

utively removing vertices with current degree less then k. For example, the
1-degenerate graphs are exactly those without edges, the 2-degenerated ones are
the acyclic graphs, while a proper subset of the 3-degenerate graphs is consti-
tuted by the outerplanar graphs. I conjectured [6,7] that for each planar graph
there exists a 5-coloring in which every k-chromatic subgraph is k-degenerate
for all 1 < k < 4. (If 1 < k < 2, this coincides with a result of [6,71.) To the
best of my knowledge, the following two much easier problems are also open,
namely those concerning the existence of a similar 1010-coloring for k = 1010 - I
and even for k = 3. Note that, if in the last problem one demands that all
3-chromatic subgraphs be outerplanar instead of being 3-degenerate, then the
answer is negative (see [20]).

2. The three color problem

The natural question of which plane graphs are 3-colorable cannot have a
simple answer (assuming P$NP): as proved by llolyer in 1981, the problem is
NP-hard [17].

However, as early as 1959, Gr6tsch established [11] that if a planar graph
does not contain 3-cycles, then it is 3-colorable. In 1963, Grinbaum generalized
[12] this theorem to all planar graphs with at most three 3-cycles. (The example
of K4 shows that the result is the best possible with respect to the number of
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3-cycles.) Unfortunately, the proof in [12], based on the idea of the extendability
of an arbitrary 3-coloring of any short cycle to a 3-coloring of the whole graph,
had some gaps, which were more recently filled in by Aksenov [1). In fact, [11
contains the only correct proof of Griinbaum's theorem; it further develops the
coloring extension idea due to Gr6tzsch [11] .

Here I would like to announce a proof of Griinbaum's three color theorem
which is free of extension arguments and is therefore simpler than that in [1].
The proof makes use of the idea tof searching for an unavoidable set of reducible
configurations inside an appropriate short cycle if any, instead of in the whole
graph.

Another direction in the three color problem is known as Griinbaum's and
Havel's problem (see [26]) and consists of determining whether there exists a
finite do such that if the minimal distance between triangles in a plane graph is
not less than do, then the graph is 3-colorable. In 1903-78, Griinbaum, Hlavel,
Aksenov, Melnikov and Steinberg raised the lower bound for do up to 4 (for
details see [2]). In other words, there were constructed 4-chromatic planar
graphs in which the minimal distance between triangles was 3.

Now I would like to preliminarily announce the following related result.
There exist many planar graphs with large distances between triangles (10 or so),
which do not contain those 3-color reductions due to Gr6tzsch and Griinbaum
and in which clenching each 4-face draws some triangles together. I strongly
believe that the same construction may be extended to arbitrarily large do: a
skeleton and certain blocks to be inserted int') its holes are already prepared for
arbitrary do, and it just remains to solve some boundary problems, which at
least I can solve for some specific do. (The work was laid aside because of more
urgent occupations.)

A practical consequence of these constructions is that at least, one acquires a
conviction that the positive solution of Griinbaum-llavel's problem "hardly" ex-
ists. Moreover, if among these irreducible graphs there were found 4-chromatic
ones for arbitrary do, then the problem of Griinbaum and Hlavel would be solved
in the negative.

3. Cycle connectivity

We recall that the cycle connectivity (c.c.) of a graph is defined to be the
least number of edges whose removal results in at least two connected compo-
nents each of which contains a cycle. As it is well known, there exist graphs
with connectivity three and arbitrarily large c.c. For planar 4-connected graphs,
the c.c. is also unbounded as shown by the double n-pyramid. Note that each
planar graph is obviously at most 5-connected. In 1975, Griinbaum raised

CONJt.;CTURK 2.[14]. The cyclic connectivity of each 5-connected planar
graph is at most ]I.
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A similar intermediate result with 13 instead of 11 was proved a few years
earlier by Plummer [25]. The bound 11 is attained, for example, by inserting
a new vertex into each face of a dodecahedron and then joining it with all the
bound!-ry vertices (each face of the resulting triangulation is clearly incident
with a 5-vertex and two 6-vertices).

Let 6 denote the minimum degree of the graph under consideration. Recently
I proved [8] a stengthening Conjecture 2 under weaker assumptions, as follows:

THEOREM 3. In each plane graph with 6 = 5 there is a triangle such that
the degree sum of its vertices is at most 17.

The concept of the weight of a triangle or of an edge defined as the sum of
the degrees of its vertices was introduced by Kotzig [21]. In 1963, Kotzig proved
that in each plane triangulation with 6 = 5, the minimum weight of a face was
at most 18, and conjectured that in fact it was at most 17 (see [221). A weaker
upper bound, 19, under the same assumption was obtained by Lebesgue (231
as early as 1940. Although Griinbaum's [14) and Kotzig's [22] conjectures are
formulated in somewhat different terms, Theorem 3 clearly settles them both.

Let fijt be the number of triangles incident with an i-vertex, a j-vertex, and
a k-vertex. Then Theorem 3 may be stated as: if 6 > 5, then

fA5 + fA56 + 1557 + A66 > 0.

More recently, I have found constructions which show that no term of this
inequality may be removed without upsetting it. In particular, I have found a
plane graph having

b6=5, and A55 =f556=f557=0, f566=36.

This graph confirms, on the other hand, that the fourth coefficient in the
following theorem is the best possible:

THEOREM 4([9]). For each plane graph with 6 = 5, we have

18f5ss + 9V556 + 5f557 + 4fA66 Ž 144.

All coefficients except possibly the third are the best possible. Theorem 4
may be regarded as a non-superfluons version of the following inequality of
Lebesgue [23] for plane triangulations with 6 = 5:

2 3 1 1 1 2
fsss + 3 f556 + YA557 + -1558 + A559 + -1566 +"TI -167 > 20.
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PROBLEM 5. What is the optimal value of the third coefficient in Theorem 4?

4. The number of light edges.

At the end of the preceding Section, we have seen that the number of trian-
gles whose weight does not exceed the upper bound (for this reason named light
triangles) is relatively large. The same happens for edges as well. Let eq be
the number of edges joining a vertex of degree i with one of degree j. In 1955,
Kotzig proved

THEOREM 6([21]). In each 3-polytope, there exists an edge of weight at
most 13.

This bound is the best possible, as shown by inserting a new vertex into
each face of a plane graph with 6 = 5 and joining it with the boundary vertices
of the corresponding face. Kotzig's theorem may be also stated as

E eij>0.
i+j <13

In 1973, Griinbaum [15] conjectured, for specific constants aiq and M, that
each plane triangulation satisfies

E aijeiq Ž Al.
i+-j<13

J'icoviý obtained r[ii a sim;lar relation with coefficients different from those
in [15]. The complete solution to this problem is given by my recent result:

TiEOREM 7([1d]).Each plane triangulation satisfies

20e33 + 25e34 + 16e 35+10e36+6 e37+ 5e 3 s+2½esg+2e3 ,10

+16?e 44+ 11e 45+ 5e 46+le 47

+55e 55+ 2e56 > 120.

Each coefficient is the best possible. For arbitrary planar graphs with 6 = 3,
it was only known that

i e+ < 1 3i+j<13
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(Jucovid [18]), and the question was raised by Grunbaum [15] and Jucoviz [18]
of finding the best possible relation of the type

E a 3jeij ,> M.
i+j_513

A complete answer to this problem now is: to obtain the best possible relation
for planar graphs with 6 = 3, just replace a33 = 20 by a33 = 40 in
Theorem 7 (see[10]).

In [18], JucoviZ also asked-about similar inequalities for planar graphs (1)
with 6 = 4, and b = 3 but without 4-vertices. It is remarkable that complete
answers to these two questions by Jucovie also follow easily from the proof of
Theorem 7 (with a33 = 40 ): to obtain the best possible relation in each of
the two cases, one should merely erase the terms containing subscripts 3 or 4,
respectively.

A similar qestion about the case 6 = 5 has a much longer history and has not
been completely settled yet. In 1904, Wernicke [27] proved that e55 + e56 > 0.
In 1973,Grinbaum [13] proved that e55 = 0 implies e56 > 60 and conjectured
that 2es5 + e56 > 60 . However, a counterexample to the last conjecture was
found by Fisk (see [16, p.133]) which has e55 = 28, e5 6 = 0. Grunbaum and
Shephard proved [16] a weaker relation 4e55 + e56 > 60 . Theorem 7 already
implies a better bound §e5 5 + e56 ? 60 , but again it is not the best possible,
as follows from my recent result:

THEOREM 8([9]). Each planar graph with 6 = 5 satisfies

1818 ers + e56 > 60.

The second coefficient is the best possible. As for the first coefficient in
Theorem 8, it is only known to be between - and ".7 7

PROBLEM 9. What is the best value for the first coefficient in Theorem 8?

PROBLEM 10. Describe the class of exceptions for the conjecture

2e5 5 + e5 6 _> 60.

Finally, we remark that there exist [9] rather weak sufficient conditions for
2e 55 + e56 >_ 60 : for example, e5 = 0 , or merely that no 7-vertex is adjacent
to seven or six 5-vertices.
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Counterexamples to a Conjecture

of Las Vergnas and Meyniel

Bruce Reed

ABSTRACT: In 1981, Las Vergnas and Meyniel conjectured that if G contains k dis-
joint sets of vertices S1 ..., Sk such that S, U Sj is connected for all i $ j then G has a
Kk minor. Jorgensen proved this conjecture for k at most 8 and Duchet independently
proved it for k at most 9 (unpublished). In this paper a probabilistic argument is
presented which shows that the conjecture is false for all sufficently large k.

We assume that the reader is familiar with standard graph theory terminology
and the fundamentals of probabilistic graph theory. For any undefined terms see
Bollobas[1 ]. For our purposes, a clique minor of order k in a graph G consists of
a family of k vertex disjoint connected subgraphs of G called nodes, such that for
any two nodes M and N, there is an edge of G with one endpoint in AI and the
other in N. By a clique pseudo-minor of order k, we mean a family of k disjoint
subsets of vertices of G called pseudo-nodes such that for any two pseudo-nodes
M and N the graph induced by M U N is connected (we note that any clique
minor corresponds to a clique pseudo-minor).
In 1943, Hadwiger [3 ] conjectured that, for all k, any loopless graph which does
not have a vertex colouring with k colours contains a clique minor of order k + 1.
This is a difficult conjecture as a proof for the case k = 4 would imply the four
colour theorem.
In 1981, Las Vergnas and Meyniel [4 1 made a number of conjectures related
to Hadwiger's conjecture; in particular they conjectured that any graph which
contains a clique pseudo-minor of order k contains a clique minor of order k.
Subsequently, this was proved for k < 8 by Jorgensen [5 ]: Duchet [2 ] inde-
pendently obtained a proof (unpublished) for k < 9. The purpose of this note
is to prove that the conjecture is false for all sufficently large k. We do this by
showing that a random choice from an appropriately defined probability space
is almost surely a counterexample.

Theorem: For k sufficently large, there is a graph G with a clique pseudo-minor
of order k and no clique minor of order greater than 2 + 2000009log(k).
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Proof: Fix an integer k. By a candidate G we mean a graph on 2k vertices
consisting of k pairs P1 ,...,,P. of non-adjacent vertices of G and, for each
1 < i < j < k, exactly three of the possible four edges between P, and Pj.
By a pair of G, we mean one of P1,..., Pk. We generate a random candidate G oil
vertices v1 -.. v2k by letting the pairs be {vI. -V2 }, -... I{V2k-1, V2 k } and for any two
pairs choosing randomly three of the four edges between the pairs where each of
the four possibilities is equally likely and the choices are made independently.

Lemma 1: Almost surely a random candidate contains no clique with more.
than 8log(k) vertices.

Proof. Let m = [8log(k)]. Consider the probability that an arbitrary set W =
{fvt,..., vm} of m vertices of a random candidate G forms a clique in G. If any
two vertices of W form a pair in G then W obviously does not induce a clique.
Otherwise, for every two vertices of W, the probability that there is an edge
between the two vertices is 3 and these probabilities are independent. Thus. the

4

probability that W forms a clique is !("'). Since there are (•) sets of m vertices
4in G, it follows that the probability that some such set induces a clique is at

most (2)(3)(3') which goes to 0 as k gees to infinity, as required. E

Lemma 2: Almost surely a random candidate contaims no clique minor with
more than 2000001log(k) nodes such that each node of the minor consists of an
edge.

Proof: Let m = [2000001log(k)]. Let N1 = (a, , b),..., N,, = (am, b,,) contain
2m distinct vertices of G and let us examine the probability that there is a clique
minor of order m in G with nodes N- . , N,. Note that no N, consists of two
vertices from the same pair, as each Ni forms an edge. Thus, we can find a
subset {N, ..., Nr'_1 } of {N 1, ..., Nm} such tFat there is at most one vertex of

each pair of G in Ui 1 N1'. Then, for any 1 < i < j < [". the probability

that there is an edge between Ni' and Nj' is (I - (_)4) = and these event
probabilities are all independent. Thus the probability that the desired minor

exists is (255)(T•) < 1 ,5 )S256 2.56

Now, there are less than 2k2-- choices for {N_ . - N , } so the probability that2-m!2

some such choice yields the desired clique minor is at most !LL! 255 which211 in! 256

goes to zero as k goes to infinity as required. 0

Now, by Lemmas 1 and 2, almost surely all but 20000091og(k) nodes of any
clique minor in a random candidate G contain at least three vertices of G. Thus.,
for almost every candidate G with k pairs, the largest clique minor contains at
most ±- +20000091og(k) nodes. However, the pairs of G are the nodes of a clique
pseudo-minor of order k. This completes the proof of our theorem. C

We have shown that there are graphs with a pseudo-minor of order k and no
clique minor of order greater than ± + O(log(k)). On the other hand, it is ea~sy
to see that any pseu(to-minor of order k yields a clique minor of order ,2 _J (simply
partition the pseudo-nodes of the pseudo-ininor into disjoint pairs). It would be
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of interest to know the largest constant c such that every graph containing a
pseudo-minor of order n contains a clique minor of order Lcnj. It would also be
of interest to kaow the smallest k for which the conjecture of Las Ver-I:w and
Meyniel fails.
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An extremal function for the achromatic number

BELA BOLLOBAS. BRUCE REED AND ANDREW THOMASON

November 12, 1991

ABSTRACT. The achromatic number 4,(G) of a graph G is defined to be

the maximum number of parts into which the vertex set may be parti-
tioned so that between any two parts there is at least one edge. We show
max{e(G) ; JGJ = n and O(G) <! k} = (k - 1)n - () if n is large, and
investigate the extremal function for n not large.

1. Introduction

Given a graph G of order n, (all graphs considered in this paper are of course
simple, that is, have no loops or multiple edges), we say two disjoint subsets
A, B of the vertex set V(G) are joined if there is an edge ab with a r A and

b E B. A k-partition V, U V2 U ... Vk of V(G) is complete if each pair V1, Vj is

joined, 1 < i, j < k, otherwise it is incomplete. The maximum value of k for

which G has a complete k-partition is called here the achromatic number of G,

denoted ýi(G). Our purpose in this note is to investigate the extremal function

max{e(G) ; IGI = n and Vp(G) :S k}.
The parameter V:(G) has been called the pseudo-achromatic number by some

authors, who reserve the term achromatic number for the case in which each

part of the partition is required to be an independent set; we shall denote the

maximum value of k for which G has a complete k-partition into independent

sets by 'i(G). Note that V•i(G) is at least X(G), the chromatic number of G.

The corresponding extremal function max{ e(G) jGj = n and el(G) < k}

is easily shown to equal tk(n), the size of the complete k-partite Turdn graph

Tk(n). Indeed 7Pi(Tk(n)) < k., and if IGI = n and e(G) > tk(n.) then (by Turin's

theorem) Kk+I C G so X(G) > k + 1.
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Another commonly imposed restriction on the complete partition is that each
part span a connected subgraph. The maximum value of k for which G has a

complete k partition into connected parts is the Hadwiger number of G, namely
the largest k for which Kk is a minor of G. The maximum size of a graph with

no Kk+1 minor was determined by Kostochka 15] and by Thomason [6]: if we
define

c(k) = inf{ c; e(G) > cjG] implies G has a Kk+I minor }

then 0.265k lVog 2 k < c(k) < 2.68k lFo/g2 k for large k, as shown in [6].
We shall impose no restriction on the subgraphs spanned by the parts of our

partitions. For extremely small graphs, the behaviour of the extremal function
is much like that described in the previous paragraph. However for large graphs
the situation is very different.

2. Extremal graphs

Bollob6.s, Catlin and Erd6s [2] investigated q)(G) for G E g(n. p). the proba-
bility space of random labelled graphs of order n where edges are chosen inde-

pendently with probability p. They showed

,',(G) < n / Nilogb n - d log, n = n ogb/ ogn(1 + o(1))

almost surely, where d > 2 is fixed and b =- 1/(1 - p). The proof holds for
any value of p; hence by choosing p = p(n) so that V(G) < k almost surely.
we obtain a lower bound on the function max{e(G) ; IGI = n and tp(G) < k}

for large k. For a given constant C > 0 there is a constant c > 0, such that if
n < CkVoT6k then p(n) > c, so the lower bound obtained is necessarily within
a constant factor of the actual maximum value. On the other hand, for larger
values of n, p(n) is small, log b ; p. log n z log k and G has size approximately

k 2 log k12.
The size of random graphs with ýb(G) = k therefore does not (significantly)

increase with IGI, so random graphs provide useful examples only when their
order is not large compared with k. The graph G = Kk- 1 + K,-k+l (notation
is that of [1]) satisfies V(G) = k, and its size, (k - 1)n - (k), increases with n.

For n >> k log k its size is greater than the random examples.
It seems likely that the graph Kk- 1 + K'-k+l and random graphs between

them describe the extremal function well. We prove in (3.2) that Kk- 1 +KV,-k+I

is the unique extremal graph for large n, and in (4.2) that even for n >> k log2 k
its size is within a constant factor of being best possible. Unfortunately we are

unable to show that the size of random graphs comes within a constant factor
of best possible for extremely small n (n < k log k). The methods of [6], which
at first sight ouight to provide information in this range. fail to work. (It would

be needed to show that a graph of order n < k log k with size p2 n = k 2 log k has

i, >_ k + 1 - n V/ -log n; the methods of [61 yield only t'i, _> pn7 /log n.)
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3. The extremal function for large graphs

It is not difficult to verify that the graph Kk-1 + Kn-k+l is extremal for
n > k3, and by means of the following lemma we can do even better.

(3.1). Let X 1 U X 2 U ... U Xk be a k-partition of a subset X C V(G). If
rG-X(Xi) _ 2(k + 1) log(k + 1) for 1 < i < k, then 4'(G) > k + 1.

PROOF. From a random (k + 1)-partition Yo U Y1, U ... Yk of V(G) - X we
may form the (k+ 1)-partition YOUUk 1(Xi UYi) of V(G). It is enough to show
that the probability of this partition being incomplete is less than one.

For a fixed i and j, the probability that there are no Xi-Yj edges is at most
(k/(k + 1 ))2(k+,)log(k+I) < (k + 1)-2. Hence the expected number of pairs of
parts which are not joined is at most !k(k + 1)(k + 1)-2 < 1. E]

(3.2). Let O(G) <_ k and tGI Ž 2(k+ 1) 2[l +logk]. If e(G) > (k-1)JGI-(2k)
then G = Kk-I + Kn-k+I.

PROOF. We proceed by induction on k, the case k = 1 being trivial. Let G
be a graph satisfying tho conditions of the theorem. If for some vertex v E G it
happens that O(G - v) _< k - 1, then e(G - v) >. e(G) - (n - 1) _> (k - 2)(n -

1) _ (k21) and by the induction hypothesis G - v = gk-2 + KR-k+1. Therefore
G must itself be Kk-1 + K•-k+1 (or else e(G) would be smaller than stated),
and so the theorem follows in this case.

Consequently we may assume that, for each v E G, V)(G - v) > k, and it will
be enough to show [GJ < 2(k + 1)2[1 + log k]. For a given v let H be a minimal
subgraph of G - v with 4'(H) > k. Since only one edge need be selected from
each joined pair of parts in a complete k-partition of V(G) - v to form H, we
have [Hj • k(k - 1) and each part of the partition of V(H) has order at most
k - 1. If now d(v) Ž (k - 1)2 + 1 we may add, to any part of H not containing
a neighbour of v, some vertex of r(v) \ V(H), and so obtain a complete (k + 1)-
partition of {v} U F(v) U V(H) with {v} as one of the parts. This contradicts
b(G) _• k, so we have d(v) < (k - 1)2 for any v C G.

Therefore A(G) < (k - 1)2. Let f be the maximum size of a set of independent
edges in G. Then e < ('+1) else there would be a complete (k+l)-partition of the
endvertices of these edges. Since e(G) < 2WA(G) we have at once that IGI < k3 .
Moreover by (3.1) there cannot be k vertices of degree at least 2(k+ 1) log(k+ 1),
so

e(G) • (k-1)A(G)+(2e--k+1)2(k+1)log(k+1)

< (k - 1)3 + 2(k2 - 1)(k + 1)log(k + 1),

which together with the lower bound on e(G) stated in the conditions of the
theorem implies JGC < 2(k + 1)2[1 + log kJ, as required. ED
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4. The extremal function for small graphs

The most interesting part of this investigation is the attempt to reduce the
bound 2(k + 1)2[1 + logk] stated in (3.2) to Ck logk, for some positive constant

C. Our best attempt is described in (4.2) below, where we consider graphs of
order as low as Cklog2 k at the cost of increasing the size to 3kIGI. The proof
relies on (4.1), which is of independent interest.

(4.1). Let G be an n by m bipartite graph, with bipartition (U, V), with each
vertex in U having degree at least r. Then V has a partition V = U-=1 V such
that each Vi is joined to at least n/5 vertices of U.

PROOF. We in fact prove the stronger result in which the lower bound n/5 is

replaced by cn, where c = (1 - e-')/3. We proceed by induction on r, the case
r = 1 being trivial. First delete edges so each vertex in U has degree exactly r.
If now any vertex v E V has degree greater than en, take V = {v} and apply
the induction hypothesis with r - 1 to the graph G - v. Hence we assume no
vertex in V has degree greater than cn.

Consider random partitions of V into parts V1,... , V,. The probability that a
given vertex u E U is not in F(Vi) is (1 - 1/r)r < e- 1. Hence the expected value
of IF(Vi)I is (1 - e-')n, and the expected value of '=1 IF(Vi)I is r(1 - e- 1 )n.
Thus we may take a partition V = Ur I Vi such that ]_1I'(Vi)I > r(1-e-')n.

Let A = {Vi; tF(Vi)I < cn} and B = {Vi; IF(Vi)i > (1 - e-')n}. Then

r
0 < [JI'(Vi)l - (1 - e-')n] _ JBle-'n - 21AIcn

i=1

so IBI Ž_ JAI. Hence it is enough to show we can split each Vi E B into two
parts V/' and Vi" so that both IF(ViY)I _> en and lf(Vi")l ? cn. But this is clearly
possible, since no vertex in V has degree more than cn and so

min(lr(Vi')I, IF(V'")l} > (Jr(Vi)J - cn)/2 > cn,

thus completing the proof. Ml

The constant 5 in the statement of (4.1) is clearly not the smallest possible
value for which the theorem would be true, which is probably 2. An improve-
ment in the constant in (4.1) would improve somewhat the constant in the next
theorem.

(4.2). If G is a graph of order at least 200(k + 1) log 2 (k+ 1) and size at least

3klGI then iP(G) > k + 1.

PROOF. Let G be a graph with IGI _Ž 200(k+ 1) log 2 (k+ 1) and c(G) Ž_ 3klGl.
Repeatedly delete vertices of degree less than 2k until there remains a graph H
with 6(H) > 2k. At most (2k - 1)IGI edges will be removed by this process, so at
least (k+l)IGI are left. It follows that IHI _Ž Vi2(k + 1)IGI Ž! 20(k+1) log(k+1).
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A well-known argument (see for example Erds 13]) impiies that H contains a
spanning bipartite subgraph B with 6(B) > k. Let the vertex classes of B be X
and Y. We may assume fYI _ IJBI/2 > 10(k + 1) log(k + 1). By (4.1) there is a
partition X 1 UX 2 u.. .UXk of X such that Fy(Xi) > fYJ/5 Ž 2(k+ 1)log(k+ 1).

It now follows from (3.1) that V'(G) > k + 1. c]

5. Remarks

The bound Clklog2 k in (4.2) could be brought down to the best possible
C2k log k if more were known about our extremal function for very small graphs.
In particular if it were known that graphs of order at most C3k log k and size
k2 log k had 0 Ž k + 1 (for appropriate constants C.), this would be achieved by
considering graphs G of size 2kIGI + k2 log k, and selecting a minimal subgraph
H of size at leas 'kJHJ + k 2 log k. If lH1 were less than C3k log k we would be
done, otherwise 6(H) _> 2k and we would proceed as in the proof of (4.2).

Karabeg and Karabeg 14] state that max{e(G) ; v(G) < k} - (k- 1)GI - (k)
for :ll IGf if k < 4. They a, : also interested in extremely small values of JGf,
and state max{e(G) ; V(G) <: k} - (IGI) - 2(IGI - k + 2) if IGI < 4k/3.

We are informed by a referee that a form of (3.2) has been obtained indepen-
dently by Z. Fiiredi.
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ABSTRACT. In this paper we focus on two questions.
(1) How many edges can an H-free graph have?
(2) How does a "typical" H-free graph look like?

For excluded weak subgraphs both problems have been well-studied for a
long time. We survey some of the important results. The main stress of
the paper however lies on explaining the recent results on excluding induced
subgraphs which complement the results in the weak case in an unexpected
way.

We also indicate how the methods envolved in proving these asymptotic
results can be used in other branches of graph theory. In particular we
comment on applications to graph coloring and to perfect graphs.

1. Introduction

A graph G = (V, E) is called triangle-free, if it does not contain a triangle.
i.e. a complete graph on three vertices, as a subgraph. The quelLlon of how
many edges a triangle-free graph on n vertices may have, was already answered
by Mantel in 1907.

THEOREM 1.1 (MANTEL [18]). Every graph on n vertices with more than
t2(n) = [fJ • [v1 edges contains a triangle and the complete bipartite graph
with parts as equal as possible is the only triangle-free graph on n vertices with

t 2 (n) many edges.

This result of Mantel shows that the extremal graph, and therefore also all

of its subgraphs, are bipartite. However, as observed by Tutte in 1948, pub-
lishing under a pseudonym, there are also triangle-free graphs of arbitrary high

chromatic number.
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THEOREM 1.2 (DESCARTES r3 ]). For every r E BV there exists a triangle-free
graph G-- (V, E) such that X(J) > r.

While this shows that there are triangle-free graphs of arbitrary high chro-
matic number, a natural question is to ask: What chromatic number do we
expect, if we pick a triangle-free graph "at random"? That is, what is the chro-
matic number of a typical triangle-free graph? As it turned out the answer
is quite simple, namely 2. This was proved in 1976 by Erd6s, Kleitman and
Rothschild. More precisely, they showed:

THEOREM 1.3 (ERD6S, KLEITMAN, ROTHSCHILD [9]). Let .'orb,(K3) de-
note the class of all triangle-free graphs on n vertices and let Col,,(2) denote the
class of all bipartite graphs on n vertices. Then

lim orbo b (K3) =1
no JCol,,(2)J

Obviously, the type of questions we just considered is not limited to triangle-

free graphs. Whenever H is some fixed graph we may ask: How many edges
can an H-free graph have and what is the chromatic number of a typical H-free
graph, or more generally, how does a typical H-free graph look like?

In fact, if H is not a clique we have to distinguish two cases, namely excluding
H as a weak or as an induced subgraph. It turns out that the answers for the
weak case are a lot easier to obtain and the fundamental results here are known
for a long time. They essentially state that the number of edges in an extremal
graph as well as the asymptotic structure of H-free graphs is basically determined
by the chromatic number X(H).

In the induced case, however, answers to the corresponding problems were
found only during the last two years (cf. [211, [22], [23]). It was shown that
in the induced case, like in the weak case, the asymptotic properties of H-
free graphs are mainly determined by a single parameter, say r(H), which is a
common generalization of the chromatic number and the clique covering number.
(To prevent any misunderstandings, let us add at this point, that asking for the
maximum number of edges a graph without induced H-subgraph can have, is
obviously not very sensible. In fact one has to modify the definition of an extremal
graph in a natural way. For a precise definition the reader is refered to section
three.)

The aim of this paper is to survey these results. In particular we try to point
out the interaction between extremal graph theory and asymptotic properties on
the one hand and the similarities between the weak case and the induced case

on the other hand. We also indicate how the methods envolved in proving these
asymptotic results can be used in other branches of graph theory. In particular
we comment on applications to graph coloring and to perfect graphs.

In this paper graphs are always simple, i.e. loops and multiple edges are not
allowed. If H is a fixed graph we denote by Forb,(H) the set of all graphs on
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n vertices which do not contain H as a weak subgraph and by .Torb* (H) the
set of all graphs on n vertices which do not contain H as an induced subgraph.
We often write G = (V,, E) to indicate that the graph G has n vertices. All
logarithms in this paper are to base two.

2. Excluding weak subgraphs

Let ex,(H) denote the maximum number of edges which a graph not con-
taining H as a (weak) subgraph may have. The problem of determining ex"(H)
and that of analysing the structure of H-free graphs with ex,(H) many edges
is a well studied problem in extremal graph theory (cf. Bollobgs [21, Simonovits
[28]).

The asymptotic structure of H-free graphs was investigated only much later.
By today, however, a fairly complete picture is known. In this section we survey
some of the results. We start with the case that H is a clique.

2.1. Cliques. A classical result of Turnn (1941) states that the (unique)
extremal Ki+l-free graph is the complete 1-partite graph where all parts are
chosen as equal as possible. For I = 2 this implies Mantel's result.

THEOREM 2.1 (TURAN [29]). Denote by t,(1) the number of edges of a com-
plete I-partite graph T, (1) on n vertices with parts as equal as possible. Then
exn(Kl+i) = tn(l) and Tn(l) is the unique graph on n vertices with tn(l) many
edges that does not contain a clique of size I + 1.

While Tutte's result (1.2) states that there exist KI+1 -free graphs (i.e., in fact
triangle-free graphs) with arbitrary high chromatic number, Kolaitis, Promel
and Rothschild [16] extended the result (1.3) of Erdos, Kleitman and Rothschild
to show that almost all Kl+l-free graphs have chromatic number 1.

THEOREM 2.2 (KOLAITIS, PR6MEL, ROTHSCHILD [16]). Let .Forb,(Kj+1 )
denote the class of all K1+ 1-free graphs and let Col.(i) denote the class of all
1-colorable graphs on n vertices. Then

lim fForb,(Ki+i)I = 1.
n-oo ICol (1) 1

In particular, (2.2) allows to determine the number of Ki+i-free graphs via
counting the number of (labelled) i-colorable graphs. This gives (cf. [26]) that

Ijrorb.(Kj+i)I = 0(2 2 Jog).

The general idea behind the proof of Theorem (2.2) is to partition the set
Forb,(Kl+ ) suitably into a finite family of sets, so that one can show induc-
tively that all except one of them are asymptotically negligible. Then structural
properties of these negligible sets are used to prove that all graphs in the set
remaining have the desired property, i.e., in case of Theorem (2.2) they are all
I-colorable. A similar method was first used by D. Kleitman and B. Rothschild
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[141 to show properties of almost all partially ordered sets. Therefore this method
is sometimes called the "Kleitman-Rothschild method".

2.2. Color-critical graphs. In the last section we have seen that the class
F.orb,(K1 +1 ) of KJ+1-free graphs has the property that on the one hand the
extremal graph is the complete I-partite graph T,(1) and on the other hand
almost all graphs in this class have chromatic number 1. So one might ask
conversely, for what graphs H is it true that the class .orb,,(H) has these
properties. In this section we give a complete characterization of those graphs.

An edge e of a graph H is called color-critical, if the deletion of e from H
reduces the chromatic number, i.e. X(H \ e) < X(H). Observe that in particular
every edge of a clique is color-critical.

THEOREM 2.3 (SIMONOVITS [27]). Let H be a graph with chromatic number
I + 1. Then for all sufficiently large n one has that ex,(H) = tn(l) if and only
if H contains a color-critical edge.

The condition that H contains a color-critical edge is easily seen to be neces-
sary. Otherwise add an arbitrary edge to the Turin graph T,,(1). The new graph
has now more edges and all its (1 + 1)-chromatic subgraphs contain a color-critical
edge. The sufficiency was originally proven in a more general context. A direct
proof by progressive induction can be found in [28).

Concerning the asymptotic structure Erd6s [6] conjectured that the result
(2.2) generalizes to the same class of graphs for which Simonovits' theorem (2.3)
is true. This turned out to be the case.

THEOREM 2.4 (PROMEL, STEGER [20]). Let H be a graph with chromatic
number 1 + 1. Then

I oFrb(H) = 1

if and only if H contains a color-critical edge.

Again it is easy to see that the condition that H contains a color-critical edge
is necessary. Compare ICol(1) I with the number of graphs on n vertices with
chromatic number at most 1 + 1 and parts V0, ... , V1 such that IVVo I 1 and
IF(lV0) n VI = 1. As IColn(l)1 is asymptotically well-understood, it is easy to see
that for large n the second number dominates the first.

The opposite direction was first shown in Pr6mel [19] for 1 = 2. Both this
and the final proof are based on the Kleitman-Rothschild method.

2.3. The general case. The graphs we considered so far, viz. cliques and
graphs containing a color-critical edge, are up to a few special cases the only
examples of graphs for which the extremal graph and the asymptotic structure
are precisely known. However due to the work of Erd6s, Stone and Simonovits
apd of Erd6s, Frankl and RJdl it is known that the behaviour of these properties
is closely connected to the chromatic number of the excluded graph.
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THEOREM 2.5 (ERD6S, SIMONOVITS [10], ERD6S, STONE (11]). For all
graphs H we have that

1 n

ex,,(H) = (1 - (H) - -n2 + o(n 2 ).

In fact one knows considerably more about the structure of extremal graphs
than just an asymptotic for the number of their edges. Erd6s and Simonovits
showed that every extremal g-aph can be obtained from a Turin graph by chang-
ing at most o(n 2) many edges (the Asymptotic Structure Theorem) and further-
more that if an H-free graph has sufficiently many edges than it can already be
obtained from a Turdn graph by changing o(n 2) many edges (the First Stability
Theorem). For precise statements of theses results and many more we refer the
reader to Bollob~s [2] and Simonovits [28].

Observe that (2.5) determines the leading term in exn(H), if the chromatic
number of H is at least three. If one excludes bipartite graphs H (known as the
degenerate case in Extremal Graph Theory), very little is known. In the case of
even cycles for example good answers are only known for C4 , C6 and C10 .

A question of Erd6s and Simonovits, worth a considerable amount of money,
states

PROBLEM 2.1 (ERD6s, SIMONOVITS, OF. [51). Let H be a bipartite graph. Is

it true that there exists 0 < c = a(H) < 1 such that

ex, (H)
lira = CH 0 < CH < 00.

n--,oo n1+0

Structural results complementing the Erd6s, , in, , im,1 i;t', .. u.tS in Cx-

tremal graph theory were obtained by Erd6s, Frankl and Rodl. They incorporate
the characterization (2.2) in order to show that H-free graphs are "close" to being

(X(H) - 1)-colorable.

THEOREM 2.6 (ERD6S, FRANKL, RODL [81). If x(H) = 1+1, then the graphs

in .Forb,(H) are "almost" 1-colorable, i.e., every graph can be made KX(H)-free
by removing at most o(n 2 ) edges. In particular,

J!orbn(H)J = 2('- )-+o(n)

and therefore, for X(H) > 3

I•.orbn(H)l = 2e H)(o(.

Again this result degenerates to I.Forb,(H)i = 20(n2) whenever H is bipartite.
Even for the simplest case, a cycle of length four, the best known upper bound

is 2 r,3/2 with c ; 1.08 due to Kleitman and Winston [15]. This contrasts the

lower bound given by ex,(C4 ) !n 31/ 2 . Nevertheless it is believed that also
for bipartite graphs (different from trees) the subgraphs of the extremal graph

already represent "most" H-free graphs. More precisely, Erd6s conjectured:
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CONJECTURE 2.1 (ERD6S [7]). If H is bipartite and not a tree then

lForbn(H)l = 2 ex,,(H)-(1+o0)).

2.4. Application: fast coloring algorithms. It is well-known that the

determination of the chromatic number of a graph is NP-hard. In fact, even
deciding for any fixed I > 3, whether a given graph is 1-colorable or not, is
NP-complete. It is therefore quite unlikely that there exist algorithms for this
problem whose worst-case running times are polynomially bounded. The impor-
tance of the chromatic number within Graph Theory as well as in applications
(e.g. in scheduling and assignment problems) led several researchers to look
for algorithms that are, while exponential in the worst case, at least fast "on
average".

Wilf [31] was the first to investigate the average time behaviour of coloring
algorithms. He showed that for every natural number I there exists an algorithm
which decides whether X(G) :5 1 for a given graph G and if yes, colors it with X(G)

many colors -- and whose expected running time is constant(!). assuming equal
distribution on the class of all graphs. The reason for this at first sight surprising
result is that a randomly chosen graph contains with very high probability a
clique of size 1+ 1 and is therefore in particular not 1-colorable. Even more can be
shown: every such randomly chosen graph does not only contain a K1+ 1-clique,
but it contains such a clique with very high probability already on an initial
piece of constant size. In these cases the algorithms therefore simply reports
correctly "the graph is not 1-colorable". Otherwise it colors the graph optimally
with an exponential branch and bound algorithm, reports whether X(G) < 1, and

outputs a coloring with X(G) many colors. As tne probability that the graph
does not contain a K1+1 is sufficiently small, the exponential running time in
this case does not destroy the overall constant expected running time.

If one excludes however the K1+ 1 as a pathological reason for a graph of not
being i-colorable, i.e. if one only considers graphs in Forb,(K,+÷), then the
difficulty of the problem increases considerably. Going one step further and con-
sidering only i-colorable graphs Turner [30] developed an algorithm which colors

!f zmost every i-colorable graph with 1 colors and whose running time is polyno-
mially bounded. This result was strengthened by Dyer and Frieze [4]. Their
algorithm colors every i-colorable graph with I colors and has linear expected
running time assuming equal distribution on the class of all i-colorable graphs.

Based on a further improvement of the characterization (2.2) the remaining
gap between Wilf's algorithm and the algorithm of Dyer and Frieze was recently
closed in Prdmel, Steger [25]. There an algorithm is described which colors
every graph in Yorb,,(K,+1 ) with X(G) many colors (regardless how large X(G)
might be) and whose expected running time is still linear. Roughly speaking

the improvement of the characterization allows to play off "structure" against
"convergence". That is, if one requires for example 1-colorability not for the
whole graph, but for the whole graph except some "bad" vertices, then it can bc.
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shown that the fraction of Ki+ -free graphs not having this pr',perty decreases

proportionally to the number of "bad" vertices. More precisely, the following
result was shown.

THEOREM 2.7 (PR6MEL, STEGER [25]). Let fr(n) be an integral function such

that 1 < f(n) < n/log3 n. Then there exists a set X,(f) - $Forb,,(K,+,) such

that

Prob(G E X,,(f)) = 2 - 1-f(n))

and such that for every G = (1V/,, E) in -Forb,,(Kj+1 ) \ X,,(f) there exists a set

A C V,, of "bad" vertices of size IAI < f(n) - 1 in such a way that the graph

G[Vn \ A] induced by V, \ A is 1-colorable and can be 1-colored in linear time.

While for f(n) =1 this result just implies the characterization (2.2) of Ko-

laitis, Prdmel and Rothschild, the general case allows to construct the coloring

algorithm described above.

3. Excluding induced graphs

If one excludes induced subgraphs instead of weak subgraphs, the picture

changes completely. While classes of graphs defined by excluding a whole se-

quence of induced subgraphs. as for example the class of triangulated graphs or

the class of Berge graphs, played an important r6le in graph theory. the ques-

tion of what happens if one excludes a single graph remained unanswered until

recently.
In this section we describe some analogues to the classical theorem (2.5) of

Erd6s. Stone and Simonovits and to the asymptotic result (2.6) of Erd6s. Ftankl

and R~dt. which were discovered not long ago. In order to motivate the necessary

notions and definitions we start with an example.

3.1. A special case: quadrilaterals. Perhaps the simplest graph for which

the answers to the weak and induced problems do not coincide is the quadril.t-

eral. a cycle of length four. While in the weak case, determining the asyinptotic

structure or just the nunber l.orb,,((C4)1 of C1-free graphs is one of the chal-

lenging open probIlews: (cf. section 2.3), surprisingly lie related questions for

graphs without induced quadrilaterals could be solved.
Let Split(n) denote the class of all split graphs on ii vertices, i.e.. the class of

graphs whose vert!x set can be partitioned into a clique and a stable set. While

it is easY to see that nro split graph contains an induced C.j. it was shown in

Pri'nMel. Steger ý211 that as-yvript,,ically also the contrary is trule.

T'I';OF*:M :3.1 (Pu6MEl . ST+(v-;ER 1211) . Almniost all graphs iy,'hout uuicrtd

li-- s gr-a....---- I.
, .. , 5plfit y)
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This generalizes a result of Bender, Richmond and Worniald [1] who showed
that a similar resAIt holds, if one replaces the class .Forb; (C.1) by the class of all
triangulated graphs, that is. if one excludes all induced cycles of length at least
four, instead of just the induced cycles of length exactly four.

Using an asymptotic formula for the nunber of bipartite graphs. (3.1) implies
that there exist constants c0 and cl such that

IForb,* I(C4)1 = (c,, + o(1))- 24+- 2g

where r = n mod 2.

3.2. Extremal graphs. In order to succeed in finding counterparts to the
classical theorem (2.5) of Erd6s. Stone and Simonovits and to the asymptotic
result (2.6) of Erd6s. Frankl and Rhdl one first had to develop an appropriate
notion of an "extremal graph" for the class ,Forb;(H) of graphs not containing
the graph H as an induced subgraph. Obviously, asking just for a graph with
maximum number of edges does not lead to a meaningful concept: in this case the
complete graph would be the (unique) extremal graph for all graphs H different
from a clique. That is, one had to generalize some other notion inherent to
extremal graphs.

Recall that in case of excluding weak subgraphs every subgraph of an H-
free graph is also H-free. i.e., the property of being H-free is hereditary. As
a consequence extrernal graphs in the class forb,(H) are exactly those graphs
which give rise to a maximum number of Hl-free graphs by taking subgraphs.
In fact (2.6) states, that even the number of graphs in .Forb,(H) is essentially
given by the number of subgraphs of the extremal graph, i.e.. that

log IForb,(H) I--- (I + o(1)) • rx,,(H).

In the previous section we have seen that a similar result also holds in the
case of excluded quadrilaterals. Namely, denote by K ([lJ ,f1) the coplete
bipartite graph K( -L. 1) on n vertices in which the first class is replaced
by a clique. Observe. that. K*([Lj, ,]) as well as all subgraphs arising from

K* i . by deleting edges from the original K([! j, [1) do not Contain all
induced C.4 . On the other hand the logarithm of the numnber of these sulbgrphs is

l Ii -Ll which indeed corresponds to t he order of log -Forb,, ( T)L This mot ivates
the following definition (cf. Prhmel. Steger [22]):

DEFINITION 3.1. LDt cxa,,(I) dcnotr the mna-nmtm mtnbcr of #ýdyf's a graph

G -- ( V,. E) maiy havr such that thrc es.•.zs a graph Go = (1V,. f-,) uwith E2 Ej, --
0 .such that (V4,. Lo .X) docs vot r(ol0tar a( indlucred Ht-subgraph for rIll i .

1,, ca1ll s tich a yrph G' ai cxtr-nal graph for tht clas's Forl,,,(H) (Lad ("j) a

supple:mental /raph tlh r'esptlt to th, cxtrlrnal graph G.
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With this definition at hand it is not difficult to see that in our example of

quadrilateral one indeed has cx*(Q) = ][LI and that for "i > 6 the

K(L•J, L 1) is the unique extremal graph.

3.3. A new parameter. In the study of classes of graphs defined by exclud-
ing weak subgraphs th, chromatic number played a central r6le for the extreinal

graph as well as for asymptotic properties of the class. As we will see results

of a similar flavour are tr ie in the induced case as well -- if one replaces the

chromatic number by an appropriately defined parameter. As a motivation for

the definition of this new parameter T(H) consider the following definitions of

the chromatic number X (H) and of the clique covering number o(H):
.,(H) is the largest integer k such that no (k - 1)-partite graph contains H as

an induced subgraph.
a(H) is the largest integer k such that no (k - 1)-partite graph, in which each

class is replaced by a clique, contains H as an induced subgraph.
As a common generalization define:

7-(H) is the largest integer k for which thic exists an integer k between 0 and

k - 1 such that no (k - 1)-partite graph, in which k classes are replaced

by a clique, contains H as an induced subgraph.
One easily observes that max{:((H).o(H)} < -r(H) < )((H) + a(!t), which in

particular implies that r-(H) is well-defined.
The counterpart of (2.5) for induced subgraphs now reads as follows.

THEOREM 3.2 (PROMEL, STEGER [22]). For all graphs H we have that

1 2n2

ex:,(H) = (I -r)- + 0(n2).

Theorem (3.2) is easily proved by combining the proof of (2.5) with Ramsey's

theorem.
It can moreover be shown that also the structural theorems of Extremal Graph

Theory (like the Asymptotic Structure Theorem or the First Stability Theorem)
remain true for induced subgraphs after straightforward modifications.

3.4. A general asymptotic. The problem of determining the structure of

a typical graph in .Forb*(H), or at least estimating the number of graphs in

this class, is considerably more difficult. However, after generalizing Szemer6di's
powerful uniformity lemma to hypergiaphs an analogue to Theorem (2.6) was

proven.

THEOREM 3.3 (PR6MEL. STEGER [23]). If 7-(H) = I + 1. then the graph.s

in -Forb*(II) are "almost" I-partite split-graphs, i.e., there exists a partitiorn
V, = A I ... U A, of the vertex set into I classes such that after changing at most

o(r)2) edges all the classes A, form either cliques or stable sets. In particular,

i.(Yb (11 2(
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and therefore, for r(H) > 3

tForb,',(H) = 2"*(1)j(1+0(1))

Az in (2.6) this result degenerates to F.Forbn(H)I = 2"(•n), whenever r(H) = 2.

i.e. H is "bipartite". However, in contrary to the weak case. there are only five

such "bipartite" graphs H. For all of them the class Yorb* (H) is well understood.

3.5. The strong perfect graph conjecture. An important motivation

after studying .Forb* (C4 ) to investigate asymptotic properties of Forbn (H) in
general, and of Forb* (CQ) in larticular, was one of the most prominent problems

in graph theory.
A graph G is called perfect, if G and each of its induced subgraphs have the

property that the chromatic number X equals the size of a maximum clique •.

Since their introduction by C. Berge in 1960 various striking results on perfect
graphs have been proven. Many "natural" classes of graphs were identified as

perfect graphs (e.g. triangulated graphs, interval graphs, unirnodular graphs.

and many more) and several interesting structural properties were discovered

(as for example that with G also the complement of G is perfect, LovAsz [17]).

Perfect graphs are also of interest from an algorithmic point of view. While de-
termining the chromatic number of a graph is in general a difficult problem. more
precisely, an NP-hard problem, Gr6tschel, LovAsz and Schrijver [12] showed that

for perfect graphs the chromatic number as well as several other optimization
problems are solvable in polynomial time.

Despite this progress, a possible characterization of perfect graphs in terms
of forbidden subgraphs, also posed by Berge in 1960. remained open and is one

of the outstanding open problems in graph theory.
THE STRONG PERFECT GRAPH CONJECTURE. A graph G = (V, E) is perfect

if and only if neither G nor its complement G contains an odd cycle of length at
least five as an induced subgraph.

Let Perf(n) denote the set of all perfect graphs on n vertices and let Berge(n)
denote the set of all graphs on n vertices which contain neither an odd cycle

nor the complement of such a cycle as an induced subgraph (nowadays these

graphs are also known as Berge graphs). Combining a suitable generalization
of the Kleitman-Rothschild method on the one hand with Szemercdi's unifor-

mity lemma on the other hand we were able to show that almost all graphs
in .Forbl4(Cr5 ) are so-called generalized split graphs and therefore by a result of

Hayward [13] are in particular perfect. As trivially Berge(n) C .Torb,*,(Cr,). this
shows that the strong perfect graph conjecture is at least almost a!:ays true.

THEOREM 3.4 (PR6MEL, STEGER [241). Almost all Bcrge graphs arc' perfect,

IPerf(n)I

rgc(n)I 1.
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Induced Minors and Related Problems

MICHAEL FELLOWS, JAN KRATOCHViL,
MATTHIAS MIDDENDORF AND FRANK PFEIFFER

ABSTRACT. Many well-studied and natural families of graphs are lower
ideals in the induced minor order. That is, these families of graphs are
closed under the operations (1) vertex deletion and (2) edge contraction. In-
tersection graphs of topological structures provide many examples, includ-
ing interval graphs, string graphs, permutation graphs and co-comparability
graphs. One of our principal motivations has been to develop the basic
theory of induced minors, and to explore the similarities and differences of
minors and induced minors.

We also study the computational complexity of determining the presence
of various induced structures in a graph. Our results show that the decision
problems concerning induced structures in a graph are usually more difficult
than the corresponding problems for non-induced structures. The effect on

.hese problems of restricting the input to planar graphs is also considered.

1. Notation

In this paper, we consider finite graphs without loops or multiple edges. The
graphs are undirected, if not explicitely stated otherwise. The notation used is
standard, we just stress the notions of induced subgraph and induced minor.

A subgraph H C G is called an induced subgraph if in addition to E(H) c
E(G), E(H) = {xyjx, y E V(H) & xy E E(G)}.

A graph H is called an induced minor of G (denoted by H -<i G) if a graph
isomorphic to H can be obtained by edge contractions from an induced subgraph

of G. In other words, H is an induced minor of G if there are disjoint subsets
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V,, of V(G) indexed by vertices u E V(H) such that for every u, v E V(H), there

are x E V,, and y E Vv, such that xy E E(G) if and only if uv E E(H).

2. Induced minors

Robertson and Seymour have established the following fundamental results

concerning the minor order [RS].

THEOREM A. Every lower ideal in the minor order has a finite obstruction

set.

THEOREM B. For every fixed graph H, the problem H-MINOR TESTING

which takes as input a graph G of order n and determines if G > H in the

minor order is solvable in time 0(n 3 ).

These two theorems have the consequence that every lower ideal in the minor

order is recognizable in time 0(n 3 ).

The situation for the induced minor order is quite different. There are lower

ideals in the induced minor order having infinite obstruction sets, even when

attention is restricted to planar graphs (Thi. In [MNT] it is shown that there

are induced minor lower ideals that are undecidable. On the other hand, an

analog of Theorem A does hold for series-parallel graphs [Thl.
We show that though an analogue of Theorem B does not hold for induced

minors in general, it does hold for planar inputs. We prove the following results:

THEOREM 2.1. There is a graph graph H, such that the problem H-INDUCED

MINOR TESTING which takes as input a graph G of order n and determines if

H - G is NP-complete.

PROOF. Rather technical and will appear elsewhere.

THEOREM 2.2. For every planar graph H there is a constant k = k(H) such

that every planar graph G of tree width w(G) > k contains an induced minor
isomorphic to H.

SKETCH OF T-4F PROOF. We use the following result of [RS]: For every h/ and
p there is a k such that every graph G of tree width w(G) _ k contains a minor

isomorphic to Kp or a subgraph isomorphic to a wall of size h. If p 2! 5. a planar
graph cannot contain Kp as a minor. Thus if a planar graph G has sufficiently

large tree width, it contains a wall of large height. Such a wall is contained

in G as a subgraph, not necessarily induced, and may have undesirable edges.

However, since G is assumed to be planar, additional edges may lie only inside
the cells of the wall. It follows that the wall, and hence G, contains all 'small'
planar graphs as induced minors. E]

THEOREM 2.3. For every fixed planar graph H, the problem H-INDUCED
MINOR TESTING which takes as input a planar graph G of order it and deter-

mines if H -< G is solvable in time O(n log2 n).
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PROOF. From Theorem 2.2, it is straightforward to apply the techniques of
second-order monadic graph properties for bounded tree width [Co]. Let k be
such as in Theorem 2.2 for the graph H. In time 0(n log 2 n) using the algorithm
of Lagergren [Lal we can either discover that the tree width of G is greater than k,
so that H is necessarily an induced minor of G, or obtain a tree decomposition of
G of width at most 3k. Since the property of having an induced minor isomorphic
to H is easily expressible in second order monadic logic, we can determine in
linear time from this tree decomposition whether H is an induced minor of G.

o
This has the consequence that every induced minor order lower ideal having

a finite obstruction set is recognizable in polynomial time for planar graphs.

3. NP-hard induced substructure problems

In this section we present a number of combinatorial reductions which collec-
tively demonstrate that induced substructure problems tend to be more difficult
than their non-induced counterparts. We have the following results:

THEOREM 3.1. The problem INDUCED MATCHING is NP-complete even
when restricted to planar graphs.

PROOF. Given a planar graph G, consider a graph G' obtained from G by
makir-g each vertex adjacent to a new extra vertex. Obviously, G' is planar the

maximum size of an induced matching in G' equals the maximum size of an
independent set in G. []

THEOREM 3.2. The PLANAR INDUCED DIRECTED PATH problem which
takes as an input a planar directed graph and two of its vertices x, y and deter-
mines whether there is a directed xy path in the graph such that no two noncon-
secutive vertices are joined by an arc, is NP-complete.

PROOF. Will appear elsewhere.
Note the striking difference between induced dipaths and noninterfering di-

paths (a collection of dipaths is called noninterfering if no arc joins vertices of
different paths, while backcutting arcs within each particular path are allowed).
It is proved in [DRSS] that given two vertices in a planar digraph, one can com-
pute in polynomial time the maximum number of noninterfering dipaths joining
these vertices.

THEOREM 3.3. The PLANAR INDUCED DIRECTED CYCLE problem which
takes as an input a planar directed graph and one of its vertices x and determines
whether there is an induced directed cycle passing through x, is NP-complete.

PROOF. Follows from the method of Theorem 3.2.
Our results show that decision problems concerning induced substructures

in a graph tend to be harder than corresp, iding decision problems concerning
non-induced substructures (assuming P y NP). This is perhaps as one would
expect.
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Induced Circuits in Graphs on Surfaces

ALEXANDER SCHRIJVER

ABSTRACT. We show that for any fixed surface S there exists a
polynomial-time algorithm to test if there exists an induced circuit
traversing two given vertices r and s of an undirected graph G em-
bedded on S. (An induced circuit is a circuit without chords.) The
general problem (not fixing S) is NP-complete. In fact, for each fixed
surface S there exists a polynomial-time to find a maximum number of
r - s paths in G such that any two form an induced circuit.

1. Introduction

In this paper we show that the following problem is solvable in polynomial
time, for any fixed compact surface S:

(1) given: an undirected graph G = (V, E) embedded on S and
two vertices r and s of G;

find: an induced circuit in G that traverses r and s.

An induced circuit is a circuit having no chords. The problem is NP-complete
for general undirected graphs, as was shown by Biepitock [1]. In [2] the problem
was shown to be solvable in polynomial time for rlanar graphs. In fact we show
that for any fixed compact surface S the problen :

(2) given: an undirected grain G = (V, E) embedded on S and
two vertices r and s of G;

find: a maximum number of r - s paths in G any two of
which form an induced circuit;

is solvable in polynomial time.
Our method uses a variant of a method developed in [31 to derive, for any

fixed k, a polynomial-time algorithm for the k disjoint paths problem in directed
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planar graphs. (This problem is NP-complete for general directed graphs, even
for k = 2.) The present method is based on cohomology over free boolean groups.

2. Free boolean groups

The free boolean group Br is the group generated by gj, 92, ... , k, with rela-
tions -= 1 for j = 1,..., k. So Bk consists of all words bib 2 ... bt where t > 0
and bl,... ,bt r {g,... ,gk} such that bi $ bi-, for i = 2,... t. The product x-y
of two such words is obtained from the concatenation xy by deleting iteratively
all occurrences of any pair gjgj. This defines a group, with unit element 1 equal
to the empty word 0.

We call gl,..., gk generators or symbols. Note that

(3) BI c B2 c B3 c -.-.

The size ixl of a word x is the number of symbols occurring in it, counting
multiplicities. A word y is called a segment of word w if w = xyz for certain
words x, z. If w = yz for some word z, y is called a beginning segment of w,
denoted by y <: w. This partial order gives trivially a lattice if we extend Bk
with an element oc at infinity. Denote the meet and join by A and V.

We prove two useful lemmas.

LEMMA 1. For all x, y, z C Bk one has:

(4) x < y. z and z < y- . =x 1 . y. z or y = xwz-1

for some word w.

Proof. #- being easy, we show ==•. Letw := x- .y.z. Asx < y.z, y.z = xw;

and as z < y-' -x, y- 1 .x = zw-1, that is, x-. y =wz- 1 . Hence ifw - 1 then
xwz- 1 =x w z- 1 =y. I

LEMMA 2. Let x,y E Bk. If x • y then the first symbol of x- is equal to the
first symbol of x- 1 . y.

Proof. Let z := x A y. So x- 1 • y is the concatenation of x-1 . z and z-1 y.
Since x-'z :/- 1, the first symbol of x-1 . y is equal to the first symbol of x-1 . z.
Since x- 1 z 5 1 and z < x, the first symbol of x-1 • z is equal to the first symbol
of x-1. Hence the first symbol of x-1 is equal to the first symbol of x-1 • y. 3

3. The cohomology feasibility problem for free boolean groups

Let D = (V, A) be a weakly connected directed graph, let r z V, and let (G..)
be a group. Two functions 0, 0 : A G C are called r-cohomologous if there
exists a function f : V -, G such that

(5) (i) f(r) = 1,

(ii) Xb(a) = f(u)-1 • ¢(a) f(w) for each arc a = (u, u,).
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This clearly gives an equivalence relation.
Consider the following cohomology feasibility problem (for free boolean groups):

(6) given: a weakly connected directed graph D = (V, A). a
vertex r, and a function 0 : A -* Bk;

find: a function u : A -- Bk such that wv is r-
cohomnologous to p and such that lIý(a)l _< 1 for each
arc a (if there is one).

We give a polynomial-time algorithm for this problem. The running time of tile
algorithm is bounded by a polynomial in JAI + a + k, where a is the maximum
size of the words 0(a) (without loss of generality, a >_ 1).

We may assume that with each arc a = (u, w) also a- 1 := (w, u) is an arc of
D, with 0(a- 1 ) = 0(a)`_

Note that, by the definition of r-cohomologous, equivalent to finding a to as in
(6), is finding a function f : V -, Bk satisfying:

(7) (i) f(r) = 1;

(ii) for each arc a = (u,w): If(u)- 0(a). f(w)( _< 1.

We call such a function f feasible.
It turns out to be useful to introduce the concept of 'pre-feasible' function. A

function f : V -- Bk is pre-feasible if

(8) () f() = I:

(ii) for each arc a = (u..w): if if(u) 1 . 0(a). f,(w)l > 1
then 0(a) = f(u)yf(w)-1 for some word y.

Pre-feasibility behaves nicely with respect to the partial order < on the set
Bv of all functions f : V -* Bk induced by the partial order <: on Bk as:
f < g * f(v) < g(v) for each v E V. It is easy to see that B" forms a lattice if
we add an element oc at infinity. Let A and V denote the meet and join. Then:

PROPOSITION 1. If fh and f2 are pre-feasible, then so is f := f, A f2.

Proof. Clearly f(r) = 1. Suppose If(u)-1 . 6(a) - , ('w)l > 1 for some arc
a = (u, w). We show 0(a) = f(u)yf(w)-I for some y. By (4) we may assume
by symmetry that f(u) ; 0(a) - f(w). Since f(w) = f 1 (w) A f 2 (w), there is an
i E {1, 2} such that f(u)` -(a) . fi(w) contains f(u)-` , 0(a) . f(w) as a begin-
ning segment. Without loss of generality, i = 1. So If(u)- 1 

. 0(a) - fI(w)l >
1. As f(u) ;K 6(a) - f(w). by Lemma 2, the first symbols of f(u)-' and
f(u,)-. -N(a) f(w) are equal. Since f(u)- .-(a) . f(w) • f(u) 1 

.1(a)- f (w), it
follows that the first symbols of f(u)-1 and f(u)-l - 0(a) - fl(w) are equal.
So fi(a)-1 6(a) . fl(w) contains f(u)-1 • 6(a) . fl(w) as segment. Hence
If,(u)- 6(a) - f,(w)l > 1. As f, is pre-feasible, 0(a) = fi(u)y'fl(w)-' for

some y. Since f(u) _< f] (n) and f(w) < f, (iw) this implies 0(a) = f(u)yf(w)`
for some y. 3
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So for any function f : V ) Bk there exists a unique smallest pre-feasible
function f Ž f, provided there exists at least one pre-feasible function g > f. If
no such g exists we set f := oc. In the next section we show that f can be found
in polynomial time for any given f.

We first note:

PROPOSITION 2. If f is finite then

(9) (i) f(r) = 1;

(ii) If(v)I < (o + 1)1VI for each vertex v;

(iii) f(u) • 0(a). f(w) or f(w) < 0(a) -' f(u) for each
arc a = (u, w) with If(u)- .-(a). f(w)I > 1.

Proof. Let f be finite. Trivially f(r) • f(r) = 1. Moreover, let aI,...., at form
a simple path from r to v. By induction on t one shows If(v)I <_ (a+l)t. (Indeed,
let at = (u,v). If If(u)-1-0(a).f(v)j < I then by induction jf(u)I <_ (a+1)(t-1),
and hence If(v)i < f(u)] + 1I(a)I + 1 < (a + 1)t. If If(u)-' • 0(a). f(v)I > 1
then by (8) f(v) is a segment of 0(a) and hence 1f(v)I <_ o, < (a + 1)t.) So
If(v) < I (v)1 < (c - - 1)1V1.

To see (iii), assu that f(u) < 0(a) . f(w) and f(w) • 0(a-')• f(u). So by
Lemma 2 the first symbol of f(u)-1 . 0(a) • f(w) is equal to the first symbol of
f(u)-'. Similarly, the last symbol of f(u)j' .0(a).f(w) is equal to the last symbol
of f(w). Since f(u) < 1(u) and f(w) < f(w), it follows that f(u) -. 0(a) . f(w)
is a segment of f(u)-'. -(a) . 1(w). So If(u)-Y' -(a) -f(w)I > 1. As f is pre-
feasible this implies that 6(a) = f(u)yf(w)-' for some y. Hence, since f <_ f,
0(a) = f(u)y'f(w)-' for some y'. So f(u) • f(u)y' = 0(a) f(w), contradicting
our assumption. I

4. A subroutine finding f

Let input D = (V, A), r, 0 for the cohomology feasibility problem (6) be given.
We may assume that for any arc a = (u, w) a- 1 = (w, u) is also an arc of D,
with 6(a-') = 0(a)- 1 . Let moreover f : V -- Bk be given.

If f is pre-feasible output f := f. If f violates (9) output f := oc. If none of
these applies, perform the following iteration:

Iteration: Choose an arc a = (u, w) satisfying If(u)- 1 • 6(a) - f(w)j > 1 and
f(w) • 0(a)-' • f(u). (Such an arc exists by (4). As (9)(iii) is not violated, we
know f(u) <_ 0(a). f(w).)

Let x be obtained from 0(a). f(w) by deleting the last symbol; reset f(u) := x,

and iterate.

PROPOSITION 3. At each iteration, J-, If(v)I strictly increases.
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Proof. Since f(i) < 0(a). f(w) and If(u) 0(a)- f(w)! > 1, x is strictly
larger than the original f(u). I

This directly implies:

PROPOSITION 4. After at most (a + 1)IV12 iterations the subroutine stops.

Proof. After (a + 1)fVI2 iterations, by Proposition 3 there exists a vertex u

such that If(u)H _> (a + 1)fVI. Then (9)(ii) is violated.

Moreover we have:

PROPOSITION 5. In the iteration, resetting f does not change f.

Proof. We must show that x < f((u) if I is finite. If there exists y such that
0(a) = f(u)yf(w)-1 then

(0 f (w) < f] ) 5 1(w) y •a) f(it) <. (a f (i)

(since f(u) < 1(u) K 0(a)). This contradicts the choice of a in the iterations.
Therefore, since f is pre-feasible, we know If(u)-' • 6(a). f(w)j <_ 1.

Since f(w) •. 0(a-1 ).f(u), by Lemma 2 the last symbol of f(u)- (a).f(w) is
equal to the last symbol of f(w). Hence (since f(w) < f(w)) f(u)- 0(a).f((w) •_
f (u) -' - (a) -f(w). Since f(u) < 0(a) . f(w) it follows that 0(a). f(w) <
0(a) • f(w). Let y be obtained from 0(a) • f(w) by deleting the last symbol.
Then x < y < f(u), since If(u)-'- 0(a). f(w)I I1. <

5. Algorithm for the cohomology feasibility problem

Let input D = (V, A), r, 0 for the cohomology feasibility problem (6) be given.
Again we may assume that for each arc a = (u. w), a-' = (w,u) is also an arc,
with 0(a') = 0(a)-'. We find a feasible function f (if there is one) as follows.

Let W be the set of pairs (v, x) with v E V and x E Bk such that there exists an

arc a = (v, w) with 1 # x < 0(a). For every (v. x) C W let f,., be the fiinction
defined by: fv,,.(v) := x and fv.x(v') := I for each v' 5 v. Let E be the set of
pairs {(v, x), (v', x')} from W for which f, V fv', ' is finite and pre-feasible. Let
E' be the set of pairs {(u, x), (w, z)} from W for which there is an arc a = (u, w)
with 0(a) = xz- 1 . We search for a subset X of W such that each pair in X
belongs to E and such that X intersects each pair in E'. This is a special case
of the 2-satisfiability problem, and hence can be solved in polynomial time.

PROPOSITION 6. If X exists then the function f V f!,,, is feasible. If X
(,,,x)E X

does not exist then there is no feasible function.

Proof. First assume X exists. Since 1,X,,f,,,, is finite and pre-feasible for each
two (v, x), (v', x') in X., f is finite and f(r) = 1. Moreover, suppose If(u)-'- 0(a)
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f(w)I > 1 for some arc a = (u. w). By definition of f there are (,. x). (v'. X') E5 X
such that f(u) = f,,.(u) and f(w) = f]',,A) for (,, x), (,', x') E X. As
f•,. V f•g.' is pre-feasiblo, 0(a) = f,, (u)yf,_,,., (w) - for some y. Then lyj > 1.
Split y = bc-' with b and c nonenmpty. Then (u, f (u)b) E X or (w. f(w)c) E X
since X intersects each pair in E'. If (u, f(u)b) E X then f((v)b = f,,,yfI)b(u) 5
f..f(,,)b(u) < f (a), a contradiction. If (w, f(w)c) E X one obtains similarly a
contradiction.

Assume conversely that there exists a feasible function f. Let X be the set
of pairs (v,x) E X with the property that x < f(v). Then X intersects each
pair in E'. For suppose that for some arc a = (u.w) with o(a) = xz-' and
x : I 7 z, one has (u,x) V X and (w,z) V X, that is, x , f(u) and z K f(w).
This however implies If(u)` . 0(a). f(w)f _> 2, a contradiction.

Moreover, each pair in X belongs to E. For let (v,x), (v',x') E X. We show
that {_(v, x), (v'.x')} E E, that is, f' := f,,,x V is pre-feasible. As f,, <_ f
and f_,,' _< f, f' is finite and f'(r) = 1. Consider an arc a = (u,w) with
If'(u)-Y.¢(a).f'(w)1 > I. We may as&imo fI' .(,t) and f'(w,) = J:,,{
(since fv,,x and , themselves are pre-feasible). To show 6(a) = f'(u)yf'(w)-
for some y, by (4) we may assume f'(w) ; 0(a-) • f'(u). So by Lemma 2. the
last symbol of f'(u)-1 • 0(a). f'(w) is equal to the last symbol of f'(w).

Suppose now that f'(u) : 0(a) • f'(w). Then by Lemma 2, the first symbol
of f'(u)-1 . 0(a). f'(w) is equal to tht first symbol of f'(u)-'. Since f' • f
this implies that f'(u)-1 - 0(a)- f'(w) is a segment of f(u) 1 0(a). f(w). This
contradicts the fact that If(u)- - (a). f(w)I < 1.

Sof'(u) < 0(a).f'(w). As f',, . '(u) < f'(u) and If'(u)-'.0(a).f'(w)I > 1 it fol-
lows that [f,. 3,(u)--(a)f'(w)I > 1. As f'(w) = f-, 3. '(w) we have if•, . ,(u)-'
0(a)f., (w)I > 1. Asfv',' is pre-feasible., 0(a) = fv', 3 '(u)yfz,', (w)-' for some
y. So f'(u) <_ 0(a). f'(w) = f',.•,(u)y. Hence f', 1,'(u)y = f'(u)y' for some y'.
It follows that 0(a) = f'(u)y'f'(w)-1 .

Thus we have:

THEOREM 1. The cohomology feasibility problem for free boolean groups is solv-
able in time bounded by a polynomial in IAI + a + k.

6. Graphs on surfaces and homologous functions

Let G = (, E) be an undirected graph embedded in a compact surface. For
each edge e of G choose arbitrarily one of the faces incident with e as the left-
hand face of e, and the other as the right-hand face of e. (They might be one
and the same face.) Let .F denote the set of faces of G, and let R be one of the
faces of G. We call two functions €, •' E -- Bk R-homologous if there exists
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a function f : Y * Bk such that

(11)(i) f (R) I ;

(ii) f(F) . 6(e). f(F') = t,.(c) for each edge c, where
F and F' are the left-hand and right-hand face of c
respectively.

The relation to cohomologous is direct by duality. The dual graph G =
(F, E*) of G has as vertex set the collection F of faces of G. while for any edge
e of G there is an edge e* of G* connecting the two faces incident with e. Let
D* be the directed graph obtained from G* by orienting each edge c* from the
left-hand face of e to the right-hand face of e. Define for any function 0 on E
the function 0* on E* by 0*(e*) := p(e) for each e E E. Then 0 and -4,! are
R-homologous (in G), if and only if 0* and V* are R-cohomologous (in D*).

7. Enumerating homology classes

Let G = (V, E) be an undirected graph embedded in a surface and let r, s E V.
such that no loop is attached at r or s. We call a collection Ul = (Pi..... Pk) of
r - s walks an r - s join (of size k) if:

(12) (1) each Pi traverses r and s only as first and last vertex

respectively;

(ii) each edge is traversed at. most once by the P1 . Pk

(iii) Pi does not cross itself or any of the other Pj;

(iv) P1,..., Pk occur in this order cyclically at r.

Note that any solution of (2) can be assumed to be an r - s join.

For any r - s join [I = (P1 .... , Pk) let on : E - B1, be defined by:

(13) On(e) := gi if walk Pi traverses e (i = 1, . . .,k);

I if e is not traversed by any of the Pi.

Let R be one of the faces of G. Note that if €5 is R-homologous to on then for
each vertex v ) r, s we have

(14) €(em)el ..... (et)e = 1,

where Fo, ei, F.,..., Ft- 1, et, Ft are the faces and edges incident with v in cyclic
order (with Ft = Fo), and where e. := +1 if Fi-, is the left-hand face of ej and
Fj is the right-hand face of ej, and Ej :== -1 if Fj-, is the right hand face of
ej and Fj is the left-hand face of ej. (If Fj-I = Fj we should be more careful.)
This follows from the fact that (14) holds for 0 = On and that (14) is invariant
for R-homologous functions.
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We now consider the following problem:

(15) given: a connected undirected graph cellularly embedded
on a surface S, vertices r. s of G. such that G - {r, s }
is connected and r and s are not connected by an
edge, a face R of G. and a natural number k;

find: functions 61 -.... ,'ON : E - Bk such that for each
r -s join U1 of size k, on is R-hlomologous to at. least
one of 01..... O ,

(A graph is cellularly embedded if each face is homeoinorphic with an open disk.)

THEOREM 2. For any fixed surface S, problem (15) is solvable in turne bounded
by a polynomial in JVJ + JEl.

Proof. If e is any edge connecting two different vertices $ r. s, we can contract
e. Any solution of (15) for the modified graph directly yields a solution for the
original graph (by (14)). So we may assume V = {r.s.v} for some vertex v,.
Similarly, we may assume that G has no loops that bound an open disk.

Call two edges parallel if and only if they form the boundary of an open disk
in S not containing R. Let p be the number of parallel classes and let f' denote
the number of faces that are bounded by at least three edges. So 2p > 3f'. By
Euler's formula, 4 + f' > p + X(S), where -<(S) denotes the Euler characteristic
of S. This implies 12 +- 2p > 12 + 3f' > 3p -t- 3 X(S) and hence p < 12 - 3p(S).
That is, for fixed S, p is bounded.

Let E' be a subset of E containing one edge from every parallel class. Note
that any Bk-valued function on E is R-homologous to a Bk-valued function that
has value 1 on all edges not in E'.

Let H = (P1 , . .. Pk) be an r - s join such that no Pi traverses two edges e. e'
consecutively that are parallel. For any ;path' e, v. e' in E' of length two, with
e and e' incident with vertex v and e and e' not parallel, let f(fI, e, v. e') be
the number of times the Pi contain ý, v, e', for some ý parallel to e and some el
parallel to e'. (Here e or e' is assumed to have an orientation if it is a loop.)

Now up to R-homology and up to a cyclic permutation of the indices of
P1 ,...,Pk, 11H is fully determined by the numbers f(1I,e,v,e'). This follows
directly from the fact that the Pi do not have (self-)crossings.

So to enumerate 1,... -iON it suffices to choose for each path e, v. e' a number
g(e, v, e') <_ lEt. Since iE'l = p _< 9- 3X(S) there are at most (lEt + 1)(12-3X($))2

such choices. For each choice we can find in polynomial time an r - s join HI with
f (H, e, v, e') = g(e, v, e') for all e, v, e' if it exists. Enumerating the 6n gives the
required enumeration. U

8. Induced circuits

THEOREM 3. For each fixed suifact s. thprp is a polynomial-time algorithm
that gives for any graph G = (V, E) embedded on S and any two vertices r ! of
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G a maximum number of r - s paths each two of which form an mduce•d clunit.

Proof. It suffices to show that for each fixed natural number k we call find ill
polynomial time k r - s paths each two of which form an induced circuit, if they
exist.

We may assume that G - {r, s} is connected. that r and s are not connected
by an edge, and that G is cellularly embedded. Choose a face Ri of G arbitrarily.
By Theorem 2 we can find in polynomial time a list of functions 01..... ON :
A - Bk such that for each r - s join 11. or is R-hornologous to at leaist one of
the O.

Consider the (directed) dual graph D* = (Y, A4) of G (see Section 6). We
extend D* to a graph D+ = (.F, A-) as follows.

For every pair of vertices F, F' of D* and every F - F' path r (riot necessarily
directed) on the boundary of one face or of two adjacent faces of D% extend the
graph with an arc a, from F to F'. (Note that there are only a polynomially
bounded number of such paths.) For each 0 : A - Bk define o+ : A' - Bk
by &1 (e*) := O(e) and

(16) 0+-(a,,) := O(cl)' -.,.. - e- e

for any path 7r = (e4' ... (e;)". (Here •1. •t E {+1, -1}.)
By Theorem 1 we can find, for each j 1. .N in polynomial time a function

V satisfying

(17) (i) 0 is R-cohomologous to o+ in D+. and

(ii) IL0(b)I < 1 for each arc b of D',

provided that such a t9 exists.
If we find a function ,0, for i = 1,.... k let Qi be a shortest r - s path traversing

only the set of edges e of G with O(e*) = gi. If such paths Q1, .- Qk exist, and
any two of them form an induced circuit, we are done (for the current value of
k).

We claim that, doing this for all 01, ... ON, we find paths as required, if they
exist. For let H := (P1 ,..., Pk) form a collection of k r-s paths any two of which
form an induced circuit. Since 1` is an r - s join, there exists a j E {1,..., N}
such that On and Oj are R-homologous.

We first show that there exists a function -d satisfying (17), viz. 1 :oj. To
see this, we first show that 0' is R-cohomologous to 6' in D+. Indeed, 6n and
Oj are R-homologous in G. Hence there exists a function f : .F - Bk such that
f(R) = 1 and such that

(18) f (F)- On n(e) - f(F') = Oj (e)

for each edge e, where F and F' are the left-hand and right-hand face of e
respectively. This implies:
(19) f(F)-' • j(e*) . f(F') = .--(e*)

m~(F n .1.... ...
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Moreover, for every pair of vertices F.), Ft of D* and every FO - Ft path -,r

(e• )S' .... (e;)251 in D' on the boundary of at most two faces of D" we hawe
(assuming (e*)e' runs from Fi-i to F, for i = 1-_t):

(20) f(F o ) • - -(+(a,,) . f(Ft)
- (f(Fo)-1 • n(ej)6-f(Fj)) (f(Ft)" -' on(e2)1)f(F(2 ))

' (f(J'),)1 -oiI(et)ý' f(Ft)).... (e )" - (e2) .. ý,) e)E

So (P+ and (P+ are R-cohomologous.

Next we show that Ion(b)l !< 1 for each arc b of D+. Indeed, for any edge c
of G we have 0A(e;) = en(e) E {1,g9... g}. So jOj(e*)j 1. Moreover, for
any path 7r = (el)f I(e 2 )2 ... (et)E' as above. o6(a,) = 0ri1(cl) o. i (etY.
Since there exist two vertices ul, v" of G such that each of i..ee is incident
with at least one of v', v", we know that there exists at most one i E {1 ... k}

such that P, traverses at least one of the edges el,. - •, et. Hence there is at most
one generator occurring in en(ej)f .-...... ¢n(et),'. That is, l0+j(a,)l g 1. This
shows that dJ + satisfies (17).

Conversely, we must show that if d satisfies (17), then 0 gives paths Q.... Qk
as above. Indeed, since 73 is R-cohomologous to 0+. for each i = 1_. k, the
set of edges e of G with t9(e*) = gi contains an r - s path (since ( := jj has
the property that the subgraph (V. {e E ElK(e*) contains the symbol g, an odd
number of times}) of G has even degree at each vertex except at r and s, and

since this property is maintained under R-cohomology). Choose for each i such
a path Qj. Suppose that, for some i $ j, there exists an edge e = {v, v'} with
Qi traversing v and Q, traversing v' (v, v' V {r, s}). Then there exist faces F0

and Ft of G and an Fo - Ft path 7r = (el)' ... (et)" in D* on the boundary of
the faces v and v' of D* such that 79(e*)l' .. 7. 9•(e;)" contains both symbol gi
and symbol gj. Now

(21) 0(a,) = d(e*) .... (et* ,

since this equation is invariant under R-cohomology and since it holds when 0
is replaced by 0'. So t(an) contains both symbol gi and gj. This contradicts
the fact that JO(aj)j _ 1.

So there is no edge connecting internal vertices of Q, and Q3. Replacing each

Q, by a chordless path Q' in G that uses only vertices traversed by Q , we obtain
paths as required. I

We refer to [4] for an extension of the methods described abo,,e.
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Tree-Representation of Directed Circuits

Andras Frank and Tibor Jordin

ABSTRACT. We prove that a strongly connected directed graph G=
(V,E) has a spanning tree T so that each fundamental circuit belonging
to Tis a directed circuit if and only if G has precisely IEI-[VI+1 directed
circuits. Another characterizatioa of such directed graphs will also be
provided in terms of forbidden minors.

1. Introduction, Preliminaries

A join (strong join) J of an undirected graph is a subset of edges
so that 1J n C1 • ICI/2 (IJ n C < ICI/2) for every circuit C of the
graph.

The investigations of joins was initiated by P. Sole and T. Zaslavsky
while the problem of determining a maximum strong join is due to D.
Welsh [1990] . In [Frank, 1992] a min-max theorem was provided for the
maximum cardinality of a join along with a polynomial time algorithm
to compute the largest join. A. Fraenkel and M. Loebl [1991] proved that
the maximum strong join problem is NP-complete even if the graph is
planar and bipartite. We proved in [Frank, Jordn and Szigeti, 1992]
that for every graph the maximum cardinality of a strong join is at most

[(IVI - 1)/2J and provided an algorithm to decide if a given bipartite
graph is extreme, that is, it attains this bound.

Suppose that a bipartite graph B = (U, V; F) has a perfect match-
ing M so that for every element e of M an edge parallel to e also belongs
to G. In this case clearly no element of M may belong to any strong join
and the maximum strong join problem can be reformulated as follows.
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Define a directed graph G - (V, E) so that uv E E if Uv' E F where
V' denotes the node in U for which vv' E M. It is not difficult to prove
that B is extreme if and only if G has a spanning tree T so tb.- every
fundamental circuit belonging to T is a directed circuit. (A fundamental
circuit is one having precisely one non-tree edge). We shall call such a
tree a circuit-representing tree or, in short, a CR-tree. It is also true that
the set of edges in B corresponding to the edges of a CR-tree of G is
a maximum strong join of B. The digraph D 2 on two nodes with two
parallel edges in both directions clearly has no CR-tree.

The purpose of the present paper is to provide characterizations for
digraphs having a CR-tree as well as a polynomial time algorithm to find
a CR-tree if there is any.

Let G = (V, E) be a directed graph. For X C V let b(X) denote
the number of edges leaving X. G is called strongly connected if there
is a directed path from u to v for every u, v E V. This is equivalent to

saying that 6(X) _Ž 1 for every 0 4 X C V. We call a set X tight if
6(X) = 1. Let T be a spanning tree of G and e = xy an edge of T.
Then T - e has two components. Define T(e) to be the node-set of the
component of T - e containing X. It is easy to see that T is a CR-tree if
and only if T(e) is tight for every edge e of T.

By an ear-decomposition of G we mean a sequence P {P 1 , P,
... , Pt} where P 1 is a circuit of G, each other Pi is a path in G so that

each edge of G belongs to precisely one Pi (i = 1,... ,t) and precisely
the end-nodes of Pi (i = 2,...,t) belong to P 1 U ... U Pi- 1 . Each path
Pi is supposed to be simple except that the two end-nodes may coincide.
The number t of paths is called the length of the decomposition.

It is well-known that a digraph G has an ear-decomposition if and
only if G is strongly connected. Moreover, for any strongly connected sub-
graph H = (U, A) of G any ear-decomposition of H is the starting seg-

ment of an ear-decomposition of G. The length of an ear-decomposition
depends only on the graph and equals IEI - IVI + 1. It also follows
easily that every strongly connected digraph G (V E) has at least

IEl - IVi + 1 directed circuits.

2. Characterizations of CR-trees

Let G = (V, E) be a strongly connected digraph. We call a simple di-
rected path P := {vo,e 1 ,v1,e 2 ,...,ek,vk} unique if P is the only
simple path from v1 to vk. We consider the empty set and a path Ivo}
as trivial unique paths.
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PROPOSITION 2.1 A non-trivial path P is unique if and only if there
is a family {Xl,..., Xk} of tight sets for which X, C X 2 C ... C Xk

and ei leaves Xi for every i, I < i < k.

Proof. Suppose first the existence of such a family. Let, indirectly, P' be
another simple path from v, to vk. Then there is a first edge ei of P not
belonging to P'. Since there is an edge e of P' leaving Xj, we conclude
that o(Xi) Ž 2, contradicting the tightness of X1 .

Assume now that P is unique. For each i, 1 < i < k let Xi denote
the set of nodes reachable from {vl,... ,vi-1} without using the edge
ei. From the definition Xi C Xi+,. We claim that vj V Xi for i <
j, or equivalently, there is no path in G - ej from {vi,.. ,vi-1} to
{vI,... . ,Vk+ . Indeed, if such a path P' existed, choose it minimal and
let 8 and t denote the first and last node of P', respectively. By the
minimality no internal node of P' belongs to P. Hence by replacing the
segment of P from . to t by P' we would obtain another simple path
from vi to vk+1, contradicting the uniqueness of P.

Since the only edge leaving Xi is ei, each Xi is tight and the family
{X 1 ,.. •, XI } satisfies the requirements.

0110
Note that the proof above can easily be turned into a polynomial-

time algorithm that either finds two distinct paths from Vl to vk or
constructs the family {X 1,... , Xk } in question.

Let us call an edge e = xy E E uni-cyclic if e is contained in exactly
one directed circuit and multi-cyclic otherwise. We call an edge e = xy
essential if G - e is not strongly connected. Otherwise e is non-essential.
In other words, e = zy E E is uni-cyclic if there is a unique path from
y to z and e is essential if {x, e, y} is a unique path. Therefore these
properties can be tested in polynomial-time.

PROPOSITION 2.2 Every directed subpath of a CR-tree T is unique.

Proof Let P := {vo,el,vj,e2,... ,ek,vk} be a subpath of T. Recall
that T(e) denotes the node-set of the component of T - e containing the
tail of e. Since T is a CR-tree, the only edge leaving T(e) is e, that is,
T(e) is tight for each e E T. Hence the family {T(e2 ) : i = 1,...,k}
satisfies the properties in Proposition 2.1 and therefore P is unique.

F
THEOREM 2.3 Let T be a spanning tree of a strongly connected
digraph G = (V, E). The following are equivalent.
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(a) T 1, a CR-tree,
(b) Every directed circuit is a fundamental circuit,
(c) Every non-tree edge is uni-cyclic.

Proof. (a--tb) Let T be a CR-tree. Suppose (b) fails to hold, that is,
there is a directed circuit C which is not fundamental. Then, for an edge
e = xy/G C - T, the subpath of T from y to x is directed but not unique
as C - e is another path from y to x. This contradicts Proposition 2.2.

(b---c) Let C be an arbitrary circuit containing a non-tree edge e. By
(b) C is the fundamental circuit belonging to e, that is, e is uni-cyclic.

(c---a) If (a) is not true, then there is a non-tree edge e = xy so
that its fundamental circuit is not directed. Then there exists a circuit
C containing e and this C contains another non-tree edge f = uv. Since
both e and f are uni-cyclic, both paths C - e and C - f are unique. By
Proposition 2.1 there is a tight set X (ref.)., Y) so that e enters X (f
enters Y) and f (e) is the only edge leaving X (Y). Therefore no edge
leaves X U Y and X n Y. Since G is strongly connected, X U Y = V
and X n Y = 0, that is, X = V - Y. We can conclude that e is the only
edge entering X and f is the only edge leaving X contradicting the fact
that T is a spanning tree.

3. Graphs with CR-trees

In this section we provide three characterizations for digraphs G -
(V, E) having CR-trees. We can assume that there is no cut-edge in G.
Indeed, any cut-edge e belongs to every spanning tree and to no directed
circuit. Hence G has a CR-tree precisely if Gle has a CR-tree where G/e
denotes a digraph arising from G by contracting e.

A second observation is that G cannot have a CR-tree if G is not
strongly conisected. Indeed, let T be a CR-tree of G. Every edge of G - T
belongs to a directed circuit, namely to its fundamental circuit. Since
there is no cut-edge, every element of T belongs to a certain fundamental
circuit. Hence G is strongly connected.

Henceforth we assume that G is strongly connected.

THEOREM 3.1 A strongly connected digraph G = (V, E) has a CR-
tree if and only if the set K of multi-cyclic edges forms a forest. Moreover
if K is a forest, any spanning tree including K is a CR-tree.
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Proof. Suppose first that T is a CR-tree of G. By Theorem 2.3 every

non-tree edge is uni-cyclic, that is, K is a subset of T, and hence K is a

forest.

Conversely, suppose that K is a forest. Let T be any spanning tree

including K. Now property (c) in Theorem 2.3 holds and hence T is a

CR-tree.

Since we can check in polynomial time if an edge is uni-cyclic or

not, Theorem 3.1 suggests an algorithm to decide if a digraph has a CR-

tree. A disadvantage of the theorem is that the necessity of the condition
is not very straightforward. We provide two other characterizations to

overcome this drawback. We will need the following:

PROPOSITION 3.2 IfP is a unique path in G and G has a CR-tree,
then G has a CR-tree including P.

Proof. Let P :={vo0, el, V1 , e2 ,... Iekvk} . By Proposition 2.1 every
subpath of P is unique. By induction we may assume that there is a

CR-tree T of G containing each ei (i = 1,..., k - 1). By Theorem 2.3
each non-tree edge is uni-cyclic.

If ek E T, we are done. So suppose that ek V T and let C denote the
fundamental circuit belonging to ek. Since T is P, CR-tree, C is directed.

By Proposition 2.1 there is a tight set X containing 1,... , Vk and not
containing Vk+1. There is ! (unique) edge f E C-P entering X. Because
ek is the only edge leaving X and G has only fundamental circuits, f
is uni-cyclic. Hence T' := T - f + ek is a tree containing all uni-cyclic

edges. By Theorem 2.3 T' is a CR-tree and includes P.

For a strongly connected digraph G = (V, E) denote K(G)

IEI - jVj ;- 1. Let -P := {PP 2 ,...,Pt} be an ear-decomposition of
G and let Gi (i = 1,. . . ,t) t-enote the union of the first i members of
'P. By induction it follows that ts(Gi) - i for 1 < i < t. Since G0 is
strongly connected, every Pi is a subset of a directed circuit Ci of Gi.

Let Ri := Ci - Pi (i = 2, 3, ... ,t). Clearly, each Gi has at least rc(Gi)
directed c~rcuits.

TPEOREM 3.3 For a strongly connected digraph G = (V, E) the
following are equivalent:

(a) G has a CR-tree,
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(b) G has precisely K(G) directed circuits,
(c) Ri is a unique path in Gi- 1 (i = 2,3,..., t).

Proof. The equivalence of (b) and (c) is straightforward.

(a -4 b) If G has a CR-tree T, then every directed circuit of G is a
fundamental circuit by Theorem 2.3. Since there are K(G) non-tree edges
in G, the total number of directed circuits is K(G).

(b -+ a) Apply induction on t = ,c(G). If x(G) = 1, then G is a circuit
and G - e is a CR-tree of G for any edge e of G. Let K(G) > 1 and
assume, by induction, that Gt- 1 has a CR-tree Tt- 1 and Rt is unique
in Gt- 1 . By Proposition 3.2 there is a CR-tree Tt-I of G- 1t including
Rt. Then T := Tt- 1 U Pt - e is a CR-tree or G for any edge e of Pt.

001

Finally, we exhibit a minor-type characterization. Let us introduce
three operations of a strongly connected graph G = (V, E).

(a ) Contracting a multi-cyclic edge e,
(,0) Deleting a non-essential edge f,
(7) Restriction to a strongly connected induced subgraph Gy = (V', E').

PROPOSITION 3.4 If G has a CR-tree, then each of the operations
(a), (1), (-) results in a strongly connected digraph having a CR-tree.

Proof. Let Ga, Gp, G.y denote the resulting digraphs. Clearly, each of
them is strongly connected. Let T be a CR-tree of G. By Theorem 3.1 e
belongs to T. Hence T/e is a CR-tree of Ga.

By Proposition 2.2 every edge of T is essential. Hence f V T and
T is a CR-tree of Go, as well.

Finally, we show that the restriction T' of T to V' is a CR-tree.
This is clearly true if T' is a tree. Suppose T' is not connected and let
X C V' be a set, 0 $ X : V, so that there is no edge of T' connecting
X and V' - X. Since G7 is strongly connected, there is an edge e from
X to V' - X. Let C be a directed circuit ia G-y containing e. Now C
is not a fundamental circuit of G, therefore G cannot have a CR-tree by
Theorem 2.3, a contradiction.

EoI

Recall that D 2 denotes the digraph on two nodes with two parallel
edges in both directions.
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THEOREM 3.5 A strongly connected digraph G = (V, E) has a CR-
tree if and only if D 2 cannot be obtained from G by successively applying
operations (a), (i), (7)-

Proof Since D 2 has no CR-tree, the preceding proposition prove the
"only if" part.

Suppose now that G is a counter-example to the "if" part with
a minimum number of edges. Then G has no CR-tree and cannot be
reduced to D 2 . Therefore

none of G•, G6, Gcan be reduced to D2 . (,)

Let P {P1 ,P 2,-..., Pt} be an ear-decomposition of G, as before. We
use the notation of Theorem 3.3. Now t > 1. Let x and y denote the first
and last node of Pt, respectively.

CLAIM 1 z 9 y and there are two paths Qi, Q2 in Gt-I from y to
X.

Proof. Gt- 1 arises from G by operation (7'). The minimality of G and
(*) imply that Gt-j has a CR-tree. It follows that Rt cannot be unique
in Gt-j for otherwise there is a CR-tree TV of Gt-1 including Rt (by
Proposition 3.2) and then T' U Pt - e would be a CR-tree of G for any
edge e E Pt.

El

CLAIM 2 Both Q1 and Q2 consist of one edge.

Proof. Suppose, indirectly, that Q1, say, has more than one edge. Let e
and f be the first and last edge of Q1, respectively. Then it is easy to
check that at least one of these edges, say e, has the property that in Gle
there are at least two paths from y to x. Gle arises from from Gt-l/e
by adding Pt. By Theorem 3.3 G/e does not have a CR-tree.

On the other hand e is multi-cyclic in G since e belongs to a circuit
of Gt- 1 and belongs to a circuit including Pt. By (*) and the minimality
of G , Gc := G/e has a CR-tree, a contradiction.

Let ei denote the only edge of Qi (i = 1,2) and let Q be a path
in Gt-I from z to y. The union of Pt and Q is a circuit C. Clearly
every edge of Pt and Q is multi-cyclic. First erase all nodes not in C (by
operation (-)). Apply then operation (a) to all but one edges of Pt and
of Q. This way we get a digraph on two nodes with at least two parallel
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edges in both directions. In such a graph all edges are non-essential. Thus

D 2 can be obtained by operation (13), contradicting the assumption on
G.
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Intercyclic Digraphs
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ABSTRACT. A digraph G is intercyclic (arc-intercyclic) if G does not have
two disjoint (arc-disjoint) directed cycles. We give a complete character-
ization of intercyclic and arc-intercyclic digraphs. Conjectures of Gallai,
Younger, Kosaraju, and Metzlar follow from this result.

1. Introduction

A digraph is intercyclic if it does not have two disjoint dicycles (directed
cycles). A digraph is arc-intercyclic if it does not have two arc-disjoint dicycles.
In this paper we will give a good characterization of intercyclic and arc-intercyclic
digraphs.

Dirac [2] characterized the simple 3-connected graphs which do not have two
disjoint cycles. Lovdsz [9] extended this result to all graphs. This result showed
that every graph has two disjoint cycles or a set T of at most 3 vertices such
that G - T is acyclic. Erd6s and P6sa [3] proved the existence of a function f
on the natural numbers such that every graph G contains k arc-disjoint cycles
or G - F is acyclic for some set F of at most f(k) edges. Erdos and P6sa [41
also proved the existence of a function g on the natural numbers such that every
graph G contains k disjoint cycles or G - T is acyclic for some set T of at most
g(k) vertices.

Analogous results are conjectured for dicycles in digraphs. Younger [20] con-
jectures that for every k, there exists a (least) natural number f(k) such that
every digraph G contains k arc-disjoint dicycles or G - F is acyclic for some set
F of at most f(k) arcs. This conjecture holds when restricted to planar digraphs,
as follows from a theorem of Lucchesi and Younger [10]: the maximum number
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of arc-disjoint dicycles in a planar digraph equals the minimum number of arcs
meeting all dicycles. Younger also conjectures that for every k, there exists a
(least) natural number g(k) such that every digraph G contains k disjoint dicy-
cles or G - T is acyclic for some set T of at most g(k) vertices. The existence of
g(2) was originally conjectured by Gallai [6]. Younger constructed an intercyclic
and an arc-intercyclic digraph which showed that f(2) and g(2) are at least 3,
and he conjectured that equality holds. (Younger's intercyclic digraph is the
digraph D 7 defined in §3.) Kosaraju [7] also conjectured that g(2) = 3. As well,
Kosaraju proved that if any 3 dicycles of a digraph have a common vertex, then
all dicycles have a common vertex. It is interesting to note that if f(k) or g(k)
exists, then both exist and are equal. This result was pointed out by Soares [131
and will be shown in §2.

Define a k-transversal of a digraph G to be a set T of k vertices of G such
that G - T is acyclic. Define a k-arc transversal of a digraph G to be a set S of
k arcs of G such that G - S is acyclic.

The conjecture of Kosaraju and Younger can be restated to say that every
intercyclic digraph has a 3-transversal. A stronger version of this conjecture was
given by Metzlar [12]. She conjectured that for every intercycdic digraph G,
there is a function w from V(G) into the nonnegative real numbers such that
Z-rZEV(G) w(x) <_ 2.5 and for every dicycle C, 1 < -xEV(C)w(x). Thonassen

[15] has characterized the intercyclic digraphs with 2-transversals. Later, we will
show how this characterization follows from a result due to Metzlar [121.

For every k, Thomassen [14] has shown that there exists a (least) natural
number 6(k) such that every digraph with minimum outdegrce (or minimum
indegree) at least 6(k) has k disjoint dicycles. In particular, he showed 6(2) = 3.
As a consequence, every intercyclic digraph has 6+ < 2 and 6- < 2.

The problem of determining if two given arcs of a digraph are on a common
dicycle has been shown to be NP-complete by Fortune, Hopcroft, and Wyllie
[5]. Thomassen [161 proved that this problem can be solved in polynomial time
when restricted to intercyclic digraphs. He proved that two arcs of an intercyclic
digraph G are on a common dicycle if and only if, for every vertex v of G, G - v
has a dipath from the head of one of the arcs to the tail of the other. Earlier,
Kostochka [8] had proven that if v is a vertex and e is an arc of a strongly-
connected intercyclic digraph, then v and e are on a common dicycle.

In this paper we will give a complete characterization of intercyclic digraphs
and arc-intercyclic digraphs. In the process, we will verify the conjectures of
Gallai, Younger, Kosaraju, and Metzlar about these digraphs.

In §2, we describe the notation and terminology used in this paper and state
some folklore theorems. We also prove a result of Metzlar. In §3, we state the
main theorem which gives a characterization of intercyclic digraphs. In §4, we use
the main theorem to prove Gallai's conjecture, the conjecture of Kosaraju and
Younger, and Metzlar's conjecture. The proof of the main theorem is outlined
in §5. The details of the proof are given in §6, §7, and §8. In §9, we outline a
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polynomial algorithm which either finds two disjoint dicycles in a digraph G or
shows that G is intercyclic. The characterization of arc-intercyclic digraphs is
given in §10.

2. Terminology and Known Results

We will use the notation and terminology of Bondy and Murty f1]. Let e be
an arc from x to y. We say that x is the tail of e, y is the head of e, e is incident
to y, e is incident from x, x is adjacent to y, and y is adjacent from x. An arc
of G is a loop if it is incident to and incident from the same vertex. Arcs are
parallel if they have the same tail and the same head. A digraph is strict if it
has no loops or parallel arcs.

A digraph is acyclic if it has no dicycles. A source (respectively, sink) is a
vertex which is only incident with outgoing arcs (respectively, incoming arcs).
A vertex with both incoming and outgoing arcs is called an intermediate vertex.
A sequence xl,... x,, is a source sequence of an acyclic digraph G if V(G) =

{xI,... ,x.} and xi is a source of G- {xjll I< j < i}, i = 1,... ,n.
A directed path will be called a dipath. An (x, y)-dipath is a dipath with origin

x and terminus y. The other vertices on the path are called internal vertices.
Let A and B be subsets of V(G). An (A, B)-dipath is a dipath with origin in
A and terminus in B which has no internal vertices in A U B. If H and K
are subdigraphs of G, then an (H, K)-dipath is a (V(H), V(K))-dipath. We say
that (pl,... ,Pk) is an (x1 --4 Yl, ... , Ik --. yk)-linkage if pi is an (x,,yi)-dipath
for every i in {1,... ,k} and pl,... , Pk are pairwise disjoint. Internally disjoint
dipaths which have the same origin and different termini (or vice versa) are called
openly disjoint. We say that (Pi,..- ,Pk) is an (x -- yl, ... , x --- yk)-fan if pi
is an (x, y1)-dipath for every i in {1,... , k} and pl,.. 'ph are openly disjoint.
An (xi -- y, ... , xk -. y)-fan is defined similarly.

A path of a digraph G is a subdigraph which corresponds to a path in the
underlying undirected graph of G. If e is an arc of the path xl,..., x" and e is
from xi to xi-1 for some i in {2,... ,n}, then we say that e is a backward arc of
the path. Let P = xl,... ,x,, be a dipath. If 1 < i < j < n, then Pix,, xj] is
defined to be the dipath xi, ... , xj. We define P(x,, xj] to be P[xi, xj] - xi,
P[x1 , xj) to be P[xi, x1] - xj, and P(xi, xj) to be P[xi, xj] - {xi, xj}.

A digraph G is strongly-connected if there is an (x, y)-dipath for every ordered
pair (x, y) of vertices. A strong component of a digraph G is a maximal strongly-
connected subdigraph of G. A strong component of G is nontrivial if it has at
least one arc.

Let G and H be digraphs. We define G U H to be the digraph with vertex
set V(G) U V(H) and arc set A(G) u A(H). Let A, B, and C be sets of vertices.
Define G(A, B, C) to be the subdigraph of G with vertex set A U B U C whose
arc set consists of all arcs in G from a vertex in A to a vertex in B and all arcs
in G from a vertex in B to a vertex in C.
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Let X be a subset of the vertex set of a digraph G. Define a digraph G' as
follows. The vertex set of G' is obtained from V(G) by replacing every vertex x
in X by two new vertices x+ and x-. The arc set of G' is obtained from A(G)
by replacing every arc e from u to v by an arc e', where e' is incident from u+
if u E X, e' is incident from u if u j X, e' is incident to u- if u E X, and e'
is incident to v if v ý X. We say that u corresponds to u+ and u- if u E X,
u corresponds to itself if u V X, and e corresponds to e'. We say that G' is
obtained from G by vertex division and that x is divided into x+ and x-. Let
H be a subdigraph of G. Let H' be'the subdigraph of G' obtained from H by
dividing the vertices in V(H) n X. We say that H and H' are corresponding
subdigraphs of G and G'.

Suppose G' is obtained from G by dividing every vertex in X. Then G' +
{x-x+Ix E X} is said to be obtained from G by splitting every vertex in X. If
x E X, then x-, x+, and x-x+ are said to correspond to x.

Let G be a digraph with an arc f from x to y. Define a digraph G/f as
follows. The vertex set of G/f is obtained from V(G) by replacing x and y by a
new vertex w. We say that x and y correspond to w and that every other vertex
of G corresponds to itself. The arc set of G/f is obtained from A(G) - {f} by
replacing every arc e by an arc e' so that they have corresponding heads and
corresponding tails. We say that e corresponds to e' and that G/f is obtained
from G by contracting f.

A graph which is embedded in the plane is called a plane graph. Let C be
a cycle of a plane graph G. If xl, ... , xk are vertices on C which occur in the
given cyclic order around C, then we say that x1,... ,x, is a cyclic subsequence
of C. Let pi be a path of G with origin xj and termini y1 such that xi and yj are
the only vertices of pi on C, i = 1, 2. If the endpoints of P, and p2 are distinct
and x1, X2, Y1, Y2 is a cyclic subsequence of C, then we say that pi and P2 are
skew paths of C. If p, is contained in the closure of the interior of C, then we
say p, is an interior path of C.

We now give three classical results and a corollary which are needed in the
proof of the main theorem. The first is due to Whitney [191.

THEOREM 2.1. Let G be a plane graph. If G is 2-connected, the face bound-
aries of G are cycles.

The next theorem follows from the Jordan curve theorem which was first
proven by Veblen [17].

THEOREM 2.2. Let G be a plane graph. A cycle of G can not have two skew
interior paths.

The next theorem gives two versions of the fundamental theorem on connec-
tivity which is due to Menger [11] and Whitney [18].
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THEOREM 2.3. Let G be a digraph and let X and Y be subsets of V(G). There

exist k disjoint (X, Y)-dipaths if and only if G- Z has an (X, Y)-dipath for every
subset Z of V(G) of size less than k. Let x and y be vertices of G. There exist
k arc-disjoint (x, y)-dipaths if and only if G - F has an (x, y)-dipath for every
subset F of A(G) of size less than k.

COROLLARY 2.1. Let T be the set of sinks of an acyclic digraph G such that
every nonsink is adjacent to at least n vertices. If X C V(G) and n < 1X1 then
there exist n disjoint (X, T)-dipaths.

PROOF. Suppose S C V(G) and G - S has no (X, T)-dipath. We want to

show that n < ISI. Let W be the set of all vertices w for which there exists an
(X,w)-dipath in G-S. If X C_ S, thenn • IXI J< ISI- If X-S is nonempty, then
so is W and we may choose a sink y of G[W]. Since G - S has no (X, T)-dipath,
y 9 T, and so y is adjacent to at least n vertices. If yz E A(G) and z V S, then
z E W. But then y is not a sink of G[W]. Hence, N+(y) C S. Therefore, n <
ISI. Now the result follows from Theorem 2.3. 0

We now show that the functions f and g conjectured by Younger are closely
related.

THEOREM 2.4. If f(k) or g(k) exists, then both exist and are equal.

PROOF. Suppose K is obtained from a digraph G by splitting every vertex.
It is easy to see that G has k disjoint dicycles if and only if K has k arc-disjoint
dicycles, and that G has an r-transversal if and only if K has an r-arc transversal.
Hence, if f(k) exists, then g(k) exists and g(k) < f(k).

Suppose H is obtained from a digraph G as follows. For every arc e of G, H
has vertices t, and he and tehe is an arc of H. For every arc e and f of G, if e is
incident to vertex x and f is incident from x, then h~t1 is an arc of H. It is easy

to see that G has k arc-disjoint dicycles if and only if H has k disjoint dicycles,
and that G has an r-arc transversal if and only if H has an r-transversal. Hence,
if g(k) exists, then f(k) exists and f(k) <g(k). 0

We now define classes of acyclic digraphs which are needed to constract in-
tercyclic digraphs. Let G be an acyclic strict digraph with sources x1,..., x,
and sinks yl,... , Yt, where 2 < s and 2 < t. Suppose every vertex which is
not a source or sink has indegree and outdegree at least 2. Further, suppose
there is no (xi --* yt, xj --* yk)-linkage such that 1 < i < i < s and 1 < k <f
< t. We define P(xl,... ,x1;y 1,... ,yt) to be the class of all such digraphs G.
We define P,,t to be the class of all digraphs G in P(xl,... ,x,;yl,... ,yt), for

some xl,... , x., yl,... , yt. The structure of the digraphs in P.,t is given by the

following theorem due to Metzlar [121.

THEOREM 2.5. Suppose G is in P(xl,... , xs; yl,... , yt). Let Gc be the mixed
graph obtained from G by adding the edges xlyl, xsyt, xixi+l, i = 1,... ,s - 1,
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and YkYk+I, k = 1,... ,t - 1. Let C be the cycle induced by the new edges. Then
Gc has a planar embedding where C is the outer face boundary.

PROOF. There exists a source sequence xi,... ,x., al,... ,am, Yi,... ,yt of

G. Let Vr = {xl,... ,xs, a,,... ,ar}, Gr = C U G[Vr], and Ar be the set of
vertices in Vr which are adjacent to a vertex in V(G) - Vr, r = 0,... ,m.

We will prove by induction on r that G. has a planar embedding with the
following properties.

(i) Every face boundary is a cycle.
(ii) The outer face F has boundary C.

(iii) There is an inner face Fr having a boundary C, which includes P
Xlyl, ylY2,...- , ys-Wy, yaXt.

(iv) A, C V(C,.).
The result holds for r = 0 since G, = C. Suppose we have the required embed-

ding of GC, where 0 <_ r < m. By definition of source sequence, N• (a,+1) g A,
and a,,+ is not adjacent to any vertices in V,. Since A, 9 V(Cr), we can then
obtain a planar embedding of Gr+I by placing a,+, in F, and adding the arcs in-
cident to a,+,. The boundary of every new face will be a cycle because there are
at least two arcs incident to ar+I. Since ar+1 is not adjacent from any vertices
in {y.,... Yt}, the embedding of GC+I has an inner face Fr+1 whose boundary
Cr+1 includes P.

It is easy to see that Ar+1 9 V(Cr+i) provided there is no cyclic subsequence
xI, u, v, w, x, of C, such that u, v, and w are distinct, uar+1 and wa,+l are
in A(G), and vb is in A(G) for some b in V(G) - Vr+I. Suppose such a cyclic
subsequence exists. By Corollary 2.1, there exists an (a,+1 -- A Y, b --+ yt)-linkage
(qu, q,,) for some k and I in {1,... , t}, and an (xi --- u, xj -- v)-linkage (p,,,pv)
for some i and j in {1,... , s}.

We claim i < j. Since yl, yt, v, u is a cyclic subsequence of Cr, we can
extend the planar embedding of G, by adding uy, and vyt across Fr. If j < i,
then Pu, uy1 and P, vyt are interior skew paths of the facial cycle C and we
have contradicted Theorem 2.2. Hence, i < j. By the definition of source
sequence, V(pu U p,) _ V, and V(qu U q,,) _ V(G) - V,. Thus, Pu, uar+1,
qu and p,, vb, q, constitute an (x -, yk, xj -- ye)-linkage of G. Then i < j
implies k < e. But similarly we can show that I < k by considering two disjoint
({xl,..., x.}, {v, w})-dipaths. Therefore, Ar+1 C V(C£+I).

We now consider the planar embedding of GCm. It can be extended to the
required embedding of GC provided there is no cyclic subsequence xI, Yk, yt, v,
u of C, such that uye and vyk are in A(G). But if such a cyclic subsequence
exists, we can then obtain an (xi -` Yk, xi -- yi)-linkage of G such that i < j
and t < k. nl
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3. Statement of Main Theorem

We say that a digraph is in reduced form if it is strict, strongly-connected,
and has 2 _< 6+ and 2 < 6-. Before stating the main theorpm, we first show
that the problem of determining if a digraph is intercyclic can be easily reduced
to the problem of determining if a digraph in reduced form is intercyclic.

Suppose we wish to determine if a digraph G is intercyclic. First we determine
the strong components of G. If G is acyclic, then C is intercyclic. If G has at
least two nontrivial strong components, then each will have a dicycle, and so G
will not be intercyclic. If G has a unique nontrivial strong component, then G
will be intercyclic if and only if this nontrivial strong component is intercyclic.
Therefore, we may assume G is strongly-connected.

There are simple reductions that can sometimes be performed on G to give a
digraph H with fewer arcs such that G is intercycic if and only if H is intercyclic.
G can be reduced by removing all but one of a set of the parallel arcs. If e is
the only arc incident from (or incident to) a vertex v, then G can be reduced by
contracting e. (This reduction can result in new loops and parallel arcs.) We
refer to these reductions as trivial reductions. It is easy to see that G is strongly-
connected if and only if H is strongly-connected, and that G has a k-transversal
if and only if H has a k-transversal.

Suppose K is obtained from G via a sequence of trivial reductions and suppose
K has no trivial reductions. Then K is strongly-connected, and K is intercyclic
if and only if G is intercyclic. It is easy to show that G has a 1-transversal if and
only if K has only one vertex. In this case, G is clearly intercyclic. Therefore,
we may assume that neither G nor K has a 1-transversal and that K has at least
two vertices. If K has a loop e incident with vertex x, then K[e] and any dicycle
of K - x axe disjoint dicycles of K, and so K and G are not intercyclic. Hence,
we can assume that K is loopless. Since K is strongly-connected, loopless, and
has no trivial reductions, K is in reduced form. Thus, we have reduced the
problem of determining if G is intercyclic to the problem of determining if the
digraph K in reduced form is intercyclic. We note that if we can show that, K
is not intercyclic and can find two disjoint dicycles of K, then it is easy to find
two disjoint dicycles of G by reversing the process of trivial reductions.

Let . be the class of all intercyclic digraphs in reduced form. The main
theorem gives a classification of all digraphs in I. Let It be subclass of I
consisting of digraphs where every transversal contains at least 3 vertices.

We define T to be the class of all strict digraphs H with 2 < 6+ and 2 < 6-
which have distinct vertices x and y such that the digraph obtained from H by
dividing x and y is in P(x+, y+; y-, x-).

Let D7 be the digraph shown in Figure 1.

We define KC to be the class of all digraphs H with 2 < 6+, 2 _< b-, and no
2-transversal, that can be constructed as follows. Let K' be in P(wo, zo; zi, wl)
and let KH be obtained from K' by possibly adding one arc in {wozo, zowo} and



210 WILLIAM MCCUAIG
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Y6 Y5

FIGURE 1.

then possibly adding one arc in {wizi,ziwi}. Let C be a 4-dicycle xo, x1, x2,
x3, xO which is disjoint from KH. Let H be obtained from C + KH by adding
the arcs WlXO, WlX2, ZIXI, Z1X3 , XOWO, X2W0, xizo, and x3zO ( see Figure 2 ).

We define N- to be the class of all digraphs H with 2 < 6+, 2 < b-, and no
2-transversal such that H has a set Y = {Yl, y2, y3, y4, ys} of five vertices and
arc-disjoint subdigraphs Ha, HO, and H, satisfying the following conditions
(see Figure 3 ).

(i) yi,-.. , y5 are the only vertices of H in more than one of V(Ha), V(HO),
and V(H,).

(ii) H, E P(y4,y 3 ,yl; Y5,Y2), HO E P(y4,y5; Y3,Y1, Y2), and H, E P(y1,y2;

Y3, Y,).
(iii) H = Ha U HO U Hy.

We say that (H0, , Ha, Hy) is an H-decomposition of H with N-separator (Yi, Y2,
y/3, y4, yB). We note that an lI-separator and l-decomposition need not be
unique.

In the next section we will show that T, {D71}, C, and N- are pairwise disjoint.
The following result is the main theorem.

THEOREM 3.1. = T u {D,7} u KI u .

4. Preliminary Results and Conjectures

In this section we characterize the intercyclic digraphs with 2-transversals and
prove that the classes T, {D 7 }, X, and 'H are pairwise disjoint. We also use the
main theorem to prove Metzlar's conjecture and the conjecture of Kosaraju and
Younger. Throughout this section we will use the notation used in §3 to define
T, D7, K, and Xi.

Thomassen [151 characterized the intercyclic digraphs in reduced form which
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XO

FIGURE 2.

have 2-transversals. The characterization first requires making an easy observa-
tion.

LEMMA 4.1. G is in T if and only if G is an intercycIic digraph in reduced
form with a 2-transversal.

PROOF. Suppose G is an intercyclic digraph in reduced form with a 2-trans-
versal {x, y}. Let P be the graph obtained from G by dividing x and y. Since
{ x, y} is a transversal, P is an acyclic digraph with sources x+ and y+ and sinks
a- and y-. All other vertices have indegree and outdegree at least 2 and P is
strict because G is in reduced form. Furthermore, an (x+ -• x-, y+ --* y-)
linkage of P would correspond to disjoint dicycles of G. Therefore, P is in
7P(x+,y+;y-,x-). Also, G is a strict digraph with 2 < 6f+ and 2 _< f• because

G is in reduced form. Hence, G is in T. The converse is easy to verify. C

To complete the description of Thomassen's characterization, we just need
to give the structure of the digraphs in P2,2. This is done by Theorem 2.5.
Thomassen's proof of Theorem 2.5 for the case s = t = 2 is different from
Metzler's proof.

After the following preliminary lemma, we will show that T, {D7 }, K:, and it
are pairwise disjoint.

LEMMA 4.2. If (HG, H•, H,) is an i-t-decomposition of H with J-t -separator
(yl, y2, y3, Y4, y5), then the following statements hold.

(i) y' is adjacent to an intermeditate vertex of HG.
(ii) Y3 is adjacent from an intermneditate vertex of H•.
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FIGURE 3.

(iii) If y4 is not adjacent to an intermeditate vertex of H, and Y2 is not
adjacent from an intermeditate vertex of H0, then y4y 5 and y5Y2 are
arcs of H.

(iv) H0, and Ho each have at least 6 vertices. H., has at least 5 vertices.

PROOF. (i) Suppose y, is not adjacent to any intermediate vertex of H0,.
Since 2 < d'H(y 3 ), we have 2 < dH. (y3 ). Then Corollary 2.1 implies H0,

has a (y3 ,y 2 )-dipath p. If yly5 is an arc of H110, then (p,yly5) is a

(y3 -- y2 y, - - y5 )-linkage of H,,. But then H, is not in P(y 4 ,y 3 ,yi;

y5j, y2). Hence, N+ (yl) C {y2 }. It is now routine to verify that {fy3, Y4}

is a 2-transversal of H. But then H is not in It.
(ii) Thý proof is similar to 1.

(iii) Suppose Y4 is not adjacent to an intermeditate vertex of H,10 and Y2 is

not adjacent from an intermeditate vertex of Hp. We can show that

Y4Y2 is not an arc of Ha or Ho in the same way we proved that yly5 is

not an arc of H11,. Therefore, N,(y4() and N, O(y2) are both contained
in {y5}. If y4y5 or Y5Y2 is not an arc, then {y1, y3} is a 2-transversal of

H.
(iv) H, and Ho have intermeditate vertices by I and 2. and so each has at

least 6 vertices. Suppose H., has only 4 vertices. Since 2 < daH (Y2), 2 <_

dH, (Y2). Hence, Y2Y3 is an arc. Similarly, y, y4 is an arc. Eherefore, H7

has a (yi -- Y4, Y2 -- y3 )-linkage. But then H., is not in P(YI, Y2; Y3, Y4).

THEOREM 4.1. The classes T, {D 7 }, K1, and N are pairuise disjoint.

PROOF. Every digraph in T has a 2-transversal. It is easy to verify that D 7

has no 2-transversal, and the dig.aph6 in K and 7- have no 2-transversal by

definition. Therefore, T is disjoint from the other three classes.

By their construction the digraphs in K cach have at least eight vertices.

Lemma 4.2 (iv) implies that every digraph in Nt has at least eight vertices.
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Therefore, D7 is not in I or X.
Consider the set of vertices S = {YiY2, Y5 , y3,Y4} of a digraph in X. It is

easy to verify that {Yi, Y2, Y.5}, {Y2, Ws, Y4}, {Y5, Y14, Y3}, {Iy4, Y3, y,, and {Y3,

yl, Y2} are 3-transversals contained in S. Using Corollary 2.1 and Lemma 4.2 it
is routine to show that S contains ac most one other 3-transversal, namely, {Yl,
y3, ys}. Thus, every dig-aph in h has a set of vertices S = {vO, v1 , v2 , v3 ,v 4 }
such that every subset of S of the the form {vi, vi+1 vN+ 2} is a 3-transversal,
where 0 < i < 4 and addition is modulo 4, and such that S contains at most
one other 3-transversal. We now show that I and R are disjoint by showing
that no digraph in I has such a set S of vertices. Suppose digraph G is a
counterexample.

It i8 easy to verify that every 3-transversal of G is of one of the following
forms.

(i) {xi, u, v}, where 0 < i - 3 and every ({wo, z0 }, {zi, w, })-dipath of KH
uses a vertex in {u, v}.

(ii) {xo,x 2 , z}, where every (zo, zi)-dipath of KH uses z.
(iii) {x1, x 3 , w}, where every (wo, wl)-dipath of KH uses w.

Any two vertices in S are in a common 3-transversal, whereas no two adjacent
vertices on the dicycle XO, X1, x2, x3 , xo are in a common 3-transversal. Therefore,
we can assume that S n {xo, x1, x 2 , x 3 j is contained in {Xo, x 2}.

Every 3-transversal of .he form {vI, vi+I, Vi+2} must contain a vertex in
{xo,x 2 }, and so we may assume v0 = xo and v2 = X2. Then {V1,V 2 ,V3} is of the
form {x 2 , U, v}, where every ({wo, zo}, {zi, wi})-dipath of K,, uses a vertex in

{u, v}. It follows that {xo, u, v}, that is, {vo, v1, v 3 }, is also a 3-transversal. Sim-
ila:!y, we can show that {v4 , vi, v2} is a 3-transversal. We have now shown that
S contains at least seven 3-transversals. But this contradicts our assumptions
about which subsets of S are 3-transversals. C]

We now verify the conjectures.

THEOREM 4.2. Every intercyclic digraph has a 3-transversal.

PROOF. By the discussion at the start of §3, we only need to prove the the-
orem for digraphs in reduced form. By Theorem 3.1, it suffices to check the
theorem for digraphs in T, {D 7 }, KI, and X. For each such digraph we will give
a 3-transversal which verifies the theorem.

For a digraph in T, {x, y} is a 2-transversal. A 3-transversal for D7 iq
{Yi, y3, y5}. For a digraph in K/, {xo, wo, zo} is a 3-transversal. For a digraph in
7f, {yl,y2,ys} is a 3-transversal. [E

THEOREM 4.3. For every intercyclic digraph G, there is a function w from
V(G) into the nonnegative real numbers such that E-,zEV(G) w,(x) < 2.5 and for
every dicycle C, 1 <_ ZXEV(C) w(x).
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PROOF. As in the last theorem, it suffices to check the theorem for digraphs
in T, {D 7}, IC, and Rt. For each such digraph we will give an explicit weight
function w which verifies the theorem. For a digraph in T, w(x) = w(y) = 1
and all other vertices have weight 0. For D-, all vertices have weight 4. For a
digraph in C, w(xco) = w(x 2 ) = w(wo) =, w(zo) = 1, and all other vertices
have weight 0. For a digraph in 7R, the vertices yl, Y2, yV, Y4 , and ys have weight
2 and all other vertices have weight 0. 0

5. Proof Outline

In this section we will outline the proof of the main theorem. The key lemmas
needed in the proof will be proven in this section. It is routine to show that all
the digraphs in {D 7 } U T U C U 7N are intercyclic digraphs in reduced form.
The rest of this section and the next three sections will be devoted to proving
the converse.

The proof that every intercyclic digraph in reduced form is in {D7 } U T U
IC U *H is done by induction on the number of arcs. Let G be an intercyclic
digraph in reduced form. If G has a 2-transversal, then G is in T by Lemma 4.1.
Therefore, we may assume G E It. We will show that C has a useful reduction
to a digraph H in T which has fewer arcs than G. Then the induction hypothesis
applied to H is used to show that G is in {D 7 } U K U X4. We will next define
three useful reductions: arc reductions, good contractions, and Rk-reductions.

Let s1 t1 be an arc of G. Trivially, G - s1t, is intercyclic, but it may not
be in reduced form. Let H be the intercyclic digraph in reduced form obtained
from G - sit1 by performing trivial reductions. If only a few trivial reductions
are needed, then the reduction from G to H will be useful. If H = G - sit1,
thun we will say that G has a type 0 reduction at s1t 1. If N+(si) = {tI,s 2}
and H is obtained from G - s1t1 by contracting S182, then we say that C has
a type Is reduction at s1t 1. If NG(tl) = {s1,t 2} and H is obtained from G -
s1t1 by contracting t 2 ti, then we say that G has a type It reduction at sit 1 . A
type 1 reduction is a type is or type It reduction. If N+(s1 ) = {tI,s 2 }, N,(t 1 )
= {sl,t 2}, s2 j t 2 , and H is obtained from G - sti by contracting ss2 and
t2 tl, then we say that G has a type 2 reduction at st 1 . The four reductions just
defined will be called arc reductions.

If x, y, and z are distinct vertices of G and xy, xz, and yz are arcs of G,
then we say that xyz is a transitive triangle of G. Suppose xyz is a transitive
triangle. If d+(x) = 2, then we say that xy is contractible. If d-(z) = 2, then
we say that yz is contractible. If xy or yz is contractible, then we say that xyz
is reducible. If xyz is reducible, we will sometimes put parenthesis around the
contractible arc.

We now recursively define digraphs Rk for every k > 2. Let R2 be the digraph
with vertices w, and w2 and the arc W1 W2 . For k > 3, define Rk to be Rk-1 +
WDk + {Wk-2Wk,Wk-lWk}. Let {u,v} be twI,w 2}. We introduce this notation
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so that we may refer to w1 and W2 without specification. Denote {wk - 1, Wk } by
{u',v'} so that Rh has a (u -- u', v -, v')-linkage (Puu,, P,,,,). An Rk subdigraph
of digraph G will be called good if it is induced, the only vertices of Rk adjacent
from vertices in V(G) - V(Rk) are w, and W2, the only vertices of Rh adjacent
to vertices in V(G) - V(R*;) are wk- 1 and wk, and G - V(Rk) has minimum
indegree and outdegree at least 1.

Let Rk be a good Rh subdigraph of G. Let H be the digraph obtained from
G - V(Rk) by adding a new vertex p, adding an arc from z to p for every vertex
z adjacent to w, or W2, and adding an arc from p to y for every vertex y adjacent
from wk-h or wk. We say that H is obtained from G by an Rk-reduction and
that Rk is contracted to p. By the definition of good Rk subdigraph, H is an
intercyclic digraph in reduced form.

In the rest of this section we will prove the central lemmas needed in the
proof of the main theorem. First we show that G has an arc reduction at every
arc or G has a contractible arc (Lemma 5.1). Second we show that if G has a
contractible arc, then G has an Rk-reduction (Lemma 5.2). In §5 we will use the
induction hypothesis and Lemma 5.1 to show that G has a contractible arc. We
then use Lemma 5.2 to conclude that G has an Rk-reduction. In §6 and §7 we
use the induction hypothesis and the fact that G has an Rk-reduction, to show
that G is in {D 7} U C U fl.

Note that the following lemma does not require G to be intercyclic, although
we will only apply it to intercyclic digraphs.

LEMMA 5.1. Let G be a digraph in reduced form with no 2-dicycle. Then G
has an arc reduction at every arc or G has a contractible arc.

PROOF. Let s1 t, be an arc of G. It suffices to show that G has an arc
reduction at s1t1 or G has a contractible arc.

Suppose da0(s 1 ) = 2 = dý(ti). Let 82 be the other vertex adjacent from s,
and let t 2 be the other vertex adjacent to t1 . Since G is in reduced form, s1, S2,
tI, and t 2 are all distinct except possibly 82 and t2 . If S2 = t2, then s8s2t1 is
reducible and SlS2 and s2t, are contractible. Hence, we may assume sl, s2, tI,
and t 2 are all distinct. Since G has no 2-dicycles, 8281 and t1 t2 are not arcs of
G.

Let H be obtained from G - s1t1 by contracting 8132 to 8 and t2t1 to t, and
then reducing any parallel arcs. If H has a loop, then it is adjacent to s or t.
But then s281 or t1t 2 is an arc of G.

We now show that 2 < 6+ or G has a contractible arc. Since 8281 and s2tl are
not arcs of G, s2 is adjacent to at least 2 vertices in V(G) - {s,, t, }. Thus, 2 <
d+(s). Since tjs, and t 1 t 2 are not arcs of G, t, is adjacent to at least 2 vertices
in V(G) - {s 1 ,t 2}. Thus, 2 < dH(t). Suppose x is in V(H) - {s,t} and da, (x)
< 1. Since 2 < dc(x), it is easy to see that N+(x) is {s} or {t}. Hence, N+(x)
equals {8s ,2} or {tI,t 2 }. The latter is not possible because si and t2 are the
only vertices adjacent to ti. Hence, (xs 1)s2 is reducible in G.
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We can also show that 2 <_ 6 or G has a contractible arc. Therefore, H is in
reduced form, that is, there is an arc reduction at s1t, or G has a contractible
arc.

The cases when 3 < d-(sl) or 3 < d-(tl) are easier. 0

Let M be the set of all digraphs Rk + {Wk-1WI,WkWl,WkW2}, where k is
odd.

LEMMA 5.2. Let G be a digraph in 1. If G has a contractible arm, then G E M
or G has an Rk-reduction.

PROOF. For every arc e of G, we define V, be the set of vertices z such that
every dicycle which includes z also includes an end of e. Choose a contractible
arc e of G such that V, is minimal. Let H be the subdigraph of G induced by
the ends of e. Then H is a subdigraph Rk of G such that e = wiw,+1 for some
i in {1,... , k - 1}, the only vertices of Rk incident from arcs in A(G) - A(Rk)
are w, and w2 , and the only vertices of Rk incident to arcs in A(G) - A(Rk)
are wk- 1 and wk. Suppose we choose a maximal subdigraph Rk of this type. It
is easy to see that V(Rk) C V,.

If V(G) = V(Rk), then it is easy to show that G E M because G is intercyclic.
Therefore, we may assume G - V(Rk) is nonempty. We will show that G has an
Rk-reduction by showing that Rk is good. To do this we just need to prove that
G - V(Rk) has minimum indegree and minimum outdegree at least 1 and that
Rk is an induced subgraph of G.

Suppose there exists w in V(G) - V(Rk) such that N-(w) _ V(Rk). By the
choice of Rk, N-(w) = {w- 1,wk}. Then N-(w) g Ve, and so w E V,. Since

Wk-xWkW is reducible, f = wkw is contractible. Since every dicycle using w or
Wk also uses an end of e, V!f _ V,. But then V1 = V, because V, was chosen to
be minimal.

Suppose there exists an arc Wk-ly of G, where w # y # wk. Since G is
strongly-connected there is a dicycle C through wk-ly. Since C includes the
vertex wk-, in V1 , C includes w or Wk. Then it is easy to see that A(C) includes
an arc Zwk, where z : wk-,, and that the (wk- 1 ,z)-dipath P of C does Hot
include Wk or w. If 3 < k, then N-(Wk) = {Wk-2,wk-11, and so z = Wk-2.

But then P + (w-2w- } is a dicycle through a vertex in V! which does not go

through w or Wk. Hence, k = 2 and e = W1 W2 . Since 3 < d+(wi), the only way
for e to be contractible is for z(wIw 2 ) to be contractible. Hence, zwl E A(G).
But now once again we have a dicycle P + {zwi } which includes the vertex w,
in V1 but does not go through w or w 2 . Therefore, G has no arc Wk-ly, where
w 0 y : Wk. But now the subdigraph Rk + {w} + {Wk-IW, wkw} contradicts
the maximality of Rk. Therefore, we have shown that G - V(Rk) has minimum
indegree and minimum outdegree at least 1.

Since G - V(Rk) has minimum indegree and minimum outdegree at least 1,
G - V(Rk) has a dicycle C'. If Rk is not induced, then there is an arc e' from
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Wk- i or Wk to w1 or w2 in A(G) - A(Rk). But then Rk + e' has a dicycle which
is disjoint from C'. Therefore, Rk is an induced subdigraph of G. Therefore, we
have shown that Rk is good. 0

6. A Contractible Arc

Let G be in 4t. Suppose every intercyclic digraph in reduced form with fewer
arcs than G is in {D 7 }, Wt, K, or T. In this section we will show that G has
a contractible arc. We can then conclude that G has an Rk-reduction using
Lemma 5.2.

The notation used in §4 to define arc reductions will be referred to as standard
notation. We will use standard notation in the next preliminary lemma.

LEMMA 6.1. Suppose x(yz) is reducible in H. If G has no contractible arcs,
then the following statements hold.

(i) If G has a type 0 reduction at siti, then z = ti.
(ii) If G has a transitive triangle, then• it has a type 0 reduction.

(iii) If the arc reduction at sIt 1 is oi type Is or 2 and dj (s) = 2, then G has
a type 0 reduction. If the arc reduction at siti is of type It or 2 and
d-'(t) = 2, then G has a type 0 reduction.

(iv) If G hfs a type Is reduction at sit1 , then A(H) does not contain st1 or
t5s.

(v) If G has a type is reduction at sit1 , then we have one of the following
possibilities: G has a type 0 reduction, z = t, and s l {x, y}, or y = s
and ti 9!{x, z}.

(vi) If G has a type 2 reduction at sit1 , then we can not have any of the
following possibilities: z = t and a V {x, y}, x = s and t ! {y, z}, x = s
and z=t, ors,t V I{x,y,z.

PROOF. (i) Suppose G has a type 0 reduction at sit1 . If z 0 t1, then
x(yz) is reducible in G.

(ii) Suppose G has a transitive triangle uvw. If d+(u) = 2 or d-(w) = 2,
then uvw is reducible. If 3 < d+ (u) and 3 < d-(w), then G has a type
0 reduction at uw.

(iii) Suppose the arc reduction at sit, is of type is or 2, and dt(s) = 2. Let
Njt(s) = {u, v}. If G has a type. 2 reduction at sit1 and u = t, then t 2s 1

and vs1 are in A(G) because 2 < d5(si) and G has no 2-dicycle. Then
t 2s1 t1 is a transitive triangle of G, and so G has a type 0 reduction by
2. Thus, we may assume t is not in Nd(s) if G has a type 2 reduction
at s1t 1. Then u and v are vertices of G. Since s, and 82 have indegree
at least 2 in G, us1 and vs, are in A(G) and we may assume us2 is in
A(G). Then us8s 2 is a transitive triangle of G, and so G has a type 0
reduction by 2. The second sentence of 3 is proven similarly.

(iv) Suppose the arc reduction at sit1 is of type is. If st, is an arc of H,
then s2 tl is an arc of G. But then (sls 2 )tl is reducible in G. If t1s is an
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arc of H, then t181 or t 1 8 2 is an arc of G. If tls, is an arc of G, then G
has a 2-dicycle. If t182 is an arc of G, then (sltl)82 is reducible in G.

(v) Suppose the arc reduction at sit, is of type ls and s 5 {x, y, z}. Then
z = t1, otherwise, x(yz) is reducible. Suppose s = z. Then 82y and
82z are arcs of G, and so s2yz is a transitive triangle of G. Then G has
a type 0 reduction by 2. Suppose s = z. Then dH(z) = 2 implies xs1

a..d ysi ace arcb of G. Thus, xysj is a transitive triangle of G. Suppose
s = y. If ti E {x, z}, then either st, or tls is in A(H), But then we
contradict 4.

(vi) Suppose the arc reduction at sit, is of type 2. Suppose t = z and
s V {x,y}. Then dH(z) = 2 implies Nj(t2) = {x,y}, and so x(yt 2) is
reducible in G. Suppose s = x and t V {y, z}. Then s2Y and s2z are
in A(G) and s2(yz) is reducible in G. Suppose x = s and z = t. Since
NG(Sl) = {s 2 ,t4}, Nj(tl) = {51,t2}, and sy, yt, and st are arcs of H,
G has the transitive triangle 52y t 2. Since dH(t) = 2, we have dý(t2 ) = 2,
and so S2(A/12) is reducible in G. Suppose s, t V {x, y, z}. Then x(yz) is
reducible in G because dý(z) = 2.

Let xl,... xn, be a source sequence of a digraph G in P,,t. Suppose G is
embedded in the plane according to Lemma 2.5. Let G, be the plane subdigraph
G[{xi,... xi}], i = 1,... ,n. We refer to G1,... , G, as a construction sequence
ofG.

The graph of Figure x will be denoted by G(,).

THEOREM 6.1. Suppose every digraph in I with fewer arcs than G is in T,
{D7 }, KI, or Xt. Then G has a contractible arc.

PROOF. We use standard notation for arc reductions, and we use the notation
of §3 used to define T, D7, KC, and N-t. Suppose G satisfies the conditions of the
theorem but does not have a contractible arc. Using Lemma 5.1, we may assume
G has an arc reduction at every arc. Let sit1 be an arc of G and let H be the
resulting digraph when G is reduced at sit,. By assumption, H is in {D 7 }, 'H,
KC, or T. Let the arc reduction at sit, be of type i, where i is in {0, 1, 2}. Assume
i is chosen to be as small as possible. Subject to this condition, we assume that,
if possible, sit, is chosen so that H is not in T. The notation used in defining
D7 , -, 1C, and T will be used to describe H.

Case 1. Suppose H = D7. Suppose G has a type 0 reduction at S1t1. If
y2 0 ti, then y1(yy2) is reducible. If y4 # t1, then y3(yy4) is reducible.

Suppose G has a type ls reduction at sit,. If yi = s, for some i in {1,... ,

then G has a type 0 reduction by Lemma 6.1 (iii). Hence, y = s. We may
assume Y132 r A(G). Since sy2 - A(H), s2Y2 E A(G). Hence, Y1l2Y2 is a
transitive triangle of G. But then G has a type 0 reduction by Lemma 6.1 (ii).
Similarly, if G has a type It reduction at sit1 , we get a contradiction.
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Suppose G has a type 2 reduction at sit,. Then yi E {s,t}, for some i in
1I,.... ,6}, and so G has a type 0 reduction by Lemma 6.1 (iii).

Case 2. Suppose H E N. Let y4, ys, bl,. . . , b. and yl, Y2, c, .. . c. be source
sequences of H# and H.,, respectively. By Lemma 4.2 (iv), 4 _< m and 3 < n.
If 4 = m or 3 = n, then we may assume b2 = yi or C2 = y4, respectively. By
considering construction sequences of He, it follows that dH(bl) = dH(b2) = 2
and for some i in {4, 5}, yiblb 2 is a transitive triangle of HO. Similarly, dH(cl) =

dH(c 2) = 2 and for some j in {1,2}, YjC1 c2 is a transitive triangle of H,.

Suppose G has a type 0 reduction at sit1 . Since b2 0 C2, we have b2 : t, or
c2 # t1. But then yiblb2 or yjclc2 is reducible by Lemma 6.1 (i).

Suppose G has a type is reduction at sit1 . Using Lemma 6.1 (iii), dH(b1 ) = 2
implies s 0 bl. Then Lemma 6.1 (v) applied to yiblb2 implies t, = b2. Similarly,
t, = c2. But b2 9 C2, and so we are done.

Suppose G has a type 2 reduction at sit1 . Since {y4, y5, bl} and {yl, y2,

cl} are disjoint, t is not in both sets. Suppose t 5 {y4 ,ys,bi}. Hence, either
t = b2 or t ý {y, bi, b2}. By Lemma 6.1 (iii), s 0 {bi, b2}, and so either s = yi
or s § {yi, bl,b2}. All four possibilities for s and t lead to a contradiction
by applying Lemma 6.1 (vi) to yjb1b2. Similarly, if t 0 {yi,y 2,ci}, we get a
contradiction.

Case 3. Suppose H E /C. Let t = t, (respectively, s = s, ) if the arc reduction
at sit1 is of type 0 or is (respectively, type 0 or It ). Suppose t V V(KH)
and w0, zo, a1 ,... ,an is a source sequence of KH, where 2 < n. By considering
construction sequences of KH, it follows that aala 2 is a transitive triangle, where

a E {wo,zo} and d,(al) = d,(a2) = 2. Since t 0 {a,ai,a 2}, we can use
Lemma 6.1 to give a contradiction for arc reductions of all types. Specificly, we
use (i) for type 0, (v) for type Is, (ii) for type It, and (iii) and (vi) for type 2.
Hence, t E V(Kn). Similarly, s E V(KH).

Let K = G - {xo, xI, x 2, x 3}. If K has a dicycle C, then C and xo, X1, x 2 ,

x3, xo are disjoint dicycles of G. Hence K is acyclic.
We now construct a superdigraph K' of K. If there is a unique vertex of

K in No(xo) U N+(X2), then call it w•. If NJ(xo) U NJ(x 2) contains at least
two vertices of K (this can occur when wo = s or wo = t), then let w' be a
vertex in V(K') - V(K) which is adjacent to every vertex of K in NG(xo) U
NJ (x 2 ). In a similar manner we consider the vertices of K in N.+ (x1)U NJ (X3 ),

Nj(xo) U Nj (x2), and N (xi) U Ný (x 3 ) and define the vertices z4, z', and w',
respectively, of K'. It is easy to see that K' is an acyclic digraph with sources
wu4 and z4 and sinks w' and z'.

Suppose w• is not a vertex of K. Then K has at least two vertices in NG (xo)U
N+(x 2). It follows that wo = s or wo = t. If wo = s and we have an arc reduction
at sit, of type 0 or it, then xo and X2 can only be adjacent to si in V(K).
Similarly, we can not have wo = t and an arc reduction at sit, of type 0 or is.
If wo = t and we have an arc reduction at sit, of type It or 2, then x0 and x2

can only be adjacent to t2 in V(K). Thus, wo = s and the arc reduction at sit,
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of type is or 2. Thus, at most one of the vertices w• and 40 is in V(K') - V(K).
Similarly, at most one of the vertices w' and z1 is in V(K') - V(K). Without
loss of generality, we may assume the four possibilities for V(K') - V(K) are 0,
{iw}, {wO,,wu}, and {w ,zI}.

We now show that all non-source vertices of K' have indegree at least 2. This
is immediate for all non-source vertices except for s8 and S2 when w' is not
a vertex of K. If w• is not in V(K), then we may assume xosl and x2s2 are
arcs of G. If X082 is an arc of G, then xoS1S2 is a transitive triangle of G, and
so Lemma 6.1 (ii) implies G has a type 0 arc reduction. Hence, x082 V A(G).
Similarly, x2s1 V A(G). It follows that s, and 82 have indegree at least one in
K, and so both have indegree at least two in K'. Similarly, all non-sink vertices
of K' have outdegree at least 2.

Suppose K' has a (w' -- wi, z4 -- z')-linkage (p, q). For all four possibilities
for V(K') - V(K) it is routine to construct disjoint dicycles of G using p and q.

We have shown that 1'(w', z4; z', w') contains the digraph obtained from K'
by removing any arc between w• and z' and any arc between w' and z'. Let wu),
z4, a,,... ,,a be a source sequence of K' and consider construction sequences
of K. If we can find a reducible transitive triangle of K' which does not use
any vertices in V(K') - V(K), then we have a reducible transitive triangle of
G. If V(K') - V(K) = 0, then this is routine. Hence, we may assume wo' E
V(K') - V(K). Then w0 = s in H, the arc reduction at sit1 of type Is or
2, and NZ,(Wu4) = {['1,2}. It follows that 6 < v(K') and daK,(w') = 2. If
V(K') - V(K) contains w' or z' we may assume am is in V(K') - V(K).
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It is easy to show that the contruction sequence of K' contains one of the
digraphs in Figure 4, where {x+, y+} = {w', z0}. Since 4 < m, the only vertex
of V(K') - V(K) in {x+,y+, a,, a2,a3} is wO. In G(4a), x+ 9 w' because
a•K,(wo') = 2, and so x+(ala 2) is reducible in G. G(4b) and G(4d) have reducible
transitive triangles al(a 2a3) and (ala 2)a3, respectively, which avoid both x+
and y+. G(4,) has a reducible transitive triangle which avoids x+, and one which
avoids y+. Therefore, G has a reducible transitive triangle.

Case 4. Suppose H E T. Let H' be obtained from H by dividing x and y,
and let x+,y+, a,,... ,an be a source sequence of H'. Since 3 < v(H), we have
5 < v(H'), and so 3 < n. Without loss of generality, one of the digraphs in
Figure 4 is in the construction sequence of H'.

Suppose the arc reduction at s1t, is of type 0. If we consider the transitive
triangle x+ala2, then Lemma 6.1 (i) implies a 2 = tl in G(4a), G(4b), G(4c), and

G(4d). Similarly, if we consider the transitive triangles x+a2a3, ala 2a3 , and
y+ala 3 in G(4 a), G(4b), and G(4.), respectively, then a 3 = tI, a contradiction. If
we consider the transitive triangle a1a2a3 in G(4d), then a, = sl. But then G
has parallel arcs from a, to a2.

Suppose the arc reduction at s1t1 is of type 1. We may assume type 1s. By
Lemma 6.1 (iii), a, 0 s. Now if we consider the transitive triangle x+ala2,
then Lemma 6.1 (v) implies a 2 = tl in G(4 a), G(4b), G(4.), and G(4d). But then
a2 = t, and a, 0 s contradict Lemma 6.1 (v) when we consider the transitive
triangles x+a2a3, a 1a2 a 3 , and y+ala 3 in G(4a), G(46 ), and G(4.), respectively.

By Lemma 6.1 (iv), a3 : s in G( 4d). But then (ala2)a 3 is reducible in G.
Suppose the arc reduction at s1tl is of type 2. We first consider the possibility

when a, : t. We may assume a2 is adjacent from x+ and a,. Consider the
transitive triangle x+ala2. By Lemma 6.1 (v), a, # s and a2 $ s. Then x+ = t
or we contradict Lemma 6.1 (vi). Thus, G(5,) is in the construction sequence of
H and x+ = t. In Figure 5, we consider construction sequences of H. The arrows
from G(5r), where r E {a, b, c, d, e, h, i,j, k}, go to the next possible digraphs in
the construction sequence of H which do not immediately give a contradiction of
Lemma 6.1. For example, consider G(5a). If a3 is adjacent from a1 and a2 only,
then a3 6 s by Lemma 6.1 (iii), and so al(a2a3) is reducible. If a3 is adjacent
from y+ and al only, then we can show that y+ = t, a contradiction. Thus,
G(5 b) or G(5c) has to follow G(sa) in the construction sequence of H. Note that
Lemma 6.1 (ii) implies a3 = 8 in G(5 c) and a 4 = s in G(5 h). Note also that G(5d)

and G(5k) are not equal to H. If G(sd) = H, then s = x = t in G. If G(5k) = H,
then a 4 yx is a transitive triangle of H with a 4 = s and x = t, and we have

contradicted Lemma 6.1 (vi). In G(5g), G(5f), and G(51), all the next possible
digraphs in the construction sequence of H contradict Lemma 6.1.

We may now assume that a, = t. Similarly, we may assume that a,- 2 = s.
Hence, 9 0 x+. By Lemma 6.1 (iii), s $ a 2 . Since x+al is an arc of H, x+tl or

X+t2 is an arc of G. Since tIt 2 and s 1 t9 are the only arcs incident to t1, x+t 2

is an arc of G. Since a1 a 2 is an arc of H, t 1 a 2 or t 2 a 2 is an arc of G. If t2a 2 is
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FIGURE 5. continued
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an arc of G, then x+(t 2a2) is reducible. Hence, tla2 is an arc of G. Thus, t2tl,
X+t 2 , tla2, and x+a2 are all arcs of G.

Let uv be any arc of G. Choose another arc e incident to v. Consider the arc
reduction at e. The proof up to this point has shown that G has a contractible
arc or there exist vertices u' and v' such that u'u, u'v', and vv' are arcs of G.
Thus, we have the second possibility for every arc uv of G.

Let L be a subdigraph of G, where V(L) = {ul,... ,un, Vi,... ,vn} and
A(L) is the union of {ui+uiu I i = 1,... ,n - 1}, {vivi+l I i = 1,... ,n - 1}, and
{ujvj I J = 1,... , n}. We have already shown that such a subdigraph exists for
n = 2. Suppose L is chosen so that n is maximal. Consider uv•. There exists
vertices u' and v' of G such that u'un, v,1v', and u'v' are arcs of G.

Since G has only type 2 arc reductions, every vertex of G has indegree and
outdegree 2. If u' = ui, where 2 < i < n - 1, then {u- 1 1,vi, un} 9 NJ(ui), a
contradiction. If u' = ul, then v' = vi. But then u'un ... U2u' and v/V.., V2VI

are disjoint dicycles of G. If U' = vn, then Unvn, vnUn is a 2-dicycle, and we
contradict the fact that G E Zt. If u' = vi, where 1 < i < n - 1, then v' = vi+,.
But then either i =n -1 and v' = vn, or u'un ... uiu' and v'Vi+2 ... vv' are
disjoint dicycles of G. Therefore, u' V V(L). Similarly, v' V V(L). But now
we get our final contradiction: L U {u', v'} U {u'un, v'vn, u'v'} contradicts the
maximality of n. 0

7. Rk-reductions to T

We have so far shown that if G is in It, then G has an Rk-reduction to an
intercyclic digraph H in reduced form. In this section we show that if H is in
T, then G is in {D 7 } U IC U Xt. Let Rk be contracted to p. If p is not in some
2-transversal S of H, then S is also a 2-transversal of G. But then G is not in
It. Therefore, p is in every 2-transversal of H. Let K = H - p and let X be
the set of all vertices x of K such that K - x is acyclic. It is easy to see that
K is strict and strongly-connected and that X is nonempty. Let IXI = n. The
structures of H and K are given by the next three lemmas.

LEMMA 7.1. Suppose X = {xo,... ,xn-l} and 2 < n. Then there exist arc-
disjoint subdigraphs Bo,... , B,- of K such that the following conditions hold.(i) g un-i()K= U•=o Bi.

(ii) Bi is an acyclic digraph with the unique source xi and the unique sink
xi+i, for every i in Zn.

(iii) xi is a vertex of only Bi- 1 and Bi, for every i in Zn.
(iv) For every vertex y in V(K) - X, there is a unique i in Zn such that

yEV(B1 ).
(v) For every i in Zn, either B i is the subdigraph induced by the arc xixi+i,

or Bi has two internally disjoint (xi, xi+1) -dipaths.

PROOF. Since K is strongly-connected, K has a dicycle C. Then X C_ V(C).
We may suppose the vertices in X occur on C in the cyclic order xo, x 1,... , xn-i.
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For every i in Z, let Yi be the set of vertices y in V(K) - X such that all (X, y)-
dipaths have origin xi and all (y, X)-dipaths have terminus xi+l . Let Vi = Y} U
{xi,xj+1} and let Bi be the digraph obtained from K[V•I by removing the arc
xi+lxi if present.

Let y be in V(K) - X. Since G is strongly-connected, there exists an (X, y)-
dipath and a (y, X)-dipath. Suppose there is an (X, y)-dipath p with origin xj
and a (y, X)-dipath q with terminus Xk, for some j and k in Z,. If k : j + 1,
then p, q, C[xk, xj I is a closed directed walk of K - xj +1 . But K - xj+1 is acyclic,
and so k = j + 1. Therefore, for every vertex y in V(K) - X, there is a unique
i in Z, such that y E V(Bi). It follows that for every i in Zn, every vertex in
V(K) - X adjacent to xi is in Yi-1, every vertex in V(K) - X adjacent from x,
is in Y,, and for every j and k in Z,, such that j : k, there are no arcs from a
vertex in Vj to a vertex in Vk. If xjxk is an arc, where j and k are in Z,, and k -
j + 1, then xjxk, C[xk, xj] is a dicycle of K - xj+I and we have a contradiction.
Therefore, the subdigaphs B 0 , B,-B-1 are arc-disjoint, K = U'-o B,, and Bi
has source xi and sink xi+,, for every i in Z,,.

Let i be in Z,. If Bi has a dicycle, then it does not use the source xi. But
then K - xi has a dicycle. Hence, Bi is acyclic. Since every vertex z of Bi has
an (xi,z)-dipath and a (z, xi+i)-dipath in Bi, xi is the only source and xj+l is
the only sink of Bi.

If there is a vertex z in Y, which is on every (xi, xj+l)-dipath of Bi, then z is
also in X, a contradiction. Hence, either Bi is the subdigraph induced by the arc
xixi+1 , or Bi has two internally disjoint (xi,xi+l)-dipaths by Theorem 2.3. [0

The following lemma has a similar proof.

LEMMA 7.2. Suppose X = {x}. Let Bo be the digraph obtained from K by
dividing x. Let x+ = xo and x- = x1 . Then Bo is an acyclic digraph with
the unique source xo and the unique sink x1, and Bo has two internally disjoint
(xo, xi)-dipaths,

We refer to digraphs B0,... ,B,n_ 1 from Lemmas 7.1 and 7.2 as the cyclic
blocks of K. If n > 2, and Bi is the subdigraph induced by the arc xixi+,, then
Bi will be called trivial. Note that if n = 1, then B0 has the same form as a
nontrivial cyclic block when n > 2.

Let H' be the digraph obtained from H by dividing x if X = {x) and dividing
p. We let xo = x+ and x, = x- if X = {x}. Let B• be the digraph obtained
from the union of Bi and H'({p+}, V(B,), {p-}) by removing the arcs p+xi and
x1 +lp- if present. The following lemma describes the structure of Bi and Bý.

LEMMA 7.3. Suppose Bi is a nontrivial cyclic block of K. Then B! has no

(p+ --+ p-,x, --, xi+i)-iinkage. Also, Bi has a planar embedding Mi with an

outer face boundary Ci such that the following properties hold.
(i) xi and xi+1 are on Ci.

(ii) Ci is the union of two internally disjoint (xi, xi+ 1) -dipaths Pi and Qi.
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(iii) Let a, be the second vertex of P, and 6-t b, be the second to last vertex
of Q,. Then a1 , bi, xi, and x1+i are alt distinct, and p+a, and bip- are
arcs of Bi.

(iv) Ail vertices adjacent from p+ in V(Bý) are -in P,[a,,x,+ 1]. All vertices
adjacent to p- in V(B•) are on Qi[xi, bi].

PROOF. Suppose Bý has a (p+ - p-, xi - xj+±)-linkag" (p,q). Lemma 7.1
implies that there is an (xi+1, xi)-dipath q' of K which uses no intermediate ver-
tices of Bi. Then p and q, q' correspond to disjoint dicycles of H, h contradiction.
By Theorem 2.5, it follows that there is a planar embedding Mi of B• such that
the vertices xi, p+, x,+i, and p- are on the outer face in the given cyclic order.
Let Mi = Mi - {p+, p-}. Then Mi is a planar embeding of Bi with outer face
boundary Ci such that xi and xi+1 are on Ci and all neighbours of p+ and p-
in V(B!) are on C,.

By Lemma 7.1 or 7.2, there are two disjoint (x,,xij-•)-dipaths. By Corol-
lary 2.1, for every y in V(Bi) - {xi, x,+l}, there exists au (xi, y)-dipath and a
(y, xi+i)-dipath such that y is the only vertex on both dipaths. Thus, the un-
derlying graph of Bi is 2-connected. Hence, Ci is a cycle by Theorem 2.1. Then
Ci is the union of 2 internally disjoint (xi, xi+x)-paths Pi and Qi. Suppose Pi or
Qi has a backward arc xy. By Curollary 2.1, there exists an (xi, x)-dipath p and
a (y, xi+1)-dipath q. Then p and q are skew interior paths of Ci, and so they
intersect by Theorem 2.2. Let z be the first vertex of q which is on p. But now
xy, q[y, z], p[z, x] is a dicycle in the acyclic digraph Mi. T1., .,ore, Pi or Qi are
(xi, xi+1)-dipaths.

Let a, be a source of Bi - xi. Since Bi is nontrivial, ai : xi1+. Since
2 < daH(ai), xiai and p+ai are arcs of B[. Since all vertices adjacent from p+ in
B! are on Ci, a, is on Ci. We may assume ai is on Pi. Suppose xiai is not the
first arc of Pi. Then P,[x,, aI is a path of length at least two because G is strict.
Let w be an internal vertex of PA[xi, ai]. By TIheorem 2.2, every (w, {x,+1, p})-
dipath of B' intersects xia1 . But then ai is on every such dipath, and so we have
contradicted Corollary 2.1. Therefore, xiai is the first arc of Pi. Similarly, we
can show that there is a sink bi of Bi - {xi+,} such that bip- is in A(B[) and
bixi+I is the last arc of Pi or Q1 .

Suppose up- is in A(B[), for some u E V(Pi) - {x,}. But then p+ai, Pi[ai, u],
up and Q. are a (p+ -- p-,xi - x,+1 )-linkage of B!. Therefore, all vertices
adjacent to p- in V(Bý) are in V(Qi) - {x,±.}. In particular, bi E V(Q,) -
{fx+• }. Similarly, we can show that all vertices adjacent from p+ in V(B[) are
in V(Pi) - {xi}. We can conclude that ai is the unique source of B, - {xi}, bi
is the unique sink of Bi - {xi+1}, and ai • bi. 0

The structure of H and K is given by Lemmas 7.1, 7.2, and 7.3. We will
use the notation of these lemmas to describe H and K. Further definitions are
needed.
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Let G" be obtained from G by dividing x if X = {x}. We let xo = x+ and
x= x- if X = {x}. We define Bo' as follows. First we add four new vertices u,
v, u', and v' to 'o. Then for every w in V(Bo) - {xo} and z in V(Bo) - {xi},
we let u'w, v'w, zu, and zv be arcs of Bo" if and only if u'w, v'w, zu, and zv,
respectively, are arcs of G".

If n > 2 and B1 is a trivial cyclic block of K, then we let Pi and Qi be xixi+l.
Since p is only adjacent to vertices of ad n
v' in Un-.1 V(Bi) are on JU=oPi. Similarly, all vertices adjacent to u or v in

U'--V(B,) are on UI=0 Qi. Let Ii be the set of vertices in {u',v'} which are
adjacent to vertices in V(P2 ) - {xi} and let OC be the set of vertices in {u, v}
which are adjacent from vertices in V(Qi) - {x-+l}, i = 0,... ,n - 1. We say
the Rk-reduction is type I if Io = {u', v'}, 0 = (u, v}, I = {v'}, and O( = {v},
i = 1,... , n - 1. We say the Rk-reduction is type 2 if n = 4, Io = 12 =u'},

00 = 02 = {U}, Il = 13 = {v'}, 01 = 03 = {v}, and all the cyclic blocks of K
are trivial.

The notation we have so far used to describe G, H, and K will be referred to
as standard notation.

LEMMA 7.4. Withouf loss of generality, the Rk-reduction of G to H is type 1
or 2.

PROOF. We use standai , notation. £irst, we will prove a restriction on
10,... ,I,-1I and 0 o,..., On-1. Suppose there exist i, j, k, and f such that
0 < i < n - 1, 0 < j • k < t < n, u' E Ii, u E Oi+j, V' E /s+k, and
v E Oi+,. Then there exist w in V(Pi) - {xi}, x in V(Qi+j) - {x;+j+,}, y in
V(Pi+k) - {x,+k}, and z in V(Qi+t) - {x,+t+4 } such that u'w, xu, a'y, and zv

are in A(G). But then P u'w, P,[w,1xi+i], Pi+',..., P'+j-1, Qi+j[x,+sx], xu
and Ptv,l, v'y, Pi+ky, xt+k+I], Pt+k+1, ... , PP1 +-1, Qi+1[x2+t, z], zv are disjoint
dicycles of G. Therefore, the preceeding occurance is impossible. We refer to

this restriction as condition a.

It follows from Lemma 7.3 that Ii an-A O, are nonempty, i = 0,... , n- 1.
Since u' and v' are adjacent to at most one vertex in V(Rk), u' and v' are inun--1 Un=o •.
Ui= 0 Ii. Similarly, u and are in n-- 1

Suppose Im = {u',v'} and m,, = {u,v}, for some m in {0,... ,n - 1}. If
n = 1 we are done, so assume not. Without loss of generality, we may assume
m 0 and v' E 1 . If u E 01, then conditkn a is contradicted, where i = 1,
j = k = n- 1, and e = n. Hence, 01 = {v}. Then condition a implies 1i = {v'},
i=1,. . ,n - 1. Finally, condition a implies Oi = {v}, i = 2,... ,n- 1.
Therefore, we have a type 1 Rk-reduction. We now assume Ii # {uJ', vv'} or 0j
5 {u,v}, i =0,... ,n- 1.

Suppose v' E Io and u E 0 o. Then we may as3ume 00 = {u}, otherwise,
we have the previous case. Let m be the smallest integer in { 1,... , n - 1} such
that v E 0Ome. Then 0, = {u}, i = 0,... ,m - 1. By condition a, I -= hv'J,
i = m,... ,n - 1. Since G E Zt, G - {v',xm} has a Jicycle C. Then C uses no
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vertices of u'C4Bi because U'=, I, {v'}. Since v' and xrn are not on C, C
Uses U'. Hence, u'-'Oi = {J} implies u is on C. Thus, u'-o , B, {xo} has
a (u',u)-dipath RP. Similarly, if we consider G - {u,xm}, we can show that

=.-lBi - {xr} has a (v',v)-dipath R&. But then Pu,,, P& and Pv,,, R•, are
disjoint dicycles of G. Similarly, we can arrive at a contradiction if u' E Io and
v E O0. We may now assume that either I, = {u'} and 0, = {u}, or 1i = {v'}
and 0, = {v}. for every i in {0,... , n - 1}.

Suppose to = {u'}, Oo = {u}, Ii = {v'}, and O, = {v}, i = 1,... ,n- 1.
If we consider a aicycle of G - {xo,v}, we can show that Bo" - {xo} has a
(u', u)-dipath &,. If we consider a dicycle of G - {xI, u}, we can show that
U_ - {x} has a (v',v)-dipath R,. But then Puu,, Ru and P,', P, are
disjoint dicycles of G. Therefore, we may assume I, = {u'} and O, = {u} for at
least two values of i in {0,... ,n - 1}. Similarly, Ii = {v'} and O, = {v} for at
le-st two values of i in {0,... , n - 1}. Hence, 4 < n.

Suppose Io = It = {u'} and 0 0 = 0l = {u}. But since Ii {v'} and 0,
= {v} for at least two values of i in {2, ... , n - 1), we contradict condition a.

Thus, we may assume there is no i in {10... ,n- 1} such that Ii = 12i+ and O,
= Oi+l.

Without loss of generality, we may assume 10 = 12 = {u'}, 0o = 02 = {u},
I, = 13 = {v'}, and O0 = 03 = {v}. If 5 < n, then 14 = {u'} and O 4 = {u}.
But then condition a is contradicted. Therefore, n = 4 and we have a type 2
Rk-reduction. Cl

The following theorem follows immediately from the definitions of type 2 Rk-
reduction and K.

THEOREM 7.1. If G has a type 2 Rk-reduction to H, then G = D7 or G E K.

We now finish this section by showing that if G has a type 1 Rk-reduction to
H, then G E X-. We first need two lemmas.

LEMMA 7.5. If B0 is nontrivial, then the following results hold.
(i) For every y on Po[ao,xi), B0 has a (Po[ao, xj),Qo(xo, bo])-dipath with

origin y.
(ii) For every z on Qo(xo, bo], B0 has a (Po[ao,xI), Qo(xo, bo])-dipath with

terminus z.
(iii) If w is on Po(ao,xl), then B0 has a (ao --+ bo,w --- x1)-linkage.
(iv) Bo' has a (p+,p-)-dipath.
(v) Let w be on Po(ao, xI) and z be on Qo(xo, bo). If Bo has two internally

disjoint (p+, p-)-dipaths, then B0 has a (ao -- z, w --* bo)-linkage.

PROOF. We use standard notation.

(i) By Corollary 2.1, Bj has a (y --+ p-, y -, xi)-fan (p,q). All vertices

adjacent to p- in V(Bo) are on Qo[xo, bo] by Lemma 7.3, and so p has a
vertex on Qo[xo, bol. Hence, p has a subdipath p' which is a (Po[ao, xI),
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Qo(xo, bo])-dipath of B0 . If the origin of p' is not y, then p' and some
subdipath of q are interior skew paths of Co. But then Theorem 2.2 is
contradicted.

(ii) The proof similar to 1.
(iii) By 1, B0 has a (Po[ao,x 1),Qo(xo,bo])-dipath r1 with origin ao. Let z1

be the terminus oft 1 and let r = rl,Q[zl,be]. Then (r, Po[w, x,]) is an
(ao -+ bo, w -- xl)-linkage of B0 .

(iv) By 3, Bo has an (ao, bo)-dipath r. By Lemma 7.3 (iii), p+ao and bop-
are arcs of Bo. Hence, p+ao, r, bop- is a (p+, p-)-dipath of Bo.

(v) Let w be on Po(ao,x1) and z be on Qo(xo, bo). Suppose B' has two
internally disjoint (y+, y- )-dipaths. Suppose there is a vertex c which is
on every ({ao, w}, {z,bo})-dipath of B0 . By 1, B0 has a (Po[ao,xl),
Qo(xo, bo,). dip•th Pi with origin w. Let z, be the terminus of pl.
Then pi, Qo[zi, .,] is a ({ao, w}, {z, bo})-dipath which avoids ao. Hence,
c 0 ao. By 1, Bo has a (Pofao,xi), Qo(xo, boJ)-dipath p2 with origin ao.
Let z2 be the terminus of p2. Then P2, Qo[z 2, bo] is a ({ao, w}, {z, bo})-
dipath which is disjoint from Po(ao, x1). Therefore, c is not on Po. Sim-
ilarly, c is not on Qo. Let q, be one of the (y+, y-)-dipaths of Bo' which
avoids c. By Lemma 7.3 (iv), all vertices adjacent from p+ in B• are on
P,[a,, xi+] and all vertices adjacent to p- in Bf are on Qi[xi, biJ, and so
ql has a subdipath q2 which is a (Po[ao,xI),Qo(xo,bol)-dipath. Let q2
have origin w2 and terminus z2 . But then Po[ao, w21, q2, Qo[z 2 , bo] is a

({ao, w}, {z, bo})-dipath of B0 which avoids c. Therefore, Theorem 2.3
implies that B0 has two disjoint ({ao, w}, {z, bo})-dipaths. Finally, The-
orem 2.2 shows that these two paths give a (ao - z, w -+ bo)-linkage.

LEMMA 7.6. Suppose G E Tt and Y = {zl, Z2, z3, z4, z5 } is contained in V(G).
Let K be obtained from G by dividing the vertices in Y. If K is acyclic and has
no (4,z_-)-dipath for every (i,j) in {(1,1), (2,2), (3,3), (4,4), (5,5), (2,1),
(2,5), (3,1), (3,4), (5,4)}, then G E X

PROOF. Let Y+ = {z+,... z5+} and Y- = {zl,.. ,z;}. For every x in
V(K), define Y+(x) to be the set of all z+ in Y+ such that there exists a (z+, x)-
dipath of K, and define Y- (x) to be the set of all z- in Y- such that there exists
a (x, z-)-dipath of K. Let I = V(K) - (Y+ UY-), I, = {x EI Iz3 E Y+(x)},

I# = {x E I I z_ E Y-(x)}, and I. {x E I Y+(x) {z+,z+} and Y-(x) =
{z;,z4}}. Let K. = K[I.J U K({z+,z+,z+},I.,{zs,zj}), Kg = K[I6] U
K({z+,z+},Il,{z-, z-,z-}), and Kg = KIL,]UK({z+,z1,,,fziz-}). Let

G,, Go, and G., be the corresponding subdigraphs of G. We will show that
(G0 , Go, G,,) is an G-decomposition of G with ?i-separator (z 1 , Z2 , Z3, Z4, z 5 ).

Since K is acyclic, Corollary 2.1 implies that K has two openly disjoint
(z+, Y-)-dipaths. Since K has no (z+, {zj, z-, z-})-dipath, we must have a
(z4 -- z Z,+ - z-)-fan (P32,P35). Similarly, K has a (z4+ - zj, z+ z-)fan
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(P41,psl), a (z4 - zý ,Z -- z4)-fan (P23,P24), and a (z+ -+ z4,z+ -- z4)-fan
(q14,q24). Since K has no (z4-, zi-)-dipath, P32 Up 35 and p41 UpsI are disjoint.

Suppose u E I and z4 E Y+(u). Then Y-(u) = {z3,z4 }. Since z4 E Y-(u),
Y+(tu) = {7t, 4+}. Thiiq; u E I. Simila:ry, if u E I and z4 E Y-(u), then

u E I,. Thus, if u in I is adjacent with a vertex in IL, then z2 E Y+(u) or
z4 E Y-(u), and so u E Iy. It follows that vertices in I,, are not adjacent with
vertices in I -L , , and that I,, and I,, U I0 are disjoint. Hence, P23, P24, q14, and

q24 are all dipaths of Ky, and K. is disjoint from P32, p35, P41, and psl- If IL
and I, are not disjoint, then K has a (z4, )-dipath. Thus, I ,/3, and I, are
pairwise disjoint.

Suppose K., has a (z+ --+ z4,z+ --+ z3)-linkage (r 14,r 23). Then P41,r 14 and

P32, r23 are disjoint dicycles of K. Hence, Ky E P(z+, z4; zi, z4). Suppose
there exists a vertex x on all ({z+, z+ }, {z-, z4 })-dipaths of K,,. But then the
existence of P23 and P24 implies x = Z4, while the existence of q14 and q24 implies
x = z-. Thus, K,, has a (z-. z+ ,z -- 4)-linkage (rZ+,r24 ).

Suppose x E I - (I, U Io U -y)). Since z+ E Y+(x) or z4 E Y-(x) implies
x E I.,, z3+ E Y+(x) implies x E I,, and z, E Y-(x) implies x E I,0 we have

Y+(x) _ {,+4,4} and Y(x) , . Since K has no (4,z-)-
dipath, we may assume by symmetry that Y-(x) = {zj, z}.

There exists a ({z4+, z.-, x)-dipath q and an (x z2 z, x -+ z3)-fan (q2, q3) by
Corollary 2.1. Let z be the last vertex of q on p4i or Psi.

Suppose z is on Ps5. Let q53 = P51 ([z+,z],q[z,x],q3 . Since P41 and Prl are
openly disjoint, P41 and Ps1 [z5, z] are disjoint. By the choice of z, P41 and q[z, x]
are disjoint. Since z- V Y-(x), P41 does not intersect q3. Thus, P41 and q53
are disjoint. We have already shown that P35, P41, and q14 are pairwise disjoint.
Also, q53 and P35 U q14 are disjoint, otherwise, K would have a restricted path.
But now P35,q53 and P41, q14 correspond to disjoint dicycles of G.

Suppose z is on P41. Let q42 = P41 [z4+, z], q[z, x], q2. As in the previous case
we can show that q42 and q51 are disjoint. Since z- V Y-(x), p35 does not inter-
sect q2. Since K has no (z+, z;)-dipath, p35 does not intersect p41[z+, z], q[z,x].
Thus, p35 and q42 are disjoint. Furthermore, r13 and r 24 are disjoint by con-
struction. It then follows that r 13, r 24 , p35, psi, and q42 are pairwise disjoint,
otherwise, K would have a restricted dipath. But now p35, p5, r13 and q42, r 24

correspond to disjoint dicycles of G. Therefore, I = I, U I1 U Iv.
Suppose x E I.. Then z4 E Y+(x), and Y-(x) = {z;,z•}. Since zW E

Y-(x), Y+() z+, z{ +I}. Thus, A(Ka) contains all arcs joining a vertex inY-(X)--I +(9{1' 3•

I, and a vertex in Y+ U Y-. Similarly, A(Ka) contains all arcs joining a vertex
in Io and a vertex in Y+ U Y-.

By the constructions of Ka, Kp, and K,, every arc of K(Y+, Y-) belongs to
a unique K,, Ka, or K,, with the possible exception of z4+z. But if 4zj E
A(K), then z4+z, r24 and p35 , pal , r13 correspond to disjoint dicycles of G.

If a vertex in 1, and a vertex in Ip are adjacent, then K has a (4, z3 )-dipath
or a (+, z.,)-dipath.
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Therefore, we have shown K = KQUK#UKy, and only the vertices in Y+UY-
are in more than one of V(Ka), V(K3), and V(K.,).

If K& has a(z4+ -- z2, z+ --* zs)-linkage (' 12, r 35),then r 42 , r 2 4 and r 35 , P' 1

r 13 correspond to disjoint dicycles of G. If K, has a (z4+ , z-, z+ -* z•-)-
linkage (r 42 , r 15 ), then r 4 2 , r 2 4 and r 15, p51 correspond to disjoint dicycleS of G.
If K1, has a (z+ -- zj,z+ -, z5)-linkage (r32 ,rls), then r32,P 23 and r 15,p51
correspond to disjoint dicycles of G. Therefore, K& E P(z+, +, Z+4z3, 1 ; z5, z2)
Similarly, K0 E P(z4+, z+; z3, zT, z2).

It now follows that (GC, Gp, Gy) is an W-decomposition of G with N-separator
(z1,z2,z3,Z 4,Z5 ). 0

THEOREM 7.2. If G has a type 1 Rk-reduction to H, then G E N.

PROOF. We use standard notation. There exists a (p+, p-)-dipath of B0, by
Lemma 7.5 (iv). Suppose there is a vertex z, in V(Bo) such that Bo - z1 has
no (p+, p-)-dipath. If there exists a vertex zo such that U`J1 B' - {xozo} has
no ({u', v'}, {u, v})-dipath, then {x0, zo} corresponds to a 2-transversal of G.
Hence, U`-'Bi - x0 has 2 disjoint ({u', v'}, {u, v})-dipaths P1 and q1. If (pi, q1)
is a (u' -+ u, v' --+ v)-linkage, then P•u,,p, and P ,,,q, are disjoint dicycles of
G. Therefore, we may assume (pl,qi) is a (v' -- u, u' - v)-linkage. Since x 0 is
not on p, and u is only in 0o, Pi is a dipath of Bo". Hence, zl is on pl, and so
z, is not on q1. Since zl is not or. q, and u' is only in Io, x, is on q1. Similarly,
we can show that G - x, has a (v' --+ u, u! -- v)-linkage (p2, q2) such that P2 is
a dipath of Bg", z, is on p 2, and x 0 is on q2. If ql[u',x 1 ] intersects p2 (z1 , v], then
we have a (u', v)-dipath in Bo" which avoids zi. Hence, ql [u', x1 ] and p2(zl, v] are
disjoint. Similarly, q2 [xo, ul and pi [v', zi) are disjoint. Let P=,,,o be an (x1 , xo)-
dipath of ULj''Bi. But then Puu,, qx[u',xl], PXJX0, q2[xo, u] and P,,,,, pi [v',zl],
p2 [zl, v] are disjoint dicycles of G. Therefore, there exist two internally disjoint
(p+,p-)-dipaths in Bo by Theorem 2.3.

Since there are two disjoint (p-, p-)-dipaths in Bo, N+ (u) U N+ (v) contains
at least two vertices on Po(xo, x1). The existence of pi and P2 implies that both
u and v are adjacent to a vertex on Po(xo,xi). By Lemma 7.3 (iii), pao E A(H),
and so ao E N+(u) UN+(v). These three observations imply that there exists w
on Po(ao,xl) such that u'ao,v'w E A(G) or u'w,v'ao E A(G). Similarly, there
exists z on Qo(xo, bo) such that zu, bov E A(G) or zv, bou E A(G). Subject to the
previous conditions, suppose w and z are chosen so that Po[ao, w] and Qo[z, bo]
have maximum length.

Since B6 has two internally disjoint (p+, p-)-dipaths, Lemma 7.5 (v) implies
Bo has an (ao -- z, w --+ bo)-linkage (p3, q3). If v'w, u'ao, zu, and bov are arcs of
G, then P,,, v'w, q3, boy and PUu,, u'ao, p3, zu are disjoint dicycles of G. We
get a similar contradiction if v'ao, u'w, zv, and bou are arcs of G. Hence, v'w,
U'ao, zv, bou E A(G) or v'ao, u'w, zu, bov E A(G).

Suppose 2 < n. Since the R&-reduction is type 2, v is adjacent from some
vertex z' on Q1. Suppose v'w,u'ao, zv, bou E A(G). By Lemma 7.5 (iii), B0 has
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an (ao --+ bo, w -- x1)-linkage (p4, q4). But then PUu', uIao, P4, bou and P,,.,, v'w,
q4, Q, [xi, z'], zv are disjoint dicycles of G. Therefore, v'ao, u'w, zu, bov E A(G).
Without loss of generality, we may assume these four arcs are in A(G) when
n=l.

Suppose Bo has three disjoint ({xo, ao, w}, {z, bo, x, })-dipaths. Then we have
an (xo --* z, ao --+ bo, w -* xi)-linkage (p5 ,q 5 ,r 5 ), otherwise, Po U Qo has
two interior skew paths and Theorem 2.2 is contradicted. But then Pu,, u'w,
r5 , P, 1xo, ps, zu and P,, v'ao, q5, bov are disjoint dicycles of G. Therefore,
Theorem 2.3 implies the existence of two vertices s and t which intersect all
({xo, ao, w}, {z, bo, x,})-dipaths of Bo. Since Po[w, x,] and Qo[xo, z] are disjoint
({xo,ao,w}, {z,bo,x1})-dipaths we may assume s is on Po[w,xil] and t is on
Qo[xo, z]. If s = xi, then q3 is a (w, bo)-dipath avoiding s and t. Hence, s is on
Po[w, x1). Similarly, t is on Qo(xo, z].

Suppose u'x1 is in A(G). Then Lemma 7.5 (ii) implies Bo has a (Po[ao,xi),
Qo(xo, bo])-dipath r, with terminus bo. Let w, be the origin of rl. Then Pu'.,
u'xl, Pzxo, Qo[xo,z], zu and P.,, v'ao, Po[ao,wi], ri, boy are disjoint dicycls
of G. Therefore, u'xl V A(G). Similarly, xou V A(G).

In this paragraph and the next we show the existence of various dipaths in B0
which will be useful in the rest of the proof. Suppose w' is a vertex on Po [ao, s).
We will show that BO - s has a (w', t)-dipath. By Lemma 7.5 (i), Bo has a
(Po[ao, xi), Qo(xo,bo])-dipath r 2 with origin w'. Let z2 be the terminus of r2.
If z2 is on Qo(t, boJ, then Po[bo, w'j, r 2 w', z2], Qo[z 2, bo] is an (ao, bo)-dipath of
Bo - {s, t}. Hence, Z2 is on Qo(xo, t]. Therefo, 1, r2, Qo[z2, tJ is a (w', t)-dipath
of B0 - s. Similarly, Bo - t has an (s, z')-dipath, for every z' on Qo(t, bo).

Suppose d is a vertex on Po[s, xI). We will show that Bo- V(Qo[xo,bo)) has
a (d, bo)-dipath. If w, is on Po[ao, s), then Po[ao, wl], rl is an (ao, bo)-dipath of
Bo- {s,t}. Hence, w, is on Po[s, x1). If w, is on Po[d, x1), then Po[d, w,], ri is
the desired path. Hence, we may assume w, is on Po[s, d). By Lemma 7.5 (i), BO'
has a (d, Qo(xo, bo])-dipath r 3. Then r 3 intersects rl, otherwise, Po U Qo has two
interior skew paths. Let W3 be the first vertex of r 3 on rl. Then r7 =r 3 [d, w3 1,

ri [w3 , bo] is the desired path.

Suppose there is a vertex w' on Po[ao,s) and a vertex d on Po(s,xi) such
that u'w' and v'd are in A(G). By the previous two paragraphs, BO - s has a
(w', t)-dipath P6 and Bo - V(Qo [xo, bo)) has a a (d, bo)-dipath rf. Furthermore,
P6 and r 7 are disjoint, otherwise, we get an (ao, bo)-dipath of Bo - {s, t}. But
then Pu,, uw', p6, Qo[t, z], zu and P,,y, v'd, r7 , bov are disjoint dicycles of G.
Therefore, v' is not adjacent to any vertex on Po(s, x1) or u' is not adjacent to

any vertex on Po[ao, s). In the latter case we must have w = s and N+(u') =
{v', s}. Thus, v' is not adjacent to any vertex on Po(s, x1) or N+(u') - {v',s}.
Similarly, v is not adjacent to any vertex on Qo(xo, t) or Nj(u) = {v, t}.

Suppose v' is not adjacent to any vertex on Po(s, xl) and v is not adjacent
from any vertex on Qo(xo, t). Since G E It, G - {s, t} has a dicycle C. Since
w and z were chosen so that Po[ao, w] and Qo[z, bo] have maximum length, u' is
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not adjacent to any vertex on Po(s, xI) and u is not adjacent from any vertex
on Qo(xo, t). We have also shown that u'xl and xou are not arcs of G. It now
follows that v'xl and xlv are the only possible ({xo, u', v'}, {xl, u, v})-dipaths of
Bg"- {s, t}, otherwise, Bo - {s, t} has an ({xoao, w, {z, bo, xu })-dipath. Hence,
C uses no vertices in V(Bo) - xo, xl,}. Then C uses u' or v'. Since v' and the
vertices on Po[ao, s) are the only possible vertices adjacent from u', C uses v'.
Similarly, C uses v. Hence, we may assume P,,,, is a subdigraph of C. If BO'
has a (u', u)-dipath r4, then C and P,,', r 4 are disjoint dicycles of G. Thus,
BO' has no (u'u)-dipath. If u' is adjacent to a vertex w' on Po(xo, s), then we
have shown that B0 has a (w', t)-dipath r2. But then u'w', r 2 , QoJz2 , z1, zu is a
(u',u)-dipath of Bo". Hence, w = s and N+(u') = {s,v'}. Similarly, z = t and
N6(u) = {v,t}.

In the previous paragraph we have shown that if BO" has a (u', u)-dipath, then
we may assume v' is adjacent to some vertex d on Po(s, xo). We have shown that

this implies NG(u') = {s,v'}. We will deal with this possibility in cases I and
2. Also, we have shown that J 3' has no (u',u)-dipath, then N.(u') = {s,v')
and Ný (u) = {v, t}. We will deal with this possibility in case 3.

Case 1. Suppose BO" has a (u', u)-dipath, v' is adjacent to some vertex d on
Po(s, xo), and NG'(u') = {s,v'}. Suppose there exists a vertex z' on Qo[t, bo)
such that z'u is in A(G) and Bo has an (s, z')-dipath r5.

If there exist two disjoint ({s, d}, {z', bo})-dipaths in B0 , then we must have
an (s --+ z', d -. bo)-linkage (pT ,q7) in BO. But then Pu,, u's,.p7, z'u and P,,
v'd, q7, bov are disjoint dicycles of G. Therefore, there exists a vertex c which
intersects every ({s, d}, {z', bo})-dipath of Bo.

We now show that c is not on Po or Qo- If h) = c, then rs5 c, z'j, Qo[z', bo]
is a closed directed walk of Bo. Hence, bo # c. By Lemma 7.5 (i), Bo has a
(Po[ao,xi), Qo(xo,bo])-dipath r 6 with origin s. Let z4 be the terminus. Then
c is on r6, Qo[z6, bo], and so c is not on Po(s, xI]. We have shown that BO -
V(Qo[xo, bo)) has a (d, bo)-dipath r7. Then c is on r7, and so c is not on Po[xo, d)
or Qo [xo, bo).

It follows from the previous paragraph that c is on every (Pots, xi), Qo(xo, xl)-
dipath. Hence, every (Po jao, xI), Qo[t, bo])-dipath uses t or c.

We now show that Bo has a (Po[ao, xI), Qo(xo, bo])-dipath r with origin s and
terminus z'. Since c is not on Po U Qo, c is an internal vertex of r6. The (s, z')-
dipath r5 has a subdipath r' which is a (Polao, xi), Qo(xo, bo])-dipath. Then
the terminus z8 of r' is on Qo(xo, z'] and c is an internal vertex of r'. Let r8 be
r7[s,c], rs[c, zs]. By Lemma 7.5 (ii), BO has a (Po[ao,xi), Qo(xo, bol)-dipath r9
with terminus z'.

Let zg be the last vertex of r9 on rs U Po. If zg is on Pofs, xi), then c is
on rg(zg, t). But c is on rs, and so we contradict the choice of zg. If z9 is on
Po[ao, s), then r 9(zg, t) and r8 are interior skew paths of Po U Qo. Hence, z9 is
on r8. Then we can let r be rs[s, z 9 ], rg[zg, t].
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If v is adjacent from a vertex Z3 on Qo[xo,t), then P,,, v'd, Po[d,xlj], P.,o ,
Qo[xo, z3], z3v and Pu,,, u's, r, z'u are disjoint dicycles of G. Hence, V(Qo[xo, t))
n Nj(v) = 0. If 2 < n, then v E 01 because we have a type 1 Rk-reduction,
and so we can get a similar contradiction. Therefore, n = 1 and xo corresponds
to x, in G.

We now show that G is in R" by applying Lemma 7.6 with (Zl, z2, Z3, z4 , z5 )
equal to (v', xo, s, t, c) or (v', s, xo, c, t). Let Y = {v, xo, s, t c} and G, be the
graph obtained from G by dividing the vertices in Y. Let C be any dicycle of
G. We first show that C uses two vertices in Y. Suppose C uses vertices of Rk.
Since Rk is acyclic, C must also use vertices of G - V(Rk). Since s is the only
vertex of G - V(Rk) adjacent from u', C uses v' or s. If C does not use x0, then
C has a (Pofao, xi), Qo[t, bo))-dipath because all vertices of G - V(Rk) adjacent
to u or v are on Qjt, bo]. Then C uses t or c. Suppose C does not use any vertices
of Rk. Then C corresponds to an (xo, xl)-dipath of Bo because n = 1. Such a
dipath must also use s or t. Therefore, G. is acyclic and has no (z+, z-)-dipath
for every z in Y.

Finally, we show that G. does not have any of the other restricted dipaths.
Suppose G, has an (x4, c-)-dipath. Then G-{v', s, t} has an (xo, c)-dipath, and
so Bo - {s, t} has an (xo, c)-dipath p8. But then Ps, r7 [c, be] is an (xo, bo)-dipath
of B 0 which avoids s and t. Thus, G. has no (xoc)-dipath. Suppose Gc has a
(x+, (v')-)-dipath. Then u or v is adjacent from some vertex z8 on Qo(t, bo) such
that B0 - {s, t} has an (xo, z8 )-dipatb q8. But then qs, Qojzs, bo) is an (xo, bu)-
dipath of B0 which avoids s and t. Thus, G, has no (x+, (v')-)-dipath. Since c
is on every (Po[s, xI), Qo(xo, bo])-dipath of B0 , every (s, {v', t})-dipath of G uses
c or xo Hence, G, has no (s+, (v')-)-dipath and no (s+,t-)-dipath. Finally, if
G. has a (c+, t-)-dipath and a (t+, c-)-dipath, then B0 has a (c, t)-dipath and
a (t, c)-dipath. But then B0 has a dicycle. Hence, G, has no (c+, t-)-dipath or
no (t+, c-)-dipath.

Case 2. Suppose Bo" has a (u', u)-dipath, v' is adjacent to some vertex d on
Po(s,xo), and N+(u') = {s,v'}. Suppose bo is the only vertex z' on Qolt,bo)
such that z'u is in A(G) and Bo has an (s, z')-dipath r5. We have shown that
there is an (s, z')-dipath, for every z' on Qo(t, bo). Therefore, z = t and t and bo
are the only vertices on Qo adjacent to u.

Suppose v is adjacent from a vertex z4 on Qo(t, bo). Let p9 = Po[s,d],r7 .
We have shown that B0 has an (ao, t)-dipath q9 which does not use s. Since
Bo - {s, t} does not have an (ao, bo)-dipath, p/ and q9 do not intersect. But
then Puu,, u's, p9, bou and Pv,,, v'ao, q9, Qo [t, z4], z4v are disjoint dicycles of G.
Therefore, v is not adjacent from any vertex on Qo(t, bo). Suppose v is adjacent
from a vertex z5 on Qo[xo,tJ. By Lemma 7.5 (i), B0 has an (s, bo)-dipath r10

which is disjoint from Po(s, x,]. Since B0 has no (s, z)-dipath, rio is disjoint from
Qo[xo,t]. But then P,,, u's, rio, bou and P,,,, v'd, Po[d,xi], Pxlo, Qo[xoz 5J,
z5v are disjoint dicycles of G. Therefore, v is not adjacent from any vertex on
Qo(xo, t]. If 2 < n, then v E 0 1 because we have a type 1 Rk-reduction, and so
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we can get a similar contradiction. Therefore, n = 1 and x0 corresponds to xl
in G.

We have shown that Nj(v) = {u,bo}. We also know that t and b0 are the
only vertices on Qo adjacent to u, and that B0 has no (s, t)-dipath. Hence, every
(Po[ao, xi), Qo(xo, bo])-dipath uses t or bo. As in case 1, we can now show that
G is in 74 by applying Lemma 7.6 with (zl, z2 , Z3, Z4, Z5) equal to (v', xo, s, t,
bo) or (v', s, 1o, c, t).

Case 3. Suppose Bo' has no (u',u)-dipath, NG+(u') = {s,v'}, and N6(u) =

{v, t}. If v = v', then {v, xo} is a 2-transversal of G because Bo" has no (u', u)-
dipath. But then G is no longer in I7t. Thus, v : v'.

We now show G is in N by using Lemma 7.6 with (Z1, Z2 , Z3, Z4, Z5 ) = (t, v,
s, v ,xo). Let Y = {t, v, a, v' x0} and G. be the graph obtained from G by
dividing the vertices in Y. Let C be any dicycle of G. We first show that C uses
two vertices in Y. Suppose C uses vertices of Rk. Since Rk is acyclic, C must
also use vertices of G - V(Rk). Since s is the only vertex of G - V(Rk) adjacent
from u', C uses v' or s. Similarly, C uses v or t. If C does not use any vertices of
Rk, then C has a subdipath corresponding to an (xo, xl)-dipath of B0 . Hence,
C uses X0, and s or t. Therefore, G. is acyclic and has no (z+, z-)-dipath for
every z in Y. Finally, we show that G8 does not have any of the other restricted
dipaths. Since s is the only vertex of G - V(Rk) adjacent from u', every (v,
{t, xo})-dipath of G uses s or v'. Hence, G, has no (v+,t-)-dipath or (v+,x0
dipath. Similarly, G. has no (s+, (v')-)-dipath or (x+, (v')-)-dipath because t
is the only vertex of G - V(Rk) adjacent to u. If G8 has an (s+, t-)-dipath, then
Bo has an (s, t)-dipath r1 1. But then u's, ri1, tu is a (u',u) path of Bo". 0l

8. Rk-reductions to {D 7 } U C U Wt

We have shown that if G is in It, then G has an Rk-reduction to an intercyclic
digraph H in reduced form. In the last section we proved that if H is in T, then
G is in {D 7} U C U X. In this section we prove that if H is in {D 7 } K U 7X,
then G is in {D 7 } U KC U 7N. Throughout this section we use the notation of §3
used in defining D7 , K, and Xi.

THEOREM 8.1. If G has an Rk-reduction to D7 , then G E KC.

PROOF. Let Rk be contracted to p. Suppose p = yi. We may assume y6u
and y4v are in A(G). If u'y and v'y 2 are in A(G), then Puu,, U•y, YY6, y6u and
P1,1, vIy 2 , Y2Y3, Y3Y4, y4v are disjoint dicycles of G. If u'y2 and v'y are in A(G),
then Puu,, u'y2, Y2Ys, ysY6, y6u and P,, v'y, yy4, y4v are disjoint dicycles of G.
Hence, p 9 yl. Similarly, p 0 yi, i = 2,... ,6. Therefore, p = y. By symmetry
we may assume y1u, y3u, and y5 v are in A(G).

Suppose v'y2 E A(G). If u'y 4 E A(G), then Puu,, u'y4 , Y0y1, ylu and Pw,,
V IY2, Y2ys, y5v are disjoint dicycles of G. If u'y6 E A(G), then P,,•, u'y6 , Y6y3,
y3u and P.,, V'Y2, Y2Y5, y5V are disjoint dicyclcs of G. Hence, uy 4 , u'y6 0 A(G),
and so u'y2, vy 4, and v'y6 are in A(G). But then Puu,', u'y2, Y2Y3, y3u and



236 WILLIAM MCCUAIG

P1V', V y4, y4y5, ysv are disjoint dicycles of G. Therefore, v'y 2 V A(G), and so
u'y 2 E A(G).

If v'y 4 E A(G), then PuU',u'y 2 ,y 2 y3 ,y 3u and P, v,v',y4 , y4 y 5 ,y 5 v are disjoint
dicycles of G. Hence, v'y4 % A(G), and so u'y4 E A(G). Since v'y2, v'y 4 V A(G),

V/y6 E A(G). By symmetry, ylv, y 3 v V A(G). Each of ysu and u'y6 could be in
A(G).

Now G E K, where K = G[V(Rk) U {Y5,Y6}], xo = Y4, x, = Yl, X2 = Y2,
x3=y 3 , wo=y 5 , zo=u, wl=u',andzl=y 6 . 0

THEOREM 8.2. If G has an Rk-reduction to H in 1C, then G E 1K.

PROOF. Let Rk be contracted to p. KH, has a (wo --- z 1 , zo -+ wi)-linkage
(p,q) by Corollary 2.1. If 2 < dK,(Wo), then there is a (wo,wl)-dipath r in
K' by Corollary 2.1. If dK,(wo) = 1, then wozo E A(H), and so wozo,q is a
(wo, wl)-dipath r in KH.

Suppose p = xo. We may assume x3 u and w 1v are in A(G). If u'xl, v'wo

E A(G), then Puu,, u'xl, xIx 2 , X2x 3 , x 3 u and P,,,,, V'wo, r, wIv are disjoint
dicycles of G. If u'wo, vxl E A(G), then Puu', u'wo, p, Z1X3, X3u and Pw,,
vixi, xizo, q, wiv are disjoint dicycles of G. Hence, p 3 xo. Similarly, p # xi,
i = 1,2,3.

Suppose p is an intermediate vertex of KH. Let G' be obtained from Ký bty ex-
pansion at p. If G' has a (wo --+ wi,zo -+ zl)-linkage (pi, q1), then pl, wixo,xowo

and q1 , zlxi, x1 zo are disjoint dicycles of G. Hence, G' E P(wo, zo; zi, wi). It is

now easy to see that G E K1, where K. = GC.
Suppose p = wo. Suppose xo and x 2 are adjacent to distinct vertices in

{u, v}. We may assume xou and x 2 v are in A(G). Choose distinct y, and Y2 in
V(KH) - {wo} such that u'yl, v'y2 E A(G). There exist two disjoint ({yl, y2},
{wl,z 1 })-dipaths p2 and q2 in Ký by Corollary 2.1. If (p2,q2) is a (y, ---+ wi,

y2 - z1)-linkage, then Puu,, U'yl, p2, wixo, xou and P,,,, v'y2, q2, zixl, xIX2 ,
X2v are disjoint dicycles of G. If (P2,q2) is a (Y, --+ zi, y2 --* wi)-linkage, then
PU', U I'Y1, P2, Z1X3 , X3aO, xou and Pv,, VY2, q2, WlX2, X2v are disjoint dicycles
of G. Therefore, only one of u of v is adjacent from xo or x2. We may assume
that XoU, x 2u, zov E A(G) and xov, x2 v 0 A(G).

Let GC be obtained from KH by expansion at p. Let G' be obtained from
G, by removing uzo, zou, w 1 z 1 , and z1w, if present. Since zov E A(G), zowo E
A(H). Hence, wozo 1 A(H), and so u'zo,v'zo 1 A(G). Therefore, G' is an

acyclic digraph with sources u and zo and sinks w, and z 1 . If G' has a (u --+
wI,zo --. Zl)-linkage (P3,q 3 ), then p3 , wixo,xou and q3 , zixi,xzo are disjoint
dicycles of G. Hence, G' E P(U, zo; z1 ,W ). It is now easy to see that G E K1,
where KG = G'.

Similarly, ifp E {w1,zozi}, then G EK. 0

In order to prove that G is in {D 7 } UK U hi when H is in Wt, we need to prove
two lemmas.
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LEMMA 8.1. Suppose H E N1 and (H,, H3, Hy) is an N-decomposition of H
with 7H-separator (Y1, Y2, Ya, Y4 , y5). If z is an intermediate vertex of H,, such

that Ha - z has no ({yi,ya},y 5)-dipath, then H has an N"-decomposition with
N-separator (yi, Y2, Y3, y4, z).

PROOF. The result follows easily from Lemma 7.6 with {z 1 , Z2, z3 , Z4, Z5}

(y 1,y 2 ,y 3 ,y 4 ,z). 0

LEMMA 8.2. Suppose H is in N and has N--decomposition (Ha, H,, H.,) with
1-separator (Y1, Y/2, Y3, Y4, V5). Then the following statements hold.

(i) y, is adjacent to an intermeditate vertex of H7 .
(ii) Ha has two openly disjoint (y3, {y2, y5}) -dipaths. HP has two openly

disjoint ({y 4 , y5}, yi)-dipaths.

(iii) If a is an intermediate vertex of Ha which is adjacent from Yl, then Ha
has a (Y3 - y5, a - y2 )-linkage.

(iv) If a is an intermediate vertex of H-y which is adjacent from yl, then H.
has a (a --+ Y3, Y2 - y4)-linkage.

(v) If a is an intermediate vertex of Ha which is adjacent to Y2 and there

exist two openly disjoint ({y3, yI},ys)-dipaths in Ha, then Ha has a

(y3 -* ys, y -- a)-linkage.

(vi) If 1 < d+. (y4), Ha has two openly disjoint ({y3, y, }, y5 )-dipaths, and a

is an intermediate vertex of Ha which is adjacent to y2, then Ha has a
(y4 -- y5, ya -- a) -linkage.

PROOF. (i) By Lemma 4.2 (iv), H1 has an intermeditate vertex x. By

Corollary 2.1, H., has a (yi, x)-dipath. Hence, yl is adjacent to an

intermeditate vertex of H,.

(ii) Since 2 < d' (y3), 2 _< d (y3). Then Ha has two openly disjoint (y3,

{Y2, ys})-dipaths by Corollary 2.1. Similarly, we can prove H3 has two

openly disjoint ({y4, y5}, y1 )-dipaths.

(iii) Suppose a is an intermediate vertex of Ha which is adjacent from yi.

Suppose there exists a vertex c which is on every ({y3,a}, {Y2,Y })-
dipath of Ha. By 2, Ha has two openly disjoint (y3, {Y2, y5 })-dipaths,

and so c = y3. By Corollary 2.1, Ha has an (a, {y2 ,y 5 })-dipath, and

so c 5 y3. Therefore, Theorem 2.3 implies that Ha has two disjoint

({y3 ,a}{y 2 ,y5 })-dipaths. Since Ha is in P(y4,Y3,y1;ys,y2), these di-

paths give a (ya --+ ys, a ` y2 )-linkage.

(iv) The proof is very similar to 3.

(v) The proof is very similar to 3.

(vi) Suppose 1 < d+ (y) and Ha has two openly disjoint ({yl,y3}, ys)-

dipaths, P, and p3, where pi has origin yi, i = 1, 3. Let a be an in-

termediate vertex of Ha which is adjacent to y/2. Suppose there exists

a vertex cl which is on every ({y3,y4}, {y 5,a})-dipath of Ha. Since

1 < d+(y4), Corollary 2.1 implies Ha has an two disjoint ({Y3,Y4},
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{y2, y5})-dipaths. Since H, is in P(y4, y3, yl; y5, y2), these dipaths give
a (y4 -b ys, y3 -- y2 )-linkage (q4, q3). If pi and q3 are disjoint, then we
contradict the fact that Ha is in P(y4, y/3, yl; y5, y2). Let x, be the first
vertex of q3 on pi. Then cl is on q3fy3, xI], pl [xl, y5]. Since cl is on q4
and P3, c 1 is not on q3 or pl[yi,ys). Thus, cl = y5. By Corollary 2.1,
H. has a ({y 3,y 4 },a)-dipath, and so cl 9L ys. Therefore, Theorem 2.3
implies that H, has two disjoint ({y3, y4}, {a, y5})-dipaths. Since H, is
in 1•(y4, y3, yl; Y5, Y2), these dipaths give a (y4 -* y, y3 - a)-linkage.

0

THEOREM 8.3. If G has an Rk-reduction to H in Rl, then G E Xt.

PROOF. Let (H,, HO, H, ) be an Hi-decomposition of H with t-separator
(yi,y2,y3,y4, y5) and let Y ={Yi, y2, y3, y4,y.5}. Let Rk be contracted to p in
H.

Case 1. Suppose p V Y. Then p is an intermediate vertex of Hi, for some
i in {a,3, -y}. We can then show that G E ?i by using Lemma 7.6 with
(ZI, Z2, Z3 , Z4 , Z) = (y1, Y2, y 3 , y4, ys).

Case 2. Suppose p = yl. Since Nj (y1 ) _ V(Hp), N (u) U N, (v) _ V(HO -
yi). Hence, there are distinct vertices w, and z, in V(HO - yl) such that w1u
and zlv are in A(G). By Corollary 2.1, there are two disjoint ({y4, y5}, {wl, zl})-
dipaths in HO. Without loss of generality, HO has a (y5 --+ w1 , y4 -- zi)-linkage
(pi,q1).

Suppose there exists w-2 in V(H., - yi) and z2 in V(H 0 - yi) such that u'W2

and v'Z2 are in A(G). By Lemma 8.2 (iii), (iv) there is a (y3 --+ y5, z2 -- y2)-

linkage (p2,q2) in H0 and a (W2 --+ y3, y2 - y4)-linkage (p3,q3 ) in H., . But then

P,,u',U'w2,P 3 ,P 2 ,Piwru and PvP,v'z2 , q2 ,q 3 ,q 1,ziv are disjoint dicycles of G.
Suppose there exists W3 in V(H 0 ) - {yi,7y2} and z3 in V(H,) - {yi,y3} such
that u'w 3 and vez 3 are in A(G). By Corollary 2.1, there exists a (w3, yO)-dipath
p4 in H0 and a (z 3 ,Y4 )-dipath q4 in H-,. But then Puu,,u'w3,P4,p1,w1u and

P v", vz 3 , q4, q,, z v are disjoint dicycles of G.
By Lemmas 4.2 (i) and 8.2 (i), y, is adjacent to intermediate vertices of H0 and

H1, . It then follows from the previous paragraph that either N+ (v') = {Y3, u'}

or N+(u') = {y2,v'}. If Ng(v') = {y3 ,u.}, then we can show that G E R-
by using Lemma 7.6 with (ZlZ 2 ,Z 3 ,Z 4 ,Z5) = (u',y2,y 3 ,y 4 ,y5). Similarly, if
N+(u') = {y2,v'}, then we can show G E R.

Case 3. Suppose p = y5. By Lemma 4.2 (iii), 1 _< daH.(y4) or 1 < d-(y 2 ).
Without loss of generality, we may assume 1 5 d+, (y4).

Suppose dj(y 2) = 0. Then (H0 , Hy, HO) is an ?Y-decomposition of H with
74-separator (Y4, Y5, Y3, Y1, Y2). Now Lemma 8.1 with (41,z2, Z3, Z4, Z) = (Y4, Y5,

y3, /, y,2) allows us to choose Y2 so that H, has two openly disjoint ({y3, y41,
y2)-dipaths. Therefore, if djO (y2) = 0, then H0 has two openly disjoint ({y3, y4 },
y2)-dipaths.
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If H, does not have two openly disjoint ({yi, y3}, ys)-dipaths, then Lemma 8.1
implies there is an intermediate vertex z of H,, such that H has an W-decom-
position with 1f-separator (yi, y2, y3, y4,z). Then we have case 1. Therefore,
we may assume H0 has two openly disjoint ({yi, y3}, y5)-dipaths.

If v is not adjacent from any intermediate vertex of H,, then we can show
that G E WI by using Lemma 7.6 with (zI, z2 , Z3, Z4, Z,5 ) = (Y1,Y2, Y3, y 4 ,U).

Therefore, we may assume v is adjacent from an intermediate vertex of H,.
Similarly, the same holds for u.

By Corollary 2.1, H0 has a ({yI, y3}, x)-dipath, for every intermediate vertex
x. This fact and the conclusions of the previous two paragraphs can be used
to find intermediate vertices w4 and z4 of H0 such that W4U and z4v are in
A(G) and there are two disjoint ({yi, y3}, {W4, z4 })-dipaths p5 and q5 of H0 .
We may assume (p5 , qs) is a (y, --+ w4, y3 -+ z4)-linkage. Similarly, we can find
intermediate vertices w5 and z5 of HO such that u'w 5 and v'5 are in A(G) and
there are two disjoint ({w 5 , z.}, {yi, y3})-dipaths P6 and q6 of H,6. If (P6, q6) is a
(w5 -- yl,z5 -4 y3)-linkage then Puu,,u'w5,p 6 ,p5, w4u and P~v,, Vz 5, q6 , q5 , z 4 v

are disjoint dicycles of G. Therefore, we may assume (p6, q6) is a (w5 - Y3, Z5
Yl )-linkage.

Case 3.a. Suppose dH, (y2) = 0. Therefore, H, has two openly disjoint
({y3, Y4}, y2)-dipaths.

Suppose there exists a vertex x on all ({y3, y4},{W4, z4 })-dipaths in H,.
Then x E V(q5), and so x V V(p 5 ). Since there are two openly disjoint

({Y3, V4 }, y2)-dipaths, there exists such a dipath r 4 such that x i V(r 4). Then
r4 and p5 intersect, otherwise, (r 4 , [ps, w4 ys]) is either a (y4 --4 y2, Yi --+ y5)-

linkage or a (y3 -4 y2, y, -- y5)-linkage of H0 . But then r 4 U p5 contains a
({y3, y4}, w4)-dipath which does not include x. Therefore, H, has two disjoint

(Y3, Y14}, {W4, z4})-dipaths p7 and q7 by Theorem 2.3.
Suppose (p7,q7) is a (y4 - w4 ,y3 --* z4 )-linkage. By Corollary 2.1, H, has

a (w4, y2)-dipath P8 and a (z4, y2)-dipath q8. If P8 does not intersect q7, then
([p7,p8],[q7, z4y5]) is a (y4 - y2, y3 -- y5)-linkage of H.. Thus, Ps and q7
intersect, and so there is a (w 4 , z4)-dipath in H,, If q8 does not intersect p5,
then ([q%, q8J, [p5 , w4y2J) is a (y3 - y2,y, -- ys)-linkage of H0 . Thus, qs and
P5 intersect, and so there is a (z4, w4)-dipath in H0 . But H, is acyclic, and so
it cannot have a (w4, z4 )-dipath and a (z4, w4)-dipath. Therefore, (PT, q7 ) is a
(Y3 -- W4, Y4 -* z4 )-liukage.

By Lemmas 8.2 (i) and Corollary 2.1, HR has a (yi, y4)-dipath r 2. But then

P0,1', u1w 5 , P6, P7, w4u and P,,, vz 5, q6, r 2 , q7, z4v are disjoint dicycles of G.
Case 3.b. Suppose 1 < dO(y2). By assumption, 1 <: a•ff(y4).
Suppose there exists a vertex x on all ({y3, y14}, ys)-dipaths of H, such that

x y y5. Then x E V(q 5), and so x 0 V(p5 ). Since 1 < daj(y 4), there exists
two disjoint ({y3, Y4}, {Y2, y5})-dipaths pg and q9 in H. by Corollary 2.1. Since
H. is in P(y4,y3 , y1 ;y5 , y2), we may assume (pg,qg) is a (y3 - y2,y4 -- ys)-
linkage. Then x E V(qg), and so x ig V(pg). Then p5 and pg intersect, otherwise,
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([P5 , w4y5],P 9 ) is a (Y1 -- Y5,Y3 - y2)-linkage of H,. But then p5 Up9 contains
a ({y3, y4}, y5 )-dipath which does not include x. Therefore, H,, has two openly
disjoint (Qy3, y4}, y5)-dipaths by Theorem 2.3.

Since all vertices adjacent to y5 are in V(H 0 ), both u and v are adjacent from
vertices in V(H 0 ) - {y5}. By Corollary 2.1, H•, has a ({y 1,y 3},x)-dipath, for

every intermediate vertex x. These two facts and the conclusion of the previous
paragraph can be used to find vertices w6 and z6 in V(H 0 ) - {y5} such that w6u
and z6v are in A(G) and there are two disjoint ({y3, y4}, {w 6, z6 })-dipaths pl0
and q1o of H,.

If (plo, q1o) is a (y3 -* w6, y4 --+ z6)-linkage, then Puu,, u'w5 , P6, Plo, w6u and
Pvv, VI5, q6, r 2, qI0, z6v are disjoint dicycles of G. Therefore, we may assume
(plo, q1o) is a (Y4 --+ W6, Y3 --+ z6 )-linkage. Similarly, we can find vertices w7
and Z7 in V(HO) - {y5} such that UW7 and vz 7 are in A(G) and there exists
a (w7 --* Y2, Z7 --+ yl)-linkage (pll, qi1). By i and iv of Lemma 7.2, H,, has a

(Y2 - Y4, Y1 -' y3)-linkage (P12, q12). But then P,,,, u'w7 , PI1, P12, PIO, WOU
and Pvm,, V'ZT, q11, q12, q10, z6v are disjoint dicycles of G.

Case 4. Suppose p = y2. If d' (y4) = 0, then (H.,, H, H,,) is an 7H-
decomposition of H with 1-f-separator (yi, y3, Y2,Y, Y4). Now we have case 3.
Therefore, we may assume that 1 <d (Y4).

Since N,+(y2) _ V(H.,), there are distinct vertices w9 and zg in V(H., - Y2)
such that u'w9 and v'z 9 are in A(G). Without loss of generality, Corollary 2.1
implies that Hy has a (w9 -+ y3, z --+ y4)-linkage (P14, q14).

Let ws be in V(H0 )-{y 1 ,y2} and z8 be in V(Hp)-{y 2}. Suppose w8u and zsv
are in A(G). Since 1 < d+ (y4) and H0, has two openly disjoint ({y3, Y, }, y5)-
dipaths, Lemma 7.2vi implies the existence of a (y3 -- w8,Y4 --* ys)-linkage

(p13, q13) in H.. Since z8 y y/4, there is a (y5,zs)-dipath r 7 in Ho by Corollary
2.1. 9ut then Puu,0,u'w,P 14,P 13,w8u and Pv'z I v9,q14, q13, r7, z8v are disjoint
dicycles of G. Suppose wsv and z8u are in A(G). Since there exist two openly
disjoint ({y3, Y, }, y5)-dipaths in H,, Lemma 7.2v implies the existence of a (y3 --

Ys5,Yl - w8)-linkage (pl5,ql5) in H,. By Corollary 2.1, there are two disjoint
({y4, y,5}, {fyi, z8})-dipaths p 16 and q16 in Hp. If (P16 , q16) is a (?,. -4 yl, y4 -- Z)-

linkage, then (p16, [qio, z8y21) is a (y5 --+ y, y4 -- y2 )-linkage of H3. Therefore,

(P16, q16) is a (Y5 - z8, y4 -- yj)-linkage. But then P-' ,u'gw9, P14, P15, P16, z8U

and P,,, , v'z9 , q14, q16, q15, w 8v are disjoint dicycles of G.

The preceding paragraph implies that (V(H 0 ) U V(Ho))- {yl, y2} does not
intersect both Nj(u) and Nj(v). We also know that y2 (and hence u or v)
is adjacent from vertices in both V(H 0 ) - {yi,yl2 and V(H0 ) - {y21. It
follows that Nj(v) = {u, y,} and for every w in Njj(y 2) - {Yl}, wu E A(G).
We can then show that G E R- by using Lemma 6.6 with (zr, z2, Z3, Z4, Z5) =

(y1,u,y 3 ,y 4,Y5 ). [iE
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9. A Polynomial Algorithm

We now present a polynomial algorithm which either finds 2 disjoint dicycles
in a digraph G or shows that G is intercyclic. In §3, we showed that this problem
ca, .;asily be reduced to digraphs in reduced form. Hence, we may assume G is
in reduced form.

The algorithm requires the following subroutine. When applied to a digraph
G in reduced form, the subroutine will have four possible outcomes. It will Aither
find two disjoint dicycles of G, show that G is in M, find an Rk-reduction to a
digraph H in reduced form, or find an arc reduction to a digraph II in reduced
form.

First, we determine if G has a contractible arc. ( It is easy to show that
every intercyclic digraph in reduced form has a contractible arc using the main
theorem. Hence, if G has no contractible arc, then we know immediately that
G is not intercyclic. But if this is the case, we still have to find two disjoint
dicycles. )

Suppose G has no contractible arc and no 2-dicycle. Then Lemma 4.1 shows
that there is an arc reduction at every arc. Let H be obtained from G by an arc
reduction.

Suppose G has no contractible arc and G has a 2-dicycle xy, yx. If G- {x, y} is
acyclic, then it has a &surce z. But then x(yz) is contractible. Hence, G - {x, y}
has a dicycle. Such a dicycle C is very easy to find. Then C and xy, yx are
disjoint dicycles of G.

Suppose G has a contractible arc. Then the proof of Lemma 4.2 can be used
tn find an Rk-reduction of G to a digraph H, find two disjoint dicycles of G, nr
show that G is in M.

We now require a second subroutine. Suppose H is obtained from G using the
Ci-t subroutine. If H is intercyclic, then suppose we know the structure of II.
If i is not interc3 .Aic, then suppose we have found two disjoint dicycles of H.
When applied to H, the second subroutine will either show that G is intercyclic
and give its structure, or it will find two disjoint dicycles of G.

If we have found two disjoint dicycles of H, then it is easy to find two disjoint
Ce: ycles of G.

Suppose H is intercyclic and we know the structure of H. If H is obtained
from G using an Rk-reduction, then the results and proofs of §6 and §7 can be
used to either show that G is intercyclic and give its structure, or to find two
disjoint dicycles of G. If H is obtained from G using an arc-reduction, then the
results and proofs of §5 can be used to find two disjoint dicycles of G.

The two subroutines can now be used to construct the algorithm. First we
find a sequence of digraphs G = Go,... , G, in reduced form such that Gi is
obtained from Gi- 1 using the first subroutine, i = 1,... ,n, and GC is in M
or we have found two disjoint dicycles in G,. Then the second subroutine is
sequentially applied to Gn,... , Go to either show that G is intercyclic and give
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its structure, or to find two disjoint dicycles of G.

10. Arc-intercyclic Digraphs

A digraph is arc-intercyclic if it does not have two arc-disjoint dicycles. We
say that a digraph is in arc-reduced form if it is strongly-connected and loopless,
does not have parallel arcs incident with a vertex of indegree or outdegree 1,
and does not have two adjacent vertices which both have indegree I or both
have outdegree 1. Arc-reduced form will play the same role for arc-intercyclic
digraphs as reduced form does for intercyclic digraphs.

Before stating the main theorem, we first show that the problem of deter-
mining if a digraph is arc-intercyclic can easily be reduced to the problem of
determining if a digraph in arc-reduced form is arc-intercyclic.

Suppose we wish to determine if a digraph G is arc-intercyclic. As with
intercyclic digraphs, we may assume G is strongly-connected and has a dicycle.
There are simple reductions that can sometimes be performed on G to give a
digraph H with fewer arcs such that G is arc-intercyclic if and only if H is arc-
intercyclic. If ux and xv are the only arcs incident with vertex x, then G can
be reduced by removing x and adding a new arc from u to v. If parallel arcs
are incident to (respectively, incident from) a vertex of outdegree 1 (respectively,
indegree 1), then G can be reduced by removing one of the parallel arcs. If
vertices u and v have outdegree 1 and G has an arc e from u to v, then G
can be reduced by contracting e. (This reduction can result in new parallel
arcs.) We get a similar reduction if there exist adjacent vertices with indegree
1. We refer to these reductions as trivial reductions. It is easy to see that G
is strongly-connected if and only if H is strongly-connected, and that G has a
k-arc transversal if and only if H has a k-arc transversal.

Suppose K is obtained from G via a sequence of trivial reductions and sup-
pose K has no trivial reductions. Then K is strongly-connected, and K is
arc-intercyclic if and only if G is arc-intercyclic. It is easy to show that G has
a 1-arc transversal if and only if K has only one arc. In this case, G is clearly
arc-intercyclic. Therefore, we may assume that neither G nor K has a 1-arc
transversal and that K has at least two arcs. If K has a loop e, then K[cJ
and any dicycle of K - e are arc-disjoint dicycles of K, and so K and G are
arc-intercyclic. Hence, we can assume that K is loopless. Since K is strongly-
connected, loopless, and has no trivial reductions, K is in arc-reduced form.
Thus, we have reduced the problem of determining if G is arc-intercyclic to the
problem of determining if the digraph K in arc-reduced form is arc-intercyclic.
We note that if we can show that K is not arc-intercyclic and can find two arc-
disjoint dicycles of K, then it is easy to find two arc-disjoint dicycles of G by
reversing the process of trivial reductions.

In the next theorem we show that there is a natural bijection between vertex-
intercyclic digraphs in reduced form and arc-intercyclic digraphs in reduced form.
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The characterization of vertex-intercyclic digraphs will then give a characteriza-
tion of arc-intercyclic digraphs.

A perfect matching of a digraph is a subset M of its arc set such that M
contains no loops and every vertex is incident with exactly one arc in M.

THEOREM 10.1. G is an arc-intercyclic digraph in arc-reduced form if and
only if G can be obtained from a vertex-intercyclic digraph H in reduced form by
splitting all the vertices of H.

PROOF. Suppose G is obtained from a vertex-intercyclic digraph H in reduced
form by splitting all the vertices of H. For every x in V(H), let x- and x+ be
the vertices of G corresponding to x. Let C 1 and C2 be dicycles of G. If a dicycle
of G uses x- or x+, then it must use x-x+. Hence, C1 and C2 correspond to
dicycles of H. Then these dicycles of H have a rommon vertex v. Hence, C1

and C2 both use v-v+. Therefore, G is arc-intercyclic.
We now show that G is in reduced form. Since H is strongly-connected,

is G. The method of construction of G precludes loops. Every vertex of G 1
indegree or outdegree at least 2 because every vertex of H has indegree and
outdegree at least 2. Since H has no parallel arcs, neither does G. Suppose G
has vertices u and v with outdegree 1 and there is an arc e from u to v. Since
u and v have outdegree 1, they have indegree at least 2, and so u -- y- and
v = z- for some y and z in V(H). But y- is only adjacent to y+. Thus, G does
not have adjacent vertices of outdegree 1. Similarly, G does not have adjacent
vertices of indegree 1. Therefore, G is in reduced form.

Conversely, let G be an arc-intercyclic digraph in reduced form. First we
prove that every vertex of G has indegree 1 or outdegree 1. Suppose G has a
vertex x with indegree and outdegree at least 2. Let G' be obtained from G by
dividing x. If G' has 2 arc-disjoint (x+, x-)-dipaths, then they correspond to
arc-disjoint dicycles of G. Thus, Theorem 2.3 implies that G' has an arc e such
that G' - e has no (x+, x-)-dipath. Let U (respectively, V) be the set of all
vertices u such that there exists an (x+, u)-dipath (respectively, (u, x-)-dipath)
in G' - e. Then U and V are disjoint, and so G'[U] and G'[V] cannot both have
dicycles. We may assume G'[U] is acyclic. Let z be a sink of G'I[U]. It is easy
to see that if u is a vertex in U and u is adjacent to w in G' - e, then w is in U.
Hence, e is the only outgoing arc of z in G'. Since x+ has outdegree at least 2 in
G', x+ - z, and so we may choose a sink y of G'[U] - z. Then y is only adjacent
to z in G'. But now we can contradict the fact that G is in reduced form. If
there is only one arc from y to z, then G can be reduced by contracting that arc.
If there are at least 2 arcs from y to z, then G can be reduced by removing one
of the arcs.

Let X- (respectively, X+) be the set of vertices with outdegree I (respectively,
indegree 1). Since G is in reduced form and no vertex of G has both indegree
and outdegree at least 2, V(G) is the disjoint union of X+ and X-. Let M be
the set of arcs of G from a vertex in X- to a vertex in X+. If G[X+] or G[X-]
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has an arc e, then G can be reduced by contracting e. It follows with a bit of
thought that M is a perfect matching between X+ and X-. For every x- in
X-, let ex be the arc in M incident from x- and let x+ be the end of ex in X+.

Let H be obtained from G be contracting all the arcs in M. It now suf-
fices to show that H is a vertex-intercyclic digraph in reduced form. If H
has vertex-disjoint dicycles, then they correspond to vertex-disjoint (and, hence,
arc-disjoint) dicycles of G. Thus, H is vertex-intercyclic. Since G is strongly-
connected, so is H. For every ex in M, let x be the vertex of H corresponding to

x-, x+, and ex. Since M is a perfect matching of G, every vertex of H is of this
form. For every vertex x of H, 2 < d-(x-) = d-(x) and 2 < d+(x+) = d+H(x).

If H has parallel arcs from x to y, then G has parallel arcs from x+ to y-. But
then G can be reduced by removing one of the arcs from x+ to y-. Suppose H
has a loop at vertex x. Then H - x is acyclic. Let w be a sink of H - x. Since w
can only be adjacent to x and since H has no parallel arcs, d+(w) < 1. Hence,
H is loopless. Therefore, H is in reduced form. Therefore, G is obtained from a
vertex-intercyclic digraph in reduced form by splitting all its vertices. (J
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Eulerian Trails Through a Set of Terminals
in Specific, Unique and All Orders

JORGEN BANG-JENSEN AND SVATOPLUK POLJAK

Abstract

Let G be an eulerian digraph and X be a set of terminals (speci-
fied vertices). We consider the question of whether or not G admits
an eulerian trail visiting the terminals (i) in a specific (pre-given)
order, (ii) in unique order, and (iii) in any required order.

The problem (ii) was solved earlier by Ibaraki and Poijak. Here
we show that an instance (G, X) which is infeasible for problem

(iii) and is minimal with respect to edge contractions must have
restricted degrees of vertices.

We also formulate some topological obstructions for problem (i),
which arise from certain embeddings of G on a surface. The studied
problems are closely related with linking problems in digraphs.

1 Eulerian trail problems

A digraph G = (V, E) consists of a set V of vertices and a set E of directed

edges. For technical reasons we allow multiple parallel edges in the same

direction, but loops are excluded. A digraph G is said to be eulerian if

its underlying undirected graph is connected and d+(v) = d-(v) for every

vertex v, where d- (v) and d+ (v) denote the in- and out-degree of a vertex

v. A digraph G is strongly connected if for every ordered pair of distinct

vertices x, y there exists a directed path in G with endvertices x, y.
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A sequence T = (vo, el,vi, e2, v 2,. .. Vt-, et, vt) such that ej is a di-
rected edge from vertex vi-1 to vi, i = 1,... , k, and all ei's are distinct,
is called a trail. If VO = Vk, a trail is called closed. An eulerian trail is a
trail containing all edges of G.

It is well known that every eulerian digraph admits an eulerian trail.
We study a more specific problem - existence of trails going through some
specified vertices in a pre-specified order. Let xj, ... , xk be a k-tuple of
(not necessarily distinct) vertices which will be called terminals. We say
that a trail T = (vo, el, vi, e2, v 2 ,... I vti, et, vt) visits the terminals in
the order xl,...,Xk if x1 = Vil,X2 = vi2 ,...,Xk = Vik for some 0 < il -_
... • i< <t. (We do not exclude some additional occurences of terminals
in a trail. In general, a trail may visit given terminals in several different
orders.) Since a trail visiting the terminals x1, X2, ... , xk in the given
order can be extended to a closed trail, there exists a trail visiting the
terminals in any order which is a cyclic rotation of x1, X2, .. . , xk. Based
on the following lemma, we could restrict ourselves only to eulerian trails.
However, it is convenient to work also with non-eulerian trails.

LEMMA 1. 1 Let G be an eulerian digraph. Assume that there is a trail
visiting some terminals in the order xj,... , xk. Then there exists an eu-
lerian trail visiting the terminals in the same order. 0

We will consider the following three problems on eulerian trails.

Specific Trail Problem (ST-problem).

INSTANCE: An eulerian digraph G and an ordered k-tuple of terminals
X1, • • •, Xk.

QUESTION: Does there exist a trail visiting the terminals in the order
Xl1i .. • Xk?

Unique Trail Problem (UT-problem).

INSTANCE: An eulerian digraph G and a k-tuple of terminals X1 ,. x.k

QUESTION: Do all eulerian trails visit the terminals in the same cyclical
order?
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All Trail Problem (AT-problem).

INSTANCE: An eulerian digraph G and a k-tuple of terminals Xl, ... xk

QUESTION: Does there exist, for every permutation 7r of {1(... k} a trail
visiting the terminals in the order Xi(l),... • •,x(k)?

Let us remark that if two or more terminals in the UT-problem are lo-
cated in the same vertex, then there are always several cyclical orders for
visiting the terminals, i.e. a necessary (but not sufficient) condition for
the existence of unique order is that the terminals are located in distinct
vertices. We will denote by k-ST. k-UT and k-AT the corresponding prob-
lems when the number of terminals is restricted to k. The ST-problem
seems to be the most important among the three problems, since it is
equivalent to the weak linking problem (see Lemma 3.1). However, the
remaining two problems occur naturally in the study of the ST-problem.
Some of the above problems have already been studied in [6], and the
following results were obtained.

"* The UT-problem is polynomially solvable.

"* The 3-ST-problem is polynomially solvable.

"* The ST-problem is NP-complete.

Further, it has been conjectured in [6] that the k-ST-problem is poly-
nomial for any fixed k. It is easy to see that for k = 3, the problems 3-ST,
3-UT, and 3-AT are equivalent. The reason is that for k = 3 there are
only two distinct cyclical orders of terminals, (x1, X2, X3) and (x1, X3, X2),

Moreover, we may assume that one eulerian trail T of G is already given
(since it may be constructed by a polynomial time algorithm). The trail
T visits the terminals in one of the possible orders, say (XI, X2, X3). Hence
the question to decide is whether there is a trail visiting the terminals in
the other order. Our next goal is to find a solution for the 4-ST-problem,
and in this note we present some partial results on it.

Let us remark that a related problem of constrained eulerian trails
was formulated by W. R. Pulleyblank and 1. A. Tomlin [7] in connection
with a helicopter schedulling problem. An instance of their problem is a
triple (G, v, A) where G is an undirected eulerian graph, v a base node,
and A a set of directed arcs (which are not part of G). The task is to find
an eulerian trail, starting and ending at v, such that for each precedence
arc from A, the first visit to the tail precedes the last visit to the head.
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The paper is organized as follows. In Section 2 we recall a solution
of the UT-problem of [6] in a slightly different formulation. In Section 3
we prove a result on vertex degrees of minimal infeasible AT-instances.
In the last section, we formulate some topological obstructions for the
4-ST-problem, as a generalization of 3-ST-problem.

2 The Unique Trail Problem.

In this section we recall the solution of the UT-problem, since it suggests
a possible approach to the remaining two problems which will be followed
in the consecutive sections.

We introduce the operation of contraction of (G, X), which will be
also used later in other sections. Let G/e denote the graph obtained from
G by contracting an edge e. We admit contraction of an edge e even if
both ends of e are terminals. The contraction does not change the set X
of terminals, because we allow more terminals to be located in the same
vertex. Clearly, if (G, X) admits several cyclic orders of visiting terminals,
then (G/e, X) admits several cyclic orders as well, but the converse need
not be true. (In particular, (G/e, X) admits several cyclic orders when
both ends of e are terminals.) We say that (G, X) is UT-minimal, if
(G, X) admits a unique cyclical order of visiting terminals by an eulerian
trail, but (G/e, X) admits several orders whenever an edge is contracted.

THEOREM 2.1 [6] Let (G, X) be a UT-minimal instance. Then
(i) d+(x) = d-(x) = 1 for every terminal x, and d+(u) = d-(u) = 2

for every non-terminal u,
(ii) G admits a planar representation such that every face is a directed

cycle, and
(iii) all terminals lie on one common face.

Observe that the condition (ii) is equivalent with the property that the
four edges incident to a non-terminal vertex u are oriented alternatively
out of and in to the vertex u (in the planar representation).

The condition of minimality can be replaced by a more technical no-
tion of irreducibility. Let us say that an instance (G, X) is 2-irreducible
if there is no subset S, ISI > 1, of vertices such that one of the following
holds.

(i) 16+(S)I = 16-(S)I <_ 2, < S > is connected and S n X = 0, or
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(ii) 16+(S)I = 165(S)I = 1, and IS n XI = 1.
Here 6-(S) (and b+(S)) denote the set of edges from V\S to S (and from
S to V \ S), and < S > the subgraph of G induced by S. For a subset
S of V we let G/S denote the digraph obtained from G by contracting
S into one vertex s in such a way that all edges between S and V - S
in G now go between s and V - S and possible loops are deleted. Note
that G/S is eulerian whenever G is eulerian. It is not difficult to see the
following

LEMMA 2.2 Let (G, X) be an instance of the UT-problem which admits
a unique order, and S be a subset satisfying one of (i) and (ii). Then

(G/S, X) admits a unique order as well. 0

It is also easy to see that G/S can be realized by a series of edge con-

tractions, and hence every minimal UT-instance is 2-irreducible. Thus,
the following theorem is a generalization of the previous one.

THEOREM 2.3 [61 Let (G, X) be a UT-instance which is 2-irreducible and
admits eulerian trail with unique order of terminals. Then (i), (ii) and
(iii) of Theorem 2.1 hold. C1

The polynomial time algorithm for the UT-problem is a consequence
of Theorem 2.3. The algorithm proposed in [6] consists of the following
steps. (1) Reduce an instance (G, X) to an 2-irreducible one. (This can
be done by an application of the network flow algorithm.) (2) Check
the degree conditions. (3) Using a planarity test, decide whether G has a
planar drawing, and if yes, then test the remaining conditions of Theorem
2.3. (The planar drawing is unique for 2-irreducible UT-instances which
admit unique cyclical order to visit terminals, see [6J.)

REMARK. The notion of 2-irreducibility formulated here is weaker than
the notion of irreducibility used in [6] where it was required, in addition,
that (G, X) does not contain any non-terminal vertex of in- and out-
degree one. However, using the general definition of irreducibility given
just before Theorem 3.3 we can see that this additional condition would
be automatically satisfied by any AT-infeasible and irreducible instance.

3 Degree Conditions on Minimal Instances.

The purpose of this section is present an upper bound on degrees of an
AT-minimal instance (as in section 2 minimality is with respect to edge
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contractions). We also need to recall a connection between the eulerian
trail problems and the weak linking problem.

The weak k-linking problem consists of deciding whether or not k
given pairs of terminals (SI, t0),..., (sk, tk) can be connected by a col-
lection of edge disjoint paths in a digraph G. Note that it is an easy
consequence of Edmonds' branching theorem [2] that a digraph G is k-
edge-linked, i.e. has a weak k-linking for any choice of the terminals
(s1, tI) ,... , (Sk, tk), if and only if G is k-edge-connected. (We recall that
a digraph is k-edge-connected if G \ E' is strongly connected whenever a
set E' of at most k - 1 edges is deleted.) Still the weak k-linking problem
is known to be NP-complete already for k = 2 by a result of [3]. The
problem is known to be polynomially solvable in some special cases.

"* G is acyclic and k fixed (see (3]).

"* G is a tournament, or more generaly, a semi-complete digraph, and
k = 2 (see [1]),

"* G + H, where H is the demand digraph, is acyclic and planar (see
[4]),

"* G + H is eulerian, and k = 3 (see [6]).

Let us recall that the demand digraph is the digraph consisting of
the demand edges tisi, i = 1,..., k. We study the weak linking problem
when G + H is an eulerian digraph where G is the supply graph and H
the demand graph. This restricted version is called the Eulerian weak
k-linking problem.

The problem is easy for k = 2 (see [4]).A solution for k = 3 has been
given in [6], since we have

LEMMA 3.1 The k-ST-problem is equivalent to the Eulerian weak k-linking
problem.

PROOF. The k - ST problem is a special case of the Eulerian k-weak
linking problem by the following reduction. Let (G, xl,.. ., xk) be an
instance of the k - ST-problem with si = xi and ti = xi+1 , i = 1,. . . , k.

Conversely, given an instance G, (Si, ti),. . ., (sk, tk) where G + H is
eulerian, we construct an instance of the k - ST-problem as follows. Let
G be a graph obtained from G by adding new vertices x 1 ,. . . , xk, and
directed edges xisi, tixi+l, i = 1,..., k. Clearly, C is an eulerian digraph,
and it admits a closed trail visiting the terminals in the order x1 ,.. xk
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if and only if G admits a weak k-linking for the prescribed pairs (si, ti)
i = 1,... ,k, of terminals. El

Let G be a digraph and S = (sl,...,sk) and T = (ti.,tk) two ol-

lections of terminals (the terminals need not be distinct). Let us say that
an instance (G, S,T) is linked if, for every permutation 7r of {1,. . .,k}
there exists a weak linking connecting terminals (s1, t4(1)),.. ., (sk, t=(k)).

We will call an instance (G, S, T) eulerian if the digraph G + H is
eulerian, where H is a demand digraph consisting of the edges tr(i)si, i =

1,..., k for arbitrary permutation 7r.
Equivalently, (G, S, T) is eulerian if G is (weakly) connected and

16-(u)l + I{i: si =ul = I6+(u)I + Il{i: = u}I

for every vertex u of G. For a subset U of vertices, let d(U) = I-(U)I +
Ili : E U1. In particular, d(u) = 16-(u)I + {{i : = ?lf. Clearly,
d(U) = 16+(U)I + I{i : ti E UI for an eulerian instance (G, S, T).

We introduce a more general notion of reducibility as a generalization
of 2-reducibility, which was used in the solution of the UT-problem. Let
us say that a subset U is d(U)-reducible, if (< U >, A, B) is linked where
< U > denotes the subgraph of G induced by U, A = (a,,... ,ad(U))
and B = (b,. .. ,bd(U)) are collections of "new" terminals where every

ai denotes either a head of an edge from 6-(U) or an "old" terminal si
which is located in U, and similarly, every bi denote either a tail of an
edge from 6d+(U) or an "old" terminal tj which is located in U.

LEMMA 3.2 Let (G, S, T) be an eulerian instance, and U a d(U)-reducible
subset. Then (G, S, T) is linked if and only if the contraction (G/U, S, T)
is linked.

PROOF. Clearly, if (G, S, T) is linked, then any contraction is linked as
well. Conversely, we show that (G, S, T) is linked provided (G/U, S, T) is
linked. Let ii denote the vertex of G/U obtained by contracting the set
U. For sake of clarity, assume that there are no terminals in U.

Let 7r be a given permutation, and let P1
1,..., Pk be a weak linking in

G/U connecting the prescribed pairs of terminals. We may assume that
every path Pi goes at most once through the vertex ii, and let a'fi and
fibs be the edges on path Pi incident to ft. Then, there are edges a~aj and
bib• entering and leaving U in G. By our assumption, < U > contains
a linking Qi,. . . , Qk connecting terminals ai, bi. Now, we can insert Qi
into Pi' in order to obtain a linking in G. -
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Let us say that an eulerian instance (G, S, T) is irreducible, if it does
not contain a r-reducible subset for any r < k - 1, where k = ISF = ITI.

THEOREM 3.3 Let (G, S, T), ISI = ITI = k, be an eulerian instance which
is irreducible and not linked. Then d(u) < k - 1 for every vertex u of G.

PROOF. We will use the induction on k. Clearly, the statement is true
for k = 1, 2, since every instance of this size is linked. Let k > 3, and
assume that d(u) > k for some vertex u. We distinguish two cases.

Case (i) Assume that there exists a collection P1, ... , Pk of k edge
disjoint paths from sl,... , sk to u such that Pi starts at si. Then, using
the assumption that the instance (G, S, T) is eulerian, there exist also
paths P,..., P from u to tl, .,tk, such that Pl,..., Pk, P•,...,Pk are
mutually edge disjoint. The existence of the paths P,... , Pk is ensured
by the following claim, where 6 = G + H.

CLAIM 3.4 Let C be an eulerian digraph. Assume that P1,...,Pk are
edge disjoint paths from x 1 ,. . . , xk to u. Then there exist a collection
P•,..., Pk of edge disjoint paths from u to Xl,..., Xk in G\ (E(PI) U... U

E(Pk)).

PROOF. Assume that P, .... , Pk' do not exist. By Menger's Theorem,
there exists a set W not containing u such that the number of edges
entering W in G \ (E(P 1 ) U ... U E(Pk)) is less then the number of xi's
in W. This contradicts with the fact that (C is eulerian and contains the
paths P1 ,..., Pk. This proves the claim.

Now, it is easy to show that (G, S, T) is linked. Let 7r be a given
permutation. Then (Pi, P,'(i)), i = 1,... , k, is an (si, t,(i))-linking.

Case (ii) Assume that the paths P1 ,..., Pk do not exist. Then, by
Menger's Theorem, there exists a set W not containing u and such that
the number of terminals si in W exceeds 16+(W)1. Set p = j{i : si E W}I,
and let U = V \ W be the complement of W. Then the number of si's in
U is k-p. Since 16+(W)l = 16-(U)l < p, and hence d(U) _< k- 1, we may
use the assumption on the irreducibility of U. It is easy to see that the
irreducibility of (G, S, T) implies that (< U >, A, B) is not linked, where
A and B were introduced in the definition of irreducibility. We also have
that JUJ > 1, since U contains u, and d(u) > k while d(U) < k.

CLAIM 3.5 The instance (< U >, A, B) is irreducible.
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The proof of the claim follows from our assumption that (G, S, T) is
irreducible, and the fact that, for every u E U, d(u) is the same in < U >
and G, since we add a new terminal for any edge entering or leaving U.

Thus, we conclude that (< U >, A, B) is irreducible and not linked.

Hence, du(v) < k - 2 for every vertex v of < U >, by the induction

hypothesis, where du denotes the d with respect to (< U >, A, B). How-
ever, dv(v) = d(v), and hence d(u) < k - 2, a contradiction. EJ

Let (G, X) be an instance of an AT-problem. Let us say that (G, X)

is AT-minimal, if (G, X) does not admit an eulerian trail visiting the
terminals for every given order, but (Gle, X) does whenever an edge e is
contracted.

COROLLARY 3.6 Let (G, X) be AT-minimal. Then d+(u) : k - 1 for
every non-terminal u, and d+(x) < k - 2 for every terminal x.

PROOF. Set S = T = X and apply Theorem 3.3 to (G, S, T). Since

(G, X) is AT-minimal, (G, S, T) is (k - 1)-irreducible, becaase any set-
contraction can be realized as a sequence of edge contractions. Clearly,

we have d(u) = d+ (u) for every non-terminal vertex, and d(x) Ž d+ (x) + 1
for every terminal. (In fact, d+(x) is decreased by the number of termi-
nals located at the vertex.) 0

4 Topological obstructions

The purpose of this section is to formulate some necessary conditions

for the existence of trails in specific order. Two necessary combinatorial

conditions, namely the directed cut criterion and the covering criterion,
have been formulated by A. Frank in [4] for the probli .i of weak k- linking
(the formulation of the problem was recalled in Section 3). Let G and H
denote the supply and the demand graph, respectively. A directed cycle

in G + H is called good if it contains exactly one demand edge.

DIRECTED CUT CRITERION. d+(S) > d- (S) for every S c V.

COVERING CRITERION. There is no subset of edges of less than k
edges covering all good cycles of G + H.

It is easy to see that the covering criterion is stronger than the former
directed cut criterion. However, these criteria seem to be too weah to
certificate the infeasibility in most cases. We propose to investigate a
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different ',ype of conditions, based(l on the existence of certain topological
embeddings. This approach has been succesful to provide the full solution
of the UT-problem the special case of which is the 3-ST-problenm. Let us
recall the topological criterion for this special case.

PROPOSrrION .1.1 Let C be an (.uacran digraph and xlx2, rj a triple
of terminals, such that d+ (xi) = 1, i = 1, 2, 3, and d+ (u) = 2 for every
non-termniral u. Assume that G has a planar drawing such that

(i) the terrminals are located on one common, face which is a directed
cycle going through the terminals "n the ora,,r X:,, x2, X I. and

(ii) for every non-ter7ninal vertex u, the four edges incident to it are
oriented alternatively out ( ad in.

Then G does not admit a trail visiting the terninals in the order
.r I, .X2, 13.

PRooF. Let F be the face containg the terminals. For a contradiction,
assume that there is a troil T visiting the terminals in the required order
X 1, X2, x1. Let P1 and P 2 denote the segment of T from xI to X2, an' x2

to x3, respectively. Let xlul be the unique edge leaving xl, and 11212 be
the unique edg, entering X2. Clearly, xI uI and 112X2 are the first and the
last edge of paths Pl. Let PIL'at, IL21 be the >-egment of P1 between these
two vertices, and let FtuI,u21 the directed path of the face F from 7_,
0 U2. Then P [uIL, n 2] U Ful, '1121 is a closed curve which separates the

plane into two regions, one containirn x.2 and the other one containing
"a. Hence P2 and P1 niust have a common vertex, say z. But the edges
ncident to :-, which all belong to P1 and P.F, are not oriented alternatively

out and in, which contradicts to the part (ii) of the lemma. 11

It. has been shown in setion 2 that every infeasible instance (G, xl, x2.

xr) of the 3-ST-problem can be embedded in the plane to meet the condi-
tions of Proposition 4.1. It is natural to extend the criterion of Proposition
-1. 1 to the k-ST-problem with k > 3. In particular, we have

PROPOSITION 4.2 Let G be an euleriart digraph and xr, X2,X3,x.1 be ter-
vtinals such that d+(xi) = 1, i = 1,2,3,4 and d+(u) = 2 for every non-
terminal u. Assume that G has a drawing on a surface S such that

(i) For every non-ter'minal vertex u, the four edges incident to it are
oriented alternatiavly out and in;

and one of the following (ii) or (iii) is satisfied
(ii) S is the plane, the terminats ;rl and x1 are are located on a com-

mon face F1 ? the terrMn.'11ls Xt2 and X4 are are located on a common face
F2 (distinct fromr F1), and the fr,-,. q F1 and F-2 have the same orientation;
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(iii) S is the projective plane, the four terminals are located on one
common face which is a directed cycle going through the terminals in the

order X4, X3. X2, iX I

Then G does riot admit a trail visiting the terminals in the order x1. X2,

X3, X4. 0

PROPOSITION 4.3 Let G be an eulerian digraph and X1,X2,rX3,X4,x5 be
terminals terminals such that d+(xi) = 1,i = 1,.... 5 anid d+(u) = 2 for
every non-terminal u. Assume that G has a drawing on the torus such

that
(i) For every non-terminal vertex u, the four edges incident to it are

oriented alternatively out and in; and
(ii) the five terminals are located on one common face which is a

directed cycle going through the terminals in the order X5, X4, X3. X2, XIL.

Then G does not admit a trail visiting the terminals in the order x1, X2,

X3, X4, X5.- E

Let (G, xi, X2, ... ,xk) be an instance of the k-ST-problem. Obviously,

a trail T visiting the terminals in the order xl,.. •, Xk cannot exist unless
there exists, for every i = I,..., k a trail Ti visiting the k - 1 terminals

X1.... Xi-1, Xi+I,..., xk in that order. However, it has been shown in [5]
that for every k there exists an infeasible instance (Gx1, X2,.. Xk) for
which all trails Ti, i = 1,..., k, exist. This shows that the k-ST-problem
cannot be solved by an inspection of (k - 1)-subcases.

Finally, let us summarize the partial results on the 4-ST-problem. Let

(G, x 1, X23, X4) be a given instance of the problem. First of all, we may
check whether all instances (G, X2, X3, X4), (G, xl, x3, X4), (G, xI, X2, X4),

and (G, xI, xI, x 3 ) of 3-ST-problem are feasible. If not, (G, x1, x 2,x 3 , x 4)

is not feasible. As a next step, we contract every subset U which is
3-reducible. This can be done efficiently, because we may use the polyno-
mial time algorithm of [6] for the 3-ST-problem as a subroutine. Hence

assume that (G, x1, x 2, x 3 ,x 4 ) is 3-irreducible. Now, we can apply corol-
lary 3.6. If there exists either a non-terminal vertex u with indegree at

least 4, or a terminal vertex xi with indegree at least 3, then the instance
is feasible. If the in-degrees of non-terminals and terminals are 2 and 1,
respectively, we can apply the criterion of proposition 4.2, and test the

infeasibility by embedding to the plane or the projective plane. However,

it is easy to find instances of 4-ST-problem which cannot be decided by
this procedure.
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2-Reducible Cycles Containing Two Specified
Edges in (2k + 1)-Edge-Connected Graphs

HARUKO OKAMURA

ABSTRACT. Let G be a k-edge-connected graph and letf, and f 2 be edges. We call a cycle
C (not necessarily simple) 2-reducible if G -E (C) is (k - 2)-edge-connected. The author 151
has shown that if k is even, then G has a 2-reducible cycle containing f, and f2- When k is
odd, this is not always true. We here characterize the graphs G having no 2-reducible cycle
containing f, and f2, when the distance between f, and f2 is I or there is a (k + ))-cut
containingf, and f2-

1. Introduction

We consider finite undirected multigraphs without loops. Let G be a graph and let
V(G) and E(G) be the set of vertices and edges of G, respectively. We allow
repetition of vertices (but not edges) in a path or cycle. k is a natural number. When
k is fixed and G is k-edge-connected, we call a cycle (or path) C 2-reducible if
G - E (C) is (k - 2)-edge-connected.

Let G be k-edge-connected (k > 2) and let f, and f2 be edges. It is known that G
has a 2-reducible cycle containing f, and f 2, if fI and f 2 are incident (Okamura [4]
and Mader [31) or if k is even (Okamura r5]). On the other hand, when k is odd, we
can construct G having vertices x and y at distance 3 such that each cycle containing x
and y is not 2-reducible (Huck and Okamura [1]). We here characterize the graphs G
having no 2-reducible cycle containing fl and f2 in two further cases in theorems 1
and 2.

Let X, Y, ( x, y) c V(G) and X r Y = 0. We often denote (x) by x. We denote
by a(X, Y; G) the set of edges with one end in X and the other in Y, and define
a(X; G):=3(X, V(G)-X; G), e(X, Y: G) := I d(X, Y; G)I and
e(X; G) I a(X; G)I . We denote by X(X, Y; G) the maximum number of edge-
disjoint paths between X and Y. We set X(X; G):= min X(x, y; G) and

x. ye X
X(G) =(V(G); G). In such expressions we often omit G. For X c V(G), GIX
denotes the graph obtained from G by identifying all the vertices in X and deleting
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any resulting loops. In G IX, X denotes the corresponding new vertex and for
Y c V(G) with Y n X ý* 0, Y denotes (Y - X) u {XJ.

It is useful to relax slightly the hypothesis that G is k-edge-connected, and to
permit up to two so-called "dummy" vertices which may not be k-edge-connected to
the other vertices. More precisely, we say that S c_ V(G) is dummy, if (1.1) below
holds.

(1,1) S= 0, {b), or {b, b'}, e(b')=k-1, e(b, b')e(b)/2, ande(b)<Sk-I is
even.

The theorems become simpler if X(G) > k (when the dummy S is empty), but the
forms with dummies will be useful in applications.

Our first main result is as follows.

Theorem 1. Suppose that k > 5 is odd, V(G) = T u W u S (disjoint union),
X(V(G)- S) >_k, T= 1U1 , u 2, v1, v2), I TI =4, S is dummy, f e D(uj, vi) (i = 1, 2)
and fo E a(v 1 , v2). Then (1), (2) and (3) below are equivalent.

(1) For each cycle C containing fI and f2, X(V (G) - S; G - E (C)) - k - 3.

(2) There are X, Y g V(G) such that X n T= {v 1, u2, Y r T= (v1 , v2) and
e (X) = e (Y) = k + 1.

(3) V(G) = X 1 U X 2 u YI u Y2 (disjoint union),for i= 1, 2, e (X,) =e (Y,) =k,
ui E Xi, vi r Yi, e (Xi, Yi) = l and,

e(X , Y2) =e(X2, Y1) =e(Y 1, Y2) =e(X 1,X 2) =(k- 1)/2.

U1  U2

21 2
Figure 1.

Theorem 1 does not hold for k = 3; for example, if k = 3, then the graph in figure
1 satisfies (1), but does not satisfy (2) and (3). Incidentally, for k 2! 2 even and S = 0,
an analogue to theorem I is already known; it is shown in [61 that (1.2) and (1.3)
below are equivalent.

(1.2) G has no 2-reducible cycle containing f 1 , fo and f2.

(1.3) Thereisan X c V(G) such thatX n T= {vI, u2 ) ande(X)<_k + 1.

Our second main result is the following.

Theorem 2. Suppose that:
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(i) k > 5 is odd, V(G) = W u S (disjoint union), S is dummy and
X(V (G) - S) > k,

(ii) V(G)=X u Y, X n Y=Oande(X)=k+ 1,

(iii) {UI, U2} -X n W, {vI, V2} cYr' Wandf c a(ui, vi)(i= 1, 2).

Then (1) and (2) below are equivalent.

(1) For each cycle C containingf, and]f2 , X(V(G) - S; G - E(C)) < k - 3.

(2) There exist X1,X 2,Y 1 ,Y 2 so that X=X 1 uX 2,Y=Y 1 uY 2 (disjoint
union), andfor i = 1, 2, e (Xi) = e (Yi) = k, ui E Xi, vi E Yi, e (Xi, Y,) = l and

e(X 1, X 2)=e(Y 1, Y2)=e(X1, Y2) =e(X2, YI)=(k- 1)/2.

Theorem 2 also does not hold for k = 3; again, the graph in figure 1 is a
counterexample, with X = (u1 , U2, x1 , x21 and Y = {v1, v2 }.

To prove theorems I and 2, we need some lemmas, the following theorems 3, 4
and 5.

Theorem 3. If k >_ 5 is odd, V (G) = T u W u S (disjoint union), X(V (G) - S) >- k,
T= {u, v1, v2) (where possibly vI = v2), S is dummy, fi E t(u, vi) (i = 1, 2) and
e(u) = k + 1, then one of the following holds.

(1) There is a cycle C containing f, and f2 such that
X(V(G)-S; G -E(C))>k -2 and X(a, u; G -E(C))=k - I for some
a E V(G) - u.

(2) V(G) = {u) uX 1 uX 2 (disjoint union), where vi E Xi and e(Xi)=k for
i = 1,2.

(3) V(G) = (u, b) u Xu I X 2 (disjoint union), where for i = 1, 2, vi E Xi,
e(Xi) =k, 4•< e(b)•<k - 3, e(Xi, u) < (k - 1)/2, e(Xi u {b)) _>k + 2, e(b, u) > 2and
e(X 1 , X 2 ) -> 3.

Again, theorem 3 does not hold when k = 3; the graph in figure 2 is a
counterexample.

u

Figure 2

Theorem 4. Suppose that:

(i) k Ž> 5 is odd, V(G) = W u S u S' (disjoint union), X(V(G) - S - S') 2! k, S
is dummy and each vertex in S' has even degree,
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(ii) V(G)=X u Y, X r• Y=0,e(X)=k+ 1, X-W=S andY- W=S',

(iii) (ul, u2} g X n W, (vI, v 2 ) g Y n Wand f, E a(u, vi) (i = 1, 2),

(iv) F c E (G IX), F r a(X; G IX) = {fl, f2} and

X(V(G) - S - S'; G/X - F) >_ k - 2.

Then one of the following holds.

(1) G 1Y has a cycle C containing f, and f 2 such that

X(V(G) - S - S'; G - F - E (C)) > k - 2,

(2) X=X 1 uX 2,X 1 nX 2 =0,where fori=1,2,uiEXiande(XJ)=k.

In theorem 4, we usually take F to be the edge set of a path or cycle in G IX
containing fi and f 2.

Theorem 5. If k -e 3 is odd, V(G) = T u W u S (disjoint union), X(V(G) - S) - k,
T= {u1 , u 2 , u 3), I TI =3, fcz a(u4 , ui+,) (i = 1, 2), and each vertex in S has even
degree, then there are distinct edges gi (1 _< i <. (k - 1)/2) in a(u 1) - f 1, such that for
1lý i<•(k-1)/2, G has a cycle Ci containing fJ , f2 and gi with
X(V (G) - S ; G - E (Qi) -e k - 2.

We set ox:= (k - 1)/2. Let X, {x, y) gV(G). We set X:=V(G)-X, and
N(x; G):= (a E V(G)- xI e (a, x) > 0). We write P = P [x y] Ito denote that.P is a
path between x and y, and for a, b c V (P), P (a, b) denotes the subpath between a
and b. We sometimes give a cycle by the edge set. If IXI _>2, 1XI 2!2, and
e (X) k, then we call X and a(X) a k-set and a k-cut respectively. If X is a k-set and
e(Z) k + I for each Z cX with Z #X and I Z I - 2, then we call X a minimal k-set.
For a, b E N(x) with a * b, and for f E a(x, a) and g r a(x, b), G ,b and Gft '
denote the graph (V(G), (E(G)u {h))- (f, gJ), and is called a lifting of G at x,
where h is a new edge between a and b. We call Gfa9 admissible if for each
y *z E V(G)-x, X(y, z; Gf"g)=X(y, z;G). ForK c V(G) uE(G), wedefine

C(G, K, X) = C(G, K, X, k -2)

:= (C I C is a cycle in G meeting K such thatX•(X; G - E (C)) k - 2}

and we define C(G, K) = C(G, K, k - 2) C(G, K, X, k - 2) where
X= (XE V(G)I e(x)Ž_k}.

2. Preliminaries

We prepare some lemmas. Lemma I is obvious, and lemma 2 follows by simple
counting.

Lemma 1. If {x,y)cgXc:V(G),zEX, e(X)=k, and e(z,X;G)=k, then
X(x, y; G IX) = X(x, y; G).

Lemma 2. If X, Y c V(G), then
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e(X-Y)+e(Y-X)=e(X)+e(Y)-2e(X nY, X u Y),

e(XrdY)+e(XuY)=e(X)+e(Y)-2e(X-Y, Y-X).

Lemma 3. (Mader [2]). If x E V(G), e(x) •3, I N(x)l ->2, and x is not a cut-vertex,
then there is an admissible lifting of G at x.

Lemma 4. (Mader [31). If X(G) Ž2, u E V(G), and [fl,f2) g a(u), then there is a
cycle C containing fl, f2 such that for each x • y E V (G),
X(x, y; G -E(C)) > X(x, y; G)- 2.

Lemma 5. Suppose that

(i) k _> 3 is odd, V(G) = X u Y, X n Y =0 and e (X) = k + 1,

(ii) W c V(G), W n X * 0 # W r Y, X(W; G IX) > k, X(W; G1Y) k and each
vertex in W has even degree, and

(iii) either (a) or (b) below holds:

(a) for some x E X, X(x, Y) = k + 1,

(b) there is no Z c_ X such that e (Z) = k and e (Z, Y) = (k + 1)/2.

Then X(W; G) > k.

Proof. First we prove that (a) implies (b). If (b) does not hold, then for some
Z, g;X, e(Z 1)=k and e(Z1, Y)= (k + 1)/2. Let Z 2 =X-Z 1 ; then
e(Z 2)=e(Z 2, Y)+ e(Z 2 , Z 1)=k. For each x e X, e(x, Y)<_k and so (a) does not
hold. Thus (a) implies (b). Next we assume that (i), (ii) and (b) hold. It is easy to see
X(W)_>k- 1. Suppose that X(W)=k- 1. Then for some Z cV(G),
ZrnW•0•ZnW and e(Z)=k-1. We may assume that ZnXnW*O, for
otherwise ZnX r) W#O•and we may take Zinstead of Z. Now e(ZrnX)Ž>k. If
e(Z n X) is even, then e(ZrnX)>k+ 1 and by lemma 2,
e(ZuX)=e(Y-Z)<_k-1 and so Y-ZcW. Thus (YnZ)riW* and
e(YrnZ)_k. But e(Yr• Z)=e(Z-X)>k+ 1, since e(Y nZ) =c(Z) -e(Z rnX)
=--O(mod2). By lemma 2, e(X-Z)<k- I and X-ZgW, and so, ZrW=0, a
contradiction. Therefore e (Z n X) is odd. Now e (X - Z), e (Z - X) and e (Z u X)
are odd. By lemma 2 e(ZrnX)=e(Z-X)=k, and so
e (Z n X; Y) = e (Z - X; Y) = (k + 1)/2, which contradicts (b). Thus our assumption
that X(W) = k - I was false, and the result follows. N

Lemma 6. Suppose that k > 3 is odd, V (G) = W u. S' u S (disjoint union), S is
dummy, X(W) > k, X(V(G) - b) > k - 1, each vertex in S' u S has even degree,
{xt, x2 , x3 ) c N(b), A.(W; G"I'2) k and X(W; G' '3) < k (i = 1, 2). Then there
are disjoint X 1 , X 2, X 3 _ V(G) - b such that xi e Xi, e(X,)=k (1 _<i 3) and
e (Xi, X 3) = (k - I)/2 (i = 1, 2).

Proof. For i= 1, 2, there exists Yi - V(G)-b such that (xi, x3  Yi,
Y,rnW•0•YjrW and e(Y,)=k or k+l. Since X(W;Gb"x)>_k, we have
x1 (I Y2,x 2 d Y1, and if (YI uY 2)nW•0, then e(Yff Y2 )_k+2. Now
2k - 2• e(Y 1 - Y2) + e(Y 2 - Y 5) •2k by lemraa 2. Consequently, if
e(Y 1 - Y2)=e(Y2 - Y)=k, then e(Y 1 niY2, y•1 • Y2)= 1, e(Yi)=k + 1 (i = 1,2)
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and e(Y 1 nY 2 ) and e(Y 1 kJY 2) are odd. By lemma 2, e(Y 1 nY 2)=k,
e(Y1 U Y2) = k + 2 and the result holds. Thus we may assume that
e(Y 1 - Y2)=k - 1. Since Y I - Y2 Q S'u S, it follows that
Y 1 r)Y2 rW=YnW #0 and (Y UY 2)nW=Y 2 nW *0, and so
e(Y 2 nY 2 )Žk and C(Y1 uY 2)>k+2. By lemma 2, e(Yi)=k+I(i=1,2) and
e(Y 1 rn Y2)=k. Then e(Y 1 - Y2) is odd, acontradiction. M

3. Proof of Theorem 3

In this section (1), (2) and (3) denotes (1), (2) and (3) in theorem 3 respectively.
We will prove that if (1) does not hold, then (2*) below holds, by using induction on
E(G)I. A minimal counterexample G is considered. Let cc := (k - 1)/2.

(2*) V(G) -A uXI uX 2 (disjoint union), for i= 1,2, vi E Xj and e(Xi)=k,
andeitherA = (u},orA= {u, bl and e(b)<k- 3.

We denote by I(G, .) =I(G, u, flf2) the set of (C, a) satisfying (1), and we
denote by L(G, u) the set of (A, X1 , X 2) satisfying (2*).

(3.1) If(2*) holds, then (2) or (3) holds.

Proof. If A = {u), then (2) follows. Assume A = {u, b}. If e(X 2, u)=o(x 1 or
e(X 1u[b})=k, then (u,Xiu{b),X 2)EL(G,u), and so e(X,,u)<_ct and
e(Xiu(b})>k+2 (since it is odd) for i=1,2, and e(b)>4. By lemma 2
e(X 1) + e(X 2)=e(X1 u (b})+ e(X 2 U {b})-2e (b, u),and thuse(b, u)>2. But

e(A)=e(b)+e(u)-2e(b, u)<_(k-3)+(k+1)-4= 2k-6.

Hencee(X,A)<k -3(i= 1, 2)ande(X 1,X 2)>3. •

(3.2) Ghasnok-set,andif ISI =2,thene(S)>k + 1.

Proof Let XcV(G)-u be a k-set. By induction either I(G/X, u)*0 or
L(G!X, u)•O. Assume first that there is a (C 1,a)e I(GIX, u). If (v1 , v2) gX,
then by lemma 4 there - a C 2 E C(G IX, f 1 , f2}) and (C 2 , a) E I(G, u). If
{vI, V2} _a X, and C1 meets A, then we can extend C1 to a cycle in G by lemma 4
and I(G, u)#0. If L(G/X, u)*0, then clearly L(G, u)*0. Thus there is no
such X. If I SI = 2 and e (S)!< k - 1, then by (1.1), e (S) = k - 1 andX•(b', S) = k - 1.
Then either I(G/S, u) *•0 or there is (u, X 1, X 2) E L(G/S, u), and so (1) or (2*)
holds in G, a contradiction. •

(3.3) If x E (T u W) - u. then e(x) = k.

Proof If e(x) >/k + 1, then by (3.2) 4x, u)=k + I and by lemma 4, (1) follows, a
contradiction. U

(3.4) v, #v 2 ande(v 1 , v 2 )=O.

Proof If vI = v2 , then by (3.3) there is a vertex x # v1 of odd degree, and so
X(x, u; G - fl,f 2})=k - 1 by (3.2). Thus vI *v 2 . If there exists g e D(v, v2 ),
then let C := [f] , f2, g ). By (3.2) G - E(C) has no (k - 2)-cut, and so if there is an
XE V(G)- T with e(x)Žk- 1, then X(x, u;G-E(C))=k- I and I(G, u)•0.
Thus either V(G) = T, or V(G) = T u (b) and e(b) •_ k - 3. Hence (2*) follows, a
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contradiction. R

(3.5) IfucXc V(G)-{v1,v 2}andIXI > 2, thene(X)>Žk + 2.

Proof. By(3.2),e(X)_k+ 1. Assumee(X)=k+ 1; then X(u, X)=k+ 1. If there
exists (C,a) E(G/X,X), then X(u,a;G-E(C))=k-1 and by lemma 5,
X(TuW;G-E(C))=k-2, and so (C,a)EI(Gu). Thus there exists
(A, Y1 , Y2 ) E L(G/X, X) and e(Y 1, Y2) > 0. By (3.2), Y1 = {vj} (i = 1, 2), which
contradicts (3.4). N

(3.6) Ifb E S, then V(G) # T u (b) and either e (b, v 1) = 0 or e (b, v2) =0.

Proof. If V(G)=Tu {b), then by (3.4) e(b, vi)= a and e(u, vi)=cc+ I for
i = 1, 2, and so Iv 1, b) is a k-set, contrary to (3.2). Thus there exists x r W u S - b
with e(x) Žk - 1. Suppose that e(b, vI), e(b, v2) •0; let gi E a(b, vi) for i = 1, 2,
and let C:={ff,f 2,g 1,g2}. By (3.5) 4.(TuW;G-E(C))>k-2. Since
(C, x) d I(G, u), there is a (k + 2)-set X with (u, b) cX c V(G)- Iv1 , v 2, x).
Choose (X, x) such that I X I is minimum. Since k + 2 is odd, X has a vertex y of odd
degree, and so there is a (k +2)-set Y with (u, b) cYcV(G)- {v1 , v2, y}. By
lemma 2, e (X - Y) + e (Y - X)<5 2k - 4, and so Y - X = 0, contrary to the minimality
of I XI . Hence not both e(b, vj), e(b, v2) are non-zero. U

(3.7) S = 0.

Proof. Let b c S and N(b)= {x ,..., x•j. Then n >3 by (3.2). By lemma 3, for
some i •j, G•' " is admissible, say for (i, j) = (1, 2). By (3.5) e (b, u) < e (b)12, and
so we can choose x 1, x 2 from V(G)- u. If I-(G'-', u)• 0, then I (G, u) 0, a
contradiction; and so there is an (A, X 1, X2) E L (Gx" X2, u). We claim:

(3.7.1) (a) or (b) below holds:

(a) A ={u, b}, and for some (i, j) r {(1, 2), (2, 1)}, Xi vi),
(x1, x2, v})cXj, e(b, vi; G) > Oande(Xj; G)=k +2.

(b)A= (u}, for some (i, j)E {(1, 2), (2, 1)), b r Xi and Ix1, x 2 ) gXj, and
e(X 1; G)=e(X2 ; G)=k + 2.

For ifA = {u}, then we may let b r X1. By (3.2), {x1 , x 2) CX 2 and (b) follows.
IfA = {u, b), then we may letxl E X2. If x2 E X1, then e(Xi; G)=k(i = 1,2) and
by (3.2) Xi = (vi) (i = 1, 2). Thus V(G) = T u (b}, contrary to (3.6). Hence
x 2 E X 2, X 1 = {v , and e(X 2; G) =k + 2. Hence e(b, X2) - e(b)/2, for otherwise
(U, {vIJ, X 2 u (b})r L(G, u). If e(b, v 1)=0, then e(b, u)>e(b)12, contrary to
(3.5). This proves (3.7.1).

Assume that (a) or (b) holds in (3.7.1) with (i, j) = (1, 2). We can choose
X3 E XI rN(b). For if not, then (b) holds and X I- N(b)=O; but then
e (XI - b) <k, since e (b) _ 4, a contradiction. If (b) holds, then we choose
{x1 , X2 , X 1 , X2 J such that I X is minimum. We claim that X(T u W; G"') > k
for some i E 1, 2), say for i = 1. For otherwise by lemma 6 and (3.2),
e(x 4)=k(15i<_3) and e(xj,x 3)=a(i=l,2), and so N(x 3)={b,xlx 2},
x3 *v 1 , X1 >- 2 ande(XI - x 3)5 k + 2 - 3, acontradiction. We may alsoassume
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(3.7.2) xI €b' or X(T u W; G',"*') < k.

Let (B, Y 1, Y2) E L(G . X', u).

Case 1. (a) holds for both (A,XI,X 2) and (B,Y 1,Y 2). Now

x3 =v{l,{VI,xl) CYa,Y 2 =(v 2)ande(b,vi)>O(i=1,2),contraryto( 3 .6).

Case 2. (a) holds for (A, X1,X 2) and (b) holds for (B, Y1, Y2). Now

x 3 =v 1,{x 1 ,x 2 , v 2)}QX2, e(X 2)=e(Yt)=e(Y2)=k+2, {vj,x) gY, and

[b, v2 } C Y2. Thus Yi -X, = {vj) andbylemma2,

e(X 2 - Y 1) <e(Y1 ) +e(X 2)-e(Y 1 -X 2 )- 2-k +2.

If e(X 2 -Yl)=k, then by (3.2) X 2 -Y 1 = (v2}, and so Y2 = (b, v21. By (3.6),

e(b, v2)= 0 and e(Y 2)>k + 4, a contradiction. Thus e(X 2 - Y 1)= k + 2. Since

Y2 = {b) U (X2 - Y1 ), we have e(Y 2) = e(b) + e(X 2 - Yj) - 2e(b, X2 - Yj), and so

e(b, X 2 -Y 1 )=e(b)/2. Hence e(b, X2 )>e(b)/2+ I and e(X 2 u {b))•<
e (X 2) - 2 = k, contrary to (3.2).

Case 3. (b) holds for both (A, X 1 , X2) and (B, Y1 Y2). Let b E Y, and

{x1,x 3 ) Y. for (r, s) = (1, 2) or (2.1). Let Zi:=XIcnY,, Z2 :=X I1Ys,

Z3:= X2 r) Y,- and Z 4:=X 2 n Y,. If (r, s)=(2, 1), then v2 E Z 3. If (r, s)= (1, 2)

and Z3 = 0, then Y1 9X 1 -x 3, contrary to the minimality of I X,1. Thus Z3 • .
By lemma 2 we have

(3.7.3) For (i, j) = (1, 4), (4, 1),

e (Z2) + e (Z 3 ) = e (Z 2 u Z) + e (Z3 Zi) -2e (Zi, Z U })

= 2k + 4 - 2e (Zi, Zj u [u)).

Thus for (i, j) = (1, 4 ), (4 , 1), 2e (Zi, Zi u {u})• 2k + 4 - (2k - 1) = 5, and so

e(Z 1,Z 4)+e(Zp,u)<2 (p=l, 4 ). Since e(Z 1,Z 4)>e(b,xj)Ž-, we have
e (u, Zj) < 1 (i = 1, 4). By lemma 2

(3.7.4) e(Z4)+e(ZI {u})<e(Z2 UZ4) + e(V2 UZI U M)

= e (Z 2 U Z4) + e (Z 3 U Z4) = 2k + 4.

If (r, s)=(1,2), then [b, v} c;Z, and v2 E Z4 , and so e(Z 1)>k+1 and
e (Z 4) -> k, Heacc e e(Z u l{u }) >- e (ZI) + e (u) - 2e (ZI, u) > 2k > k + 5 , contrary to

(3.7.4). Thus (r, s)= (2, 1), v1 C Z2  and v2 - Z3 . Then e(Z I 1 u}
e(Z,)+ e(u) -2Ž>e(b)+k - 1_k + 3, and soe(Z4)-<k+ 1. Hencex 2 d Z4 (since
G"x'z is admissible) and x2 EZ 3. By (3.6), v1 1x 3 or v2 •x 2 , and so
e (Z2) + e (Z 3) 2k + 1. By (3.7.3), e (Z2) + e (Z 3) is even and <_ 2k + 2, and thus
e(Z 2)+e(Z 3 )=2k + 2, e(Z1, Z 4)= I ande(u, Zi)=e(u, Z4)= 0. By (3.7.4),

2k +4_e(Z4) +e(Z u {u})=e(Z 4 ) +e(Z1)+ e(u)

and so e (Z) + e(Z 4 ) <k + 3. Thus S = [b, b') where Z, = (b}, Z 4 = [b'), e(b) 4
and e(bI)=k-l. By (3.7.2), for some Zo0 -V(G)-b, (x2,x 3 1}-Zo,
Zo (T u W)• 0 and e (Zo) = k + 1. Now Zj - Zo * 0, i = 2 or 3 (for otherwise

ZO= (b, u} or {b, b', u }, and e (Zo) Ž- k + 5), say for i = 2. If for (i, j) = (2, 3) or (3,
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2), e (Z)=k and e (Zi) = k + 2, then by (3.2), e (u, Zj)•c cc and e (u, Zj) _ a• + 1,
which contradicts e(u)=k+ 1. Hence e(Z 2)=e(Z3)=k+ 1 and
e(u, Zi)=oa+lI(i=2,3). By lemma 2 e(Z 2 -Zo)=e(Zo-Z 2)=k and
e (Zo r Z 2, Z4 u Z2) = e (x3, b)= 1, and so Zo - Z 2 = {x2}. Thus
u d Zo, Z 2 - Zo = (v II and e(u, v1) =ct+ 1, contrary to (3.2). M

(3.8) W# 0, and ifxI *x 2 E W, thc, e (xl, x 2) = 0.

Proof. If W = 0, then by (3.7), V(G) = T and (2*) holds. Thus W # 0. Assume
x1 , x 2 E Wand g E a(x1 , x 2). In G -g, (xt, x 2) is considered as dummy. Assume
there exists (C 1, a) e I(G -g, u). If {x 1 , x 2 •) V(C 1) and
e({xi,x2};G-E(Ci))<k-3, then we replace the path P[x1 ,x 2] in C, with
u d V(P) by g in G and produce a cycle C in G; and if not, then let C:= C1 . Then
(C, a) E I(G, u), a contradiction. Thus I(G - g, u) = 0, and so there exists
(u, X1,X 2)e L(G-g, u). If {x1,x 2 ) 9X 1, then (U, XI,X 2)E L(G, u), and so
wemayletxi Xiande(Xi;G)=k+1(i=1,2). Wechoose {x 1,x 2 ,X 1 ,X 2) such
that I X I is minimum.

Case 1. 1XIJ =2.

Now e(vl,xl)=a and by (3.2), e(v 1,u)<a, and thus there is an
h1 I E(v 1 ,X 2). If for G1 :=G/(X1 u {u)), there exists
(C, a) E I(G1 , X1 u (u), h1 ,f 2), thenk(a, u; G -E(C)-fl)=k -I and (1) holds
in G; and if not, then by induction and (3.2), X2 = (v2, x 2} and hl E a(v, x2). For
h 2 E a(X2 , V2 ), let C:= {f,,f2, h1, h 2). Now e(u, x 2)=k-e(x2, {v 2, x1 , v})
< ca- 1, and thus e ({u, x 2 }))--k + 4, X(x1 , u;G- E(C))= k- I and (1) follows.

Case2. lxit >3.
If N(x 1)nX 1 = {v1}, then e(X 1 -xi)=k, contrary to (3.2). Thus for some

X3 E XI -{V1,X1 ), there are h Ea (X1 ,X 3) and (U, Y1, Y2) E L(G -h, u). Now
e(Y,;G)=k+ 1(i= 1,2) and Y1 -XI #0, since lxii is minimum. By lemma 2
e(X 1 -Y 1)=e(Y 1 -X 1)=k. Thus e(X I rY 1 ) and e(XIuYl) are odd. But
JX1 ) Y1I >- 2andby (3.2),e(X1 r) Yl )>k+2ande(XI u Y1)Ž>k +2, contrary to
lemma 2. This proves (3.8). U

By (3.3) I WI is even, by (3.7) and (3.8) we may let W= (X ,x 2}, and
N(xi) = T (i = 1, 2). If e(x 1 , u) < o, then for gi • a(x1, vi) (i = 1, 2),
X'(x2, u; G - (fl, f 2, g 1, g 2)) = k -I and (1) holds. Thus e (xi, u) = ot (i = 1, 2) ana
e(u, vi)= I (i= 1,2). Then e(vi,xj)=ca (i, j= 1, 2), and so e(x 1)=3ak•k+ 1, a
contradiction. This completes the proof of theorem 3. U

4. Proof of theorems 4 and 2

Let c := (k - 1)/2. First we prove theorem 4. If there is a cycle
C E C(G1Y, {f,,f2), W) such that X(a, Y; G/Y-E(C2))= k- 1, for some a E X,
then by lemma 5, X(W; G - F - E(C)) > k - 2; and if not, then by using theorem 3 in
GIY, either (2) in theorem 4 holds, orX = (b} uX 1 UX 2 (disjoint union), for i = 1,
2, UiEXj, e(Xi)=k,e(Xi, Y)<5o(, e(Xi ub})2tk+2 and e(X 1,X 2)_Ž3. Let
g C= (X 1,X 2). Now
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X(W; ((G/Y)/X 1) X 2 - {fl, f 2 , g }) -e k - 2

and by lemma 4 we can choose C E C(G /Y, {fl1, f2, g }, W). Let G 1 := (G /X )IX 2
and G2 :=Gl -F-E(C). In G2,X = {b, X1 ,X 2} and there is no Z cX such that
e(Z;G 2)=k -2 and e(Z, Y; G2)= z. Thus by lemma 5 with k -2 instead of k,
X(W;G 2)>kk-2. It is easy to see that A.(W;G-F-E(C))>Žk-2 and hence
theorem 4 is proved. U

Next we prove theorem 2. By lemma 4 there are C2 e C(G/X, {fl,f2}) and
C2 E C(G/Y, (fl,' f 2 ). Let C:= C1 u C2 (we construct the cycle C by combining
C1 and C2 in G). Assume that C 2(respectively,C 1 ) cannot be chosen such that
X(W; G -E(C))k -2. Then by theorem 4,X=X1 UX 2,Xj nX 2 =0, fori = 1,
2, ui E Xi and e (Xi) = k (respectively, Y = Yu u Y2, Y2 n Y2 = 0, for i = 1,2, vi c- Y
and e(Yi)=k). It easily follows that e(X 1,X 2)=e(Y1 , Y2)=a. Let GI be the
graph obtained from G by contracting Xi to ui and Y1 to v, (i = 1, 2). Then
V(G 1) = {X 1, X 2, Y1, Y2 ) and X(G 1 - E (C)):5 k - 3. Thus
e({X 1, Y2 }; G 1) =k + 1, and (2) in theorem 2 follows. 8

g g3

9g
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Figure 4
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5. Proof of theorem 5

We may assume that G is 2-connected, and we may assume

(5.1) e(u 2)=k or k + 1, ande(x)=kforeachx - W U {u 3}

Proof Let xE V(G) and a(;.)={(g I... g,). If x -u 2 (respectively, x=u 2,
gI =f,, and g 2 =f 2 ) and r > k + I (respectively, r >k + 2), then we replace x and
a(x) by the graph in Figure 3 (respectively, Figure 4), in which iieavy edges represent
(x = (k - 1)/2 parallel edges, producing a new graph G'. If the result holds in G', then
it also holds in G. N Let F(G) = F(G, T u W) := (g E a(u1)
-flI C(G, {If,f 2 , g}, T u W)#0}. We pzive i F (G)I >Ža by induction on
I E(G)I.

(5.2) IfX is a k-set with I X • T 1 1, then X T = [u1 .

Proof, Assume XnT*{(u j. Then IF(G/X)I >_a. For gE F(G/X) and
C1  C(G/X, {fl, f 2, g}), if a(X) n E(C 1 ) = {h1, h 2), then by lemma 4 there is a
C2 E C(G IX, {h1 , h2 }) and a cycle C1 I C 2 in G belonging tc, C(G, {f 1,f 2, g}).
Thus I F(G)I _Ža. •

(5.3) IfX g V (G), X r T = (U 2) and I X 1 >-2, then e (X) >_ k + 2.

Proof Otherwise by (5.2), e(X) =k + 1. Let g E F(GIX), aind
C E C(G IX, {fl,f 2, g}). Ife(u2)=k + 1, then X(u 2, X; G -E(C)) =k- 1; and if
e (u2) = k, then X - u 2 has a vertex x of odd degree and X(x, X; G - E (C)) = k - 1 by
(5.2). Thus X(T u W; G - E (C))= k - 2 by lemma 5. U

(5.4) S = 0.

Proof Assume x e S and e(X) Ž4. We may let I N(x)I _2. In an admissible
lifting G, (see lemma 3), the result holds. U

(5.5) If x 1 , x22 E W and h e a(xl, x2), then h is contained in a k-cut.

Proof. Suppose not; then I F(G -h, V(G)- {x1 ,x 2})l Ž>a. But for
g c F(G -h, V(G)- {x 1,x2)) and C1 E C(G-h, {f1,f2, g}), we can extend C1
to C in C(G, [f1,f2f, g)) (see the proof of (3.8)). U

(5.6) e(u 1)<k + 1.

Proof. If e (u1) > k + 2, then by lemma 3, there is an admissible lifting G at u1 .
Then X(V(G 1) - u 1; G 1) > k and e (u 1; G 1) > k, and thus X(G 1) > k and the result
holds in G 1. U

If G has a k-set, then by (5.2) let X be a minimal k-set with X n T = {u1 1. By
(5.5)foreLachx XX-u 1 ,,N(x)gc {ul) u . By(5.6),e ({ul}X)<2k-1,andso
IxI =2, _say X=ful,x). Then e(ul,x)=a+l. If gEF(GIX) for some
gE a(x,X), then d(u 1,x)gF(G), and if not, then F(G/X)gF(G). Thus
I F(G)J I >o and G has no k-set. By (5.5), for each x E W, N(x) =T. For each
g E a(u1 ) - a(u1 , u 2), G has a cycle C containing {f, .f2, g } of length 3 or 4. By
(5.3), ?,(G - E (C)) k - 2. Thus a(u 1) - 3(u 1, u2)c F (G) and e(u , u2)< a + 1
(for otherwise e ({u 1, u }) < k - 1). This completes the proof of theorem 5. U
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6. Proof of theorem 1

Let a := (k - 1)/2. We shall need the following.

Lemma 7. Suppose that

(i) k > 5 is odd, X(G) = k, G is k-regular, and G has no k-cut

(ii) V (G) = (v 1, v2} tu W (disjoint union), W * 0, fo E a(v 1 , v2) and for each
x, y E W, e(x, y)=Oor a

(iii)for each x, ye W and g E a(x, y), G -g has paths PI[v1, v2] and
P 2[vI, v 2] sutch that V(P 1)rn (P2)= {v 1, v 2), x E V(P 1), y E V(P 2), and
X(V(G) - [x, yl; G -g -E(P 1 uP 2))=k -2; and X(G -E(C 1 ))=k -3 for some
ic {1, 2) where C:, C2 are the cycles C1 :=PI(v1, x2) u P2 (Y, v2) U {fo, g) and
C 2 :=P 2 (v 1,y)UP.(x, v 2)u {fo, g}.

Then for some n>_2, W={x 1.... x}, e(xi, xi+,)=a (1-5i<n-1). for
(i, j)=(1, 2) or (2, 1), e(x 1 , vi)= 1 and e(x 1 , vj)=at, and for (r, s)= (1, 2) or
(2, 1),e(x., v,)= 1 and e(x., v,)=at.

Proof. We denote by Q(x, y) the set of (P1 , P 2, C 1, CD) given in (iii). Let
W=(x: ,....x•}; then n>2. Fer l<i!ýn, IN(xJ)I =3 and e(x,, {v 1 ,v 22)>O.

Since G - {v1 , v2) is connected, we may let e(xi, xi~l)=a (1 <i <n - 1). Let
(fP1, i' 2, C 1, C2) C '2(x1 , x 2).

Case 1. n > 3 and e (x 1, x,) = (x.

Suppose that two adjacent members of W are both adjacent to v1, say
e(x;, vI)= I (i = 1, 2). By the symmetry we may let X(G -E(C 1))=k -3. For
somep -_3, V(C 1 )= {vl,x 1 ,x 2 ... ,Xp, v 2 } ande(Z; G -E(C 1))=k-3 for some
ZcV(G)-V(P1 (x1 ,V 2)) with v1,x'CeZ. If Ia(Z)r'E(C1)I >6, then
e(Z; C - E(C 1)) - 3(a - 1) > k - 2, a contradiction, and so I a(Z) n E(C1 )1 = 4 and
e(Z; .) =k + I. Thus e(Z u [xl ))=k, a contradiction. Thus x 2, x 2 ,... - , ,XI are
adjacet alternately to v I and to v2 , and n is even and we may let e (xi, v I) = I for
od I 15i.n and e(xi, v2)=I for even 1•i!n. Now IE(C1 )I =4 and
X(G-E(C 1))=k-2. Thus X(G-EkC2))=k-3. For some 35p<,...,
V(C2)={VI,V2,Xq,...,x,,x x,...,xp}. For some (vl,xl} c ZcV(G)- {v2 ,x 2 },
e(Z; G -E(C 2))--k -3. Thus x, C Z, e(x,,, v 2)= 1, and so
e(Z; G - E (CA) _k- -2.

Case 2. n=2ore(xl,x,)=O.

Now V(P0)={v1 ,x 1 ,v 2}. By the symme,.y we may let e(x 2,v•)>O. If
e(G-E(C2))=k-3, then e(x l ,v 1 )=ct and e(x], v2) = 1. Thus
e(G-E(C1 ))=k-3. Hence, e(Z;G-E(C1 ))=k-3 for some Z with
{x 1,v 2 )}ZcV(G)- (v 1,x 2 -, Thus Ia(Z)r'E(C1 )I =4 and e(Z;G)=k+l.
Sincee(Z -xl) >k, we have e(x1 , v2 )= a-.

Now we prove theor, n 1. In what follows, (1), (2) and (3) denote (1), (2) and (3)
in theorem 1 respectively. Assu-ne (2) holds, and let
X1 :=YU Y,X 2 :=X -Y, Y, :=XrY, and Y2 :=Y--X. Then by lemma 2,
e(Xi) =,5 (Yi) = k (i = 1, 2) and (3) holds. It is easy to see that (3) implies (1) and (2).
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Thus it suffices to prove that if (6.1) below holds, then
C(G, {f 1,f2), T uW, k-2) *0.

(6.1) One of the following holds:

(i)foreachX cV(G)withXr)T= {vI,v 2 ),e(X)k+ 1.

(ii)foreachXr V(G)withXrtT= (v 1,u 2 },e(X)•k+ 1.

If v 1 is a cut-vertex and a block B contains fi but not fo and f2, then by lemma 4
there are C1 E C(B, (f,}) and C2 E C(G/V(B), (fJ, f2}); but then
C1 u C 2 e C(G, (fo, f1,f2)) as required. Thus if G is not 2-connected, then one
block B contains {f , f0, f2) and by induction the result holds in B, and so it also
holds in G. Therefore we may assume G is 2-connected and we may assume (see
(5.1))

(6.2) e(vi)=kork + I (i= 1,2)ande(x)=kforeachx (u1, U2) U W.

Let C* (G) = C* (G, f/1,f2)):=

{Ce C(G, {f1, f 2 })I C has no repeated vertices,

We will prove that if (6.1) holds, then C*(G) # 0, by induction on I E(G)I . By
using induction in G IS, it is easy to see

(6.3) If i SI = 2, thene(S)>_k + 1.

(6.4) IfX isak-set, then X r T = (ul, vl } or {U2, v2 }.

Proof Assume that I X r) TI 5 2 and X n T * (ui, vi) (i = 1, 2). By induction or
lemma 4, there is a C1 E C*(G IX). If I X r -% TI • 1, then we can construct a cycle
CE C*(G) from C1 (by using lemma 4 in GIX if E(C 1) r(X)# 0). If
I X r Tj = 2, then for C2 E C*(GIX), CI U C 2 E C*(G). U

(6.5) ifX cV(G)andXr T=fv1 ,u 2)or(v 1 , v 2J,thene(X)Ž>k+2.

Proof. Otherwise by (6.4) e(X)=k + 1. LetX n T= {IV, U2} (the proof is similar
for the case X r T= {v1, v2)). By theorem 2 and (6.4) V(G) =T and there are
g IE a(v 1, u 2) and g2 E a(uI, v2). By (6.1) we deduce that
X(T;G-(fl,g 1 ,f 2, g 2})=k-2. 0

By (6.5), we deduce-

(6.6) e(uI,u 2)=O.

(6.7) S = 0.

Proof If bE S and e(b)Ž_> 4, let N(b)= [x1 .... x,}. Then n >3 by (6.4). By
lemma 3 G" " is admissible for some 1 -<i *j -<n, say for (i, j) (1, 2). By (6.3)
we can choose x I, x 2 from T u W. For each 1 <i * j !5 n, let

Mi.) := {X • V(G)-b' {xi,xj} cX,e(X)=k +3, and X nT= (v1. u 2) or fu, v2 )).

If M 1.2 = 0, then there is a CI E C* (Gx 2). Let C2 be the corresponding cycle in
G. If C 2 is simple, then C2 E C*(G). Assume C2 is not simple. Iffo E E(C2 ),
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then a simple subcycleC 3 in C 2 with fo E E(C 3) belongs to C*(G). If fo d E(C 2 ),

then there are !wo edge-disjoint paths PI vI, v 2] and P2[vI, v2 1 in C2,
fi E'_(Pi) (i = 1, 2) and b e V(P1 ) n V(P 2). Then

P I(v I, b) ý.P2(b, V2)Q U{O) E C*(G),

Thus M 1,2  0 0. Choose X E M 1,2 such that I XI is maximum. We may let
XrT={vI,u2 1 and x3 EtX By (6.5) e(Xu b))>_k+2, and so
e(b, N (b)- X)_ Ž e(b)/2. Since e((b, x3})> k, it follows that IN(b)- X -2, say
x4 E N(b)- X.

(6.7.1) ?(T1 W; G'",') _ kfor some i, j with i = 1 or 2 and j= 3 or 4.

Otherwise by lemma 6, for some disjoint k-sets X1,X 2, X3 cV(G)-b,
xje Xi(1<i_•3) and e(X, X 3)=a(i=l,2), and for some disjoint k-sets
Y1, Y2 , Y3 c V(G)- b, xi E Yi (i = 1, 2), x 4 E Y3 and e(Yi, Y 3 ) = a (i = 1, 2).

Assume that for some rE (1,2, IX,,I Ž2. If IX, nTI = {ul, v}),then by lemma
2 e(X-X,)+e(X,-X)_<2k-1, a contradiction. Thus by (6.4) we may let
JX,1 =1 and X 2 r)T=fu2 ,v 2}. Now {u 1,b}QXuX 2 and by lemma 2,
e(Xc'X2)=k and e(XUX2 )=k+ 1. Then Xr X 2 = {u2 =x2) ande(X-X 2)is
odd, and so by lemma 2, e(X-X 2)=k and e(X 2 -X)=k+l. Thus

X-X 2 =(vl=xll and X3 cXUX 2 , since X1 ,X 2,X 3 are disjoint. Now
e(v 1,X)>_+3 and e(X-v 1 )<k, a contradiction. Hence IXJ IY, =1
(i = 1,2). If I X3 1 = 1, then e (x 3, X) =2a and e(X u {x3 }) - k, contrary to (6.4).
Thus I X3 Ž>2. If X3 nlT= {u2, v2}, then e(X-X 3,X 3 -X)Ž>e(v 1 , v2)> 1, and
soe(Xrn X 3)=k,e(XUX 3)=k+1,Xr-,X 3 ={u 2) and e({xj,x 2 ,X 3 - X) = 0.

Thus e(xi, u 2)= a (i=1,2) and e(X 3 -u 2 )<k, a contradiction. Hence
X 3 r•"-=(u 1 , v}. By lemma 2 e(X 3 -X)=k and X 3 -X= {x 3 =ul}. Similarly
X4 = u1, a contradiction. Now (6.7.1) is proved.

Assume X(T uW;G ')>_k, and let YE M 1 ,3. If Yr)T ={v1, u2), then
X - Y # 0, since I X I is maximum. By lemma 2

e (X - Y) + e (Y - X)< 2k +6-8= 2k -2,

a contradiction. It Y r T= {u1 , v2), then e(X - Y) + e(Y -X) 2k + 4. By (6.5)
e(X-Y)=e(Y-X)=k+2, and so e(Xn'Y) and e(XuY) are odd. Thus
e (X r) Y) Ž- k and e (X j Y) -> k + 2, contrary to lemma 2. This proves (6.7). U

There are V1, V12 gV(G) such that V, n T'= {vi) and e(Vi)<-k + 1 (i = 1,2)
((v,} and {v2) satisfy this condition). We choose Vi such that I Vii is maximum
(i = 1, 2). Then

(6.8) VI n V2 = 0, there is a path P*[u1, lid in G -- (VI u V2), and iffor i = 1,
Z c V(G), Z n T= {v,} ande(Z)<_k + 1, thenZ c V_
Proof. If VI r- V 2 •0, then by lemma 2 e(V, U V2) = k, contiary to (6.4). Assume

that V, u V• 2 separates u from u 2 . Now

e(V I V2 )=e(V 1 )+e(V 2)-2e(V1 ,V 2 )<52k

By (6.4), V(G)-- (VI u V-2)= (u, u 2 ), e(V,) =k + I (i = 1, 2) and e(V 1 , V?) = I.
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By (6.4), e (ui, Vj) = a + I (i = 1, 2) and e(ul, V2) = e(u 2, V 1 ) = a. For
(i, j) = (l, 2), (2,1), let Gi:=C/(Vju(uj)). We will prove that for

(i, j) = (1, 2), (2, 1), there exists Ci E C(Gi, (hi, fi}) for some hi E a(uj, Vi). For let

he a(u 2 , V1 ). We may assume that C(G1 , {h, f 11)=0, and so by theorem 2,

V, = {vi,x 1 ) and e(xl, V2 u {u2})= 1, and there exists g9 C-(u 2, vI) with

C(G1 , (g, f, }) ) 0 as required. Let hl, h 2 , C 1, C 2 be as above. We can choose
C1  and C 2  such that h2 e E(C1 ) and h, E E(C 2). Then

C 1 uC 2 e C(G, tfl,f 2 }). If Z-Vj #0, then V,-Z• O and by lemma 2

e (Z - V) + e (Vi - Z)• 2k - 2, contrary to (6.7). Thus Z g V, as required. N

In what follows, let P * [u 1, u21 be a path in G - (VI u V2).

(6.9) (i) or (ii) below does not hold:

(i) There isak-setX withX n T= {ul, v}).

(ii) There is a (k + 2)-set Y with Y r T= {v 1, U2).

Proof. Assume that both (i) and (ii) hold. By lemma 2 e (X - Y) = e (Y - X) = k.
Thus X-Y=IUfl}, Y-X={u 2 ) and e(X r'Y) and e(XuY) are even. Hence
e(XnY)=e(X uY )k+1. By (6.5) (X n Y) (k(X uY) separates uI from u 2,
which contradicts (6.8). U

(6.10) If x 1,x 2 r W, g=a(x1 ,x 2) and X(V(G)- x 1,x 2};G-g)=k, then
e (x I , x 2 ) = ox and G - g satisfies (6.1).

Proof. Assume e (x 1, x2) < Lx. If there exists C E C* (G - g, {f1 , f 2 }), then
k(G - E(C)) = k - 2, since e({x 1 , x 2}; G - E(C)) >k - 2. Thus this is not the case,
and G - g does not satisfy (6.1). For some X, Y c V(G), g e a(X) r)(Y),
Xr mT= {v 1 , U2}, Yr-)T= (v 1 , v2) and e(X)=e(Y)=k+2. We may letx, eX

andx 2 E X.

Case 1. x1 IE Y.

Let Z1 :=Xr' Y and Z2 :=XuY. By lemma 2, e(Z 1,Z 2)=2 and
e(X-Y)=(Y-X)=k and so X-Y={u 2 }, Y-X={v 2 ), e(u 2,v 2)=1 and
e(Z 1)=e(Z2) =k+ 1. Thus e(u 2,7Zi)=e(v 2 ,Zi)=a (i= 1,2). If there exists

Ce C(GZ 1 , {fhfof 2)), then X(G-E(C))=k-2, by lemma 5 and since

X(xj,Zj;G-E(C))=k- 1. Thus C(GIZI, {f,f 0 ,f 2 })=0. Lethj E a(u 2 ,Z 2 );

then k((G/Z 1 )/Z2 - (f, fo,f 2, h1})=k-2. Thusby theorem 4,Z 2 = (U1 ,x 2) and
a =e(u1,x 2)= e(u 2,x 2)=e(u1 , v 2). Let h2e a)(ul, v2) and h3 E a(u2 , ZD); then
).(GIZ 1 - {f 1,h 2,f 2 ,h 3 )=k-2, and so by theorem 4, Z 1 =(vj,x1 ) and

a=e(v1,x 1) =e(u2 , xj) =e(v2, vj). Then e({ul, v 2, v1}) =k,contrary to (6.4).

Case 2. x1 I' Y.

Let Z, :=Y-X and Z2 :=X-Y. By lemma 2, XnY=z{vj}, XuY={uj},
e(vl)=k, e(u 1, v 1)= 1, e(Z,)=e(Z2)=k +I and G isthe same type of graph as in
case 1. U

(6.11) If x 1, x2 E W, g C (x 1 , x 2) and X(V(G) - Ix1 , x 2 ); G - g) >-k, then
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(i) G -g has paths P I[vI, v 21 and P2[vI, v21 such that f, E E(Pi) (i = 1, 2).
V(P 1 ) Cr V(P 2 ) = (VI, V2 1, X, E V(PI) and x, E V(P 2)for (r, s)= (1, 2) or (2, 1),
and X(V(G)- {x I, x2); G -g -E (P1  P 2))=k -2; and

(ii)e(Z;G -E(C))=k-3 where C :=Pi(v1,x,)UP2(xs, v2) U {fO, g) in
G,for some Z c V(G) - V(P I(v2, Xr)) with V(P 2 (v1 , x,)) • Z.

Proof. By (6.10) G -g satisfies (6.1). Let C1 E C*(G -g), and let PdIvI, v2] and
P 2tvI,v 21 be two paths in C 1. If e({x 1,x 2 };G-E(C1))>-k-2, then
CI E C*(G), and so for (r, s)= (1, 2) or (2, 1), x, E V(P 1), x, E V(P 2), and we
may let fi EE (Pi) (i = 1, 2). 'or C given in (ii) X(G - E(C)) = k - 3, and thus (ii)
easily follows. U

We denote by Q(x 1, x2) the set of (P 1, P 2 C, Z) given in (6.11).

(6.12) IfX1 , X 2 are k-sets with Xi r) 7T {ui, vi} (i = 1, 2), then V (G) = Xu I X2.

Proof. Otherwise for some disjoint k-sets Y 1, Y2 with X cg Y, (i = 1, 2) and
V(G)*Y, uY 2, G1 :=(G/Y 1)1Y2 has no k-set (Y, might equal X4 ). Let
W1 :=W-Y 1 -Y 2 . Then W1 *0 and V(GI)=(Y 1,Y 2 )UW 1. By (6.10) and
(6.11) G I satisfies the condition of lemma 7. Thus W1 = -.., x,,), e (x,, xi+1) = (x
(1 < i < n - 1) and for (i, j) = (1, 2) or (2.1), e (x1, Y,) = and e (xI, YJ) = c, say for
(i, j) = (1, 2). Let (P 1, P 2, C, Z) E Q2(x 1, x 2). We can choose Z with
Y1 gZcV(G)-Y 2 , because otherwise X(G3 -E(C))>k-2 and
X(G -E(C)) >_k- 2. If x2 E V(P 1), thenxI E Z c V(G)-x 2 and

e (Z; G - E(C)) - e (Z - x1 ; G - E (C)) > k -2,

a contradiction. ThusxI E V(P 1), C(G/f"1, {fo, f1, h)) 0 for each h E a(xl, Y1)
and C(G/Y 2, {fo,f 2, g))= 0 for each g E a(xI, Y2).

Case 1. e (x,, Y 1) = 1 and e (x, Y2) = a.

Similarly C(GIY 2 , {fo, f2, g))= 0 for each g E a(x,, Y2 ), which contradicts
theorem 5.

Case2. e(x, Y1))=oxande(x,, Y2)=1.

By theorem 5, C(G/IY 2, {fo, f2, g}))0 for each g G a(Y2)-a(Y2, x 1)-fo,

and C(G/ '1 , (fo, fl,g})t0 for each g E D(Y1)- (Y1 ,x,)-fo. Thus
e(Y 1 ,Y 2)=I and n>_4. For some 2<_i,j<_n-1 with li-jI =1, there are
h, e a(xi, Y1 ) and h2 C )(xp, Y2). It is easy to see that for g E a(xi, xi),
?.(Gl - {fo, h 1, g, h2 ))= k -2. Thus C(G, (fo, f 1, h1, g, h 2,f 2)) #0, a
contradiction. E

(6.13) G has no k-cut.

Proof. Otherwise by (6.4) and (6.12) there are minimal k-sets X 1 , X 2 such that
Xin T= {u, vi) (i = 1,2) and V(G)=Xl UX 2. If I E(P*)rc(Xl)I >_3, then
starting from u 2 along P*, let y be the first vertex in X1. Now VI UX 2 does not
separate ul from y, since e(VhUX 2 )<(k+1)+k-2=2k -l. Thus we can
choose P * such that I E(P*)n8(X1)I = 1. If I V(P*)Cr-XI •<2 (i = 1, 2), then
X.(G -E(P*)- (f 1,f 0,f 2 })=k-2. Thus let {ul,y 1 ,y 22) V(P*) nX, and



2-REDUCIBLE CYCLES 275

e(uI,yI)> 0. Let D be a component containing yj and y 2 in G -(T uX 2), let
V(D)= {x I...,x.} (n _>2) and by (6.10), we may let e(xi,xj+ 1)= a (I :5i:5n - I).
Let (PI, P 2, C, Z) E 9(xI, x 2). We can choose Zin X1 .

Casel. n>3ande(xI,x,)=ct.

We may letx,=y1 and e(uj,x 1 )=l. Thenxie V(P 5) (i=l,2),x2 e Zand
x.dZ. Since e(Z;G-E(C))=k-3, we have e(x 2, X 2)=e(xAvj)=O, and so
e(x 2, vl)= I. Similarly e(x,, vj) = 1, a contradiction.

Case2. n=2ore(xj,xý)=O.

We will prove that (a) or (b) below holds.

(a) e(x 1, u 1)= I and e(xi, X 2)= ct.

(b) e(x, v1 I= otande(x1 ,X 2)= 1.

Assume first x1 E V(P 2 ). Then V(P 2 ) n X 1  {v 1,x}) g Z and x 2 d Z. Now
e(Z-xl;G-E(C))>k-2, and soe(xI,X 2)= I ande(xi, {ul, vl})=c. If there
exists g e a(xl, u1), then let C1 := tf0,fl,g) u PA(x1 , v 2). It follows that for
some Z 1 cg X 1, e (ZI; G - E(C 1))!5 k - 3, and {v 1, x 1 } c Z 1 9 X I -- uU1 , x 2), since
e(Z 1;G-E(C1 ))>e(Z1 ;G-E(C)). Bute(Z 1)=k+ l ande(x 1 ,Zl)>cx+2,and
so e(Z 1 -x 1 )<(k+1)-3, a contradiction. Thus e(xl,u 1)=O and (b) holds.
Assume next thatxj E V(PI). Then (vl,x 2} cZ c X1 -xj, and it is easy to see
that Ja(Z)nE(C)I =4 and e(Z)=k+l. If uIEZ, then e(x 1 ,X 2)=ox,
e(x 1,uj)= 1, and (a) holds, since e(Zu {xj};G-E(C))Ž> k-2. Thus u1  Z,
and so Z V1  by (6.8). If xE Z, then {x2, x3 ..... X g Z•cZ V1  and
V(P*)nX1 ={ul,xj}, a contradiction. Thus x,, d Z. If x 3 e Z, then
e(Z-x 2) <e(Z)- 3=k -2, a contradiction. Thus x 3 E Z and
e(xi, v1) = 1 (i = 2, 3). Then Q(x 2, x 3) = 0, contrary to (6.11).

Similarly for x, instead of x I, (a) or (b) holds. If for both x 1 and x•, (a) holds,
then by theorem 5 for some g E a({x1,x,1, X2), there is a C1 E C(G/X1 ,
{fo, f 2 , g}), say ge=(xI,X 2). Then %(G1X2 -(f 0,fj,h,g))=k-2 for.
h E a(u 1, x 1 ), and C(G, If;, f,2) * 0, a contradiction. Thus for x I or x., (b)
holds, say for x 1 .

Case2.1. e(x,, v 1)=oaande(x•,X 2)= L.

By (6.4) e({v1 ,x, x...,xj})-k+l and e(fulj ux 2)<2k. Thus {u 1 J}UX 2 is
not a separating set, and so X1 = {Ul, v 1 ,x ,...I xj. Since e(u1, v1)= I and
e (u1, X2):5, we have e(u1, {x2, x3 .... , x,_•}))a> 2. Thus e(u 1,xp)=I for
some p with 2<_p!n-2. Let (Pj,P', C', Z')e E (x,,xp+,). Then :z.e V(PI),
e(x,,,, X 2) =1 and V(C') rXI = (v 1 , U1 , xXP+1 }. Since
V(P*)n{x . .... x) • •0, we have e(X 1 -u 1)>k+2, and it follows that
e (G - E (C')) = k - 2.

Case2.2 e(xnu 1)=1ande(x,,X 2)=a.

Forhle (ul,xfl)andh 2 Ea(x,,X 2),X(GIX 2 -{fo,fl,hl,h 2 })=k-2. Thus
for each h e a(xR, X 2), C(GIXI, (h, fo,f 2 })= 0, and so by theorem 5 for each
g9 ra(X 2 ) - a(x,, X 2 ) -fo, C(GIXI, (g, fo, f 2 }) # 0. If n = 2, then
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e(X-{(x1,x 2})=k, contrary to (6.12). Thus n>3. If e(x 2, X 2)=l, then

x2 E V(P 1) and for g r= e (x 2, X 2), C(G, {fO,fl, g, f 2 })•)0. Hence e(x 2 , u1) = 1.
By (6.11) e(x 3 ,u 1)=0 and n_>4. Let (Pý,Pý, C',Z')E KI(x 2,x 3). Then
V(P'1)nXI = {v 1, u 1,x 2, xj}, and so X(G/X 2 -E(Pj)-fo)=k-2 and

J(G, {fo, f 1,f 2 1)* 0. E

By (6.6) there exists y E V(P*) -T. Let D be the component of G - T
containing y, let V (D) = {xt ..... xj}, and let e (xi, xi~j ) = a (I !-< i !5 n - 1). If n = 1,

then by (6.5) X(G - E(P*)- (fo, f 1,f 2 })=k-2, a contradiction. Thus n _>2. Let
(P 1, P 2, C, Z) E (x 1, x2).

Casel. n>3ande(xj,x,)=a.

We may let e(xj,uj)=1. Then xiE V(Pi) (i=1,2). If e(x 2 ,u 2)=I, then
e(Z;G-E(C))=k-2. Thus e(x 2 , vl)= 1. Similarly e(x., vl)= 1. Then
e(Z-;G-E(C))=k-2,since{vI,x 2}C Z'cV(G)- {xlx,}.

Case2. n=2ore(xx,x)=O.

We will prove that for (i, j) = (1, 2) or (2, 1), e(x 1, uL) = 1 and e(x 1, vj) = a. If
x1 G V(P2), then V(P 2)= (vI, x1, u 2, v2) and it follows that e(xj, vl)= oX and
e(xI,u 2)= I in the same way as case 2 in (6.13). Thus x1 E V(P 1), and
e(x1, u1), e(x 1, v2) >0 and by the symmetry we have e(x1, v2)=ct and
e(xl, u1) = 1.

Case2.1. e(xi,ul)=1ande(xi,v2)=cx(i=1,n).

Now x1 EV(P 1), and so x2E V(P 2),n>3 and e(x 2 , (vj,u 2 j)=I. Let
P[vl,v 2 ] be a path with x 2 EV(P)cTu(x,x 2 }I. If e(x 2 ,v 1)=l, then

f 1 ,f 2l E(P), and if e(x 2 ,u 2)=1, then {fl,f 2 } E(P). Thus Q(x 2,x 3)=O,
contrary to (6.11).

Case 2.2. e(xl, u1)=e(x,, u2)= 1 and e(x 1, v2)=e(x,, v x)=. Suppose
that n =2; then V(P*)= {uX, x2, u 2}. let C :=P* u {fl,fo, f2) and
XqV(G). If Ij(X)nE(C)I =6 and vjEX, then e(X)>_e(X-xj)+kŽ>2k.
Assume fa(X)rE(C)I =4 and IXr jTI_<2. If XnT=(u1 }, then
Xr- V(C)={u1 ,x 2J and e(X)>_e(X-x 2 )+k. If Xr)T=(uj,vj), then
Xr'V(C)={uj,vj,x 2 ) and e(X)->e(X-x 2)+1Žk+2 by (6.13). Since
x1, x 2 Et V1 U V2 and by (6.5), we have X(G - E (C)) - k - 2, a contradiction. Thus
n Ž3 and e(x 2 , (vI, u•})= 1. Now we can deduce Q(x 2,x 3)=O in the same way
as case 2.1. U
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Edge - disjoint cycles
in n - edge - connected graphs

ANDREAS HUCK

ABSTRACT Okamura proved the following: If n > 4 is an even
integer, G is an n - edge - connected graph and fl, g, are edges of
G, then there exists a cycle C1 in G containing fi and g, such that
G - E(CI) is (n - 2) - edge - connected. Clearly, if n > 6 and if f2

and g2 are edges of G not contained in C1, there is another cycle C2
in G - E(C1 ) containing f2 and g2 such that G - E(C 1 ) - E(C 2 ) is
(n- 4) - edge - connected. We prove that C2 can be chosen in such
a way that in addition G - E(C 2) is (n - 2) - edge - connected.

1. Introduction

In this paper we consider graphs which are finite, undirected, without loops
and in which multiple edges are possible. For integers u < v we set Iu : v] :=
{u, u + 1, ... , v}. In proofs the sign #• always indicates that we have obtained
a contradiction.

Let G = (V, E) be a graph. V(G) = V and E(G) = E denote the set
of the vertices of G and the set of the edges of G respectively. If X, Y C V,
then [X, YJc denotes the set of all edges of G connecting a vertex of X with
a vertex of Y. Moreover define X := V - X, b(G;X,Y) := I[X,YIGI and
t5(G; X) := 6(G; X, X) (the degree of X). A vertex x ý X is called a neighbour
of X if there is an edge connecting x with a vertex of X. N(G; X) denotes
the set of all neighbours of X. Moreover E(G; X) denotes the set of all edges
connecting two vertices of X and for A C E, V(G; A) is the set of all vertices
incident to an edge of A. Finally define p(G) := IVI + JEt (the size of G).

Paths in G are allowed to pass through a vertex more than once but using
an edge more than once is forbidden. If P is a path from a vertex x to a vertex
y, then P is also called an x, y - path. Moreover, if X, Y C V with x E X
and y E Y, then P is called an X, Y - path. P is called a cycle if x = y and
IV(P)I > 2. Now assume that P passes through each vertex of G at most once.
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Then P is called a simple path or simple cycle if x $ y or x = y respectively.
If P is a simple x, y - path and if X C V with X n V(P) = {x, y}, then P is
called X - admissible.

Two paths are called disjoint if they have no edge in common. For X, Y C V
with X n Y = 0, A(G; X, Y) denotes the maximal number of pairwise disjoint
X, Y - paths in G. If X n Y - 0, we define A(G; X, Y) := co. Moreover if
IXI > 2, we let A(G; X) be the maximal number n such that for each x, y E X
there are at least n pairwise disjoint x,y - paths in G. If IX[ ! 1, define
A(G; X) := oc. Finally define A(G) := A(G; V). If A(G) Ž: n, then G is called
n - edge - connected.

When using the notation defined above and if X = {x} or Y = {y}, then
we also write x or y instead of X or Y respectively. Moreover if no misunder-
standing is possible, we also write 6(X) instead of b(G; X), A(x, y) instead of
A(G; x, y) etc.

If X C V is not empty, GIX denotes the graph obtained from G by
contracting X to a single vertex x. When doing so, we always identify X
with x so that V(G/X) = (V - X) U {X}. Moreover for each y E V -X,

[X, YJI/x = [X, y]c. Define G/O := G. If Xl,..., Xm L V are pairwise disjoint,
we define inductively G/X1, ... ,Xm := (G/XI, ... , Xm-i)/Xm, and for Y C V
define Y/XI,..., X, := (Y - X, - ...- Xrn) U {Xt; i E [I : m), Xi f Y # 0}.

If X C V with X 0 0 $ X, then (X,X) is called a cut. We call (X,X)
an n - cut, (5 n) - cut, (< n) - cut etc. if 6(G;X,"X) = n, 6(G;X,X) <_ n,
6(G; X,-X) < n etc. respectively. If D C V with X n D # 0 # X n D, then we
say: (X, X) divides D.

In [2] Okamura proved the following: If n > 4 is an even integer, G is
an n - edge - connected graph and fl, g, are edges of G, then there exists a
cycle C1 in G containing f, and gi such that G - E(C 1) is (n - 2) - edge -
connected. Clearly, if n > 6 and if f2 and g2 are two edges of G not contained
in C1, there is another cycle C2 in G - E(C1 ) containing f2 and g2 such that
G - E(CI) - E(C 2 ) is (n - 4) - edge - connected. In this paper we prove the

following more general result:

THEOREM 1: Let n > 6 be even and let G = (V, E) be a graph with A(G) Ž
n. Moreover let C1 be a cycle in G with A(G - E(C 1 )) >_ n - 2 and f,g E
E - E(Ci). Then there exists a cycle C2 in G - E(Cl) containing f and g such
that A(G - E(CI) - E(C 2)) > n - 4 and A'(G - E(C 2)) > n - 2.

By using this theorem and Proposition 3 in [1] the following corollary easily
follows:

COROLLARY 1: Let n > 6 be even and Iet G = (V, E) be a graph with
A(G) > n. Moreover let fl,gl,f2,g2 be pairwise distinct edges of G. Then for
i = 1, 2 there exists a cycle C. in G containing f, and gi such that C1 and C2 are
disjoint, A(G - E(Ci)) > n- 2 for i = 1,2 and A(G - E(C 1 ) - E(C 2)) > n- 4.
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2. Preliminaries

LEMMA 1: Let G = (V,E) be a graph, D C V and x E V - D. Moreover
let .A(G; D) Ž n and A(G; x, D) Ž n. Then A(G; D + x) Ž_ n.

Proof: Straightforward by Menger's Theorem. 0

If G = (V, E) is a graph, then D C V is called nice if each x E V - D has
even degree.

LEMMA 2: Let n > 0 be even, G = (V, E) be a graph, D C V be nice and
a E D with odd degree. Moreover let A(G; D) >_ n. Then there exists b E D - a
such that A(G; a, b) > n + 1.

Proof: By induction on p(G).
Case 1: G has a D - dividing n - cut (X, X) with IXI, 1XI > 2.
Let a E X. Since A(G/X; D/X) > n and b5(G/X; X) = n, there exists b E

X n D with A (G/X; a, b) 2 n+ 1 by the induction hypothesis. A)(G; a, b) Ž> n + 1
easily follows.

Case 2: If otherwise.
By reasons of parity, there exists b E D with odd degree. If A(G; a, b) <: n,

then Case 1 would happen. 0

LEMMA 3: Let m, n, a > 0 be even with m < n, G (V, E) be a graph and
D C V be nice. Moreover let (X,X) be a D - dividing (n n+a+1) - cut of G
such that A(G/X; D/X) > rn and A(G/X; D/X) 2 n. Then A(G; D) > m - a.

Proof: Choose a E XnD and be XE nD such that if 6(X,X) = n+ a+ 1,
then A(G; a, X) Ž m + 1 and )A(G; b, X) 2! n + 1 (Lemma 2 !). Then for each
z e X n D and for each z E X n D it easily follows that A(G; z, b) _m - a
and A(G; z, a) >! m - a respectively. If x, y, z E V with A(G; x, y) > k and
A(G; y, z) Ž k, then by Menger's Theorem, A(G; x, z) > k. Using this fact it is
easy to conclude A(G; x, y) > m - a for each x, y E D. 11

LEMMA 4: Let m, n, a > 0 be even with m < n, G = (V, E) be a graph
and U C D C V such that D is nice. Moreover let (X, X) be a U - divi-
ding (< n + 1) - cut such that A(G/X; D/X) 2! m, A(G/X; D/X) Ž n and
A\(G/(U + X); D/(U+X)) > m+a, A(G/(U+X); D/(U+X)) > n+a. Then
A(G; D) >_ m and A(G/U; D/U) > m + a.

Proof: By Lemma 3, A(G; D) > m. Now assume that A(G/U; D/U) <
m + a - 1. Then there exists a D - dividing (_< m + a - 1) - cut (Y, Y) of G
with U C Y. Let A1 := XnY, A2 := XnY, A 3 :=-- XrY and A4 := XnY. Then
A 1, n T :4Q0$ A 3 n U. For i E [1 : 4J let bi := eS(G; A2 ), and for distinct i, j E
[1 : 4] let ,ij := 6(G; Aj, Aj). Hence >: mrn and b3 >_ n by A(G/X; D/X) Žrn
and A(G/X; DIX) > n respectively. Moreover 6(X, X) = b13 + 614 + 623 + 624,
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6(Y, )612 + 614 + 6 3 2 + 6 3 4 and (61 + 6 2 + 63 + 64)/2 = < 61 ij.
Case 1: A2 nfD#0#A 4 nD.
Then 62 > m+a and 64 Ž_ n+a by A(G/(U+X);D/(U+X)) > m++a

and A(G/(U + X); D/(U + X)) Ž_ n + a respectively. Moreover 6(X, X), 61 + 62
and 63 + 64 have the same parity. Now we obtain

m +a-1 > 6(Y,Y)

S 6 12+ 6 34

= (61 + 62 + 63 + 64)/2 - 6(X,X)

S(2m +2n+2a)/2- n if 6(X,X) = n
- 1(2m + 2n + 2a + 2)/2 - n - 1 if otherwise

Case 2: A2 fnD=0.
Then A4 n D # 0 and hence 64 _> n + a. Moreover 62 is even because D is

rice. 621 _> 623 + 624 + m - n follows:

- Otherwise 621 _• 623 +62 4 +m--n--2 and hence m < 61 = 612+613+614 _•

623 + 624 + m - n - 2 + 613 + 614 = 6(X, X) + m - n - 2 <•m - 1 #=.

Now we obtain n+a < 64 = 634+614+6A4 < 6b34+614+621 -m+n <
6(Y,Y) - m + n < n + a - 1 4:=.

Case 3: A4 nD=0.
Then A2 n D $ý 0 and hence 62 _> m + a. Moreover 64 is even because D is

nice. 643 >_ 641 + 642 follows:

F Otherwise 643 !5 641 + 642 - 2 and hence n < 63 = 631 + 632 + 634•

631 + 632 + 641 + 642 - 2 = 6(X,X) - 2 < n -

Now we obtain m+a < 62 = 612+632+642 !5 612+632+643 •• 6(Y, Y) • m+a-1

We write PRML3 (m,n,a,G,D,X,-X) if m, n, a, G, D, X and X satisfy
the premises of Lemma 3. PRML4 (m, n, a, G, U, D, X, X) indicates that m, n,

G, G, U, D, X and X satisfy the premises of Lemma 4.

Let G = (V,E) be a graph and m >_ 3 be odd. Moreover let x E V and
6:= 6(x) ý> 3. Assume that the graph G* is obtained from G by replacing x in
G by a graph B according to the following figure:
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f2 f3

f2 *

f, fix B

616

Here a b always indicates that there are exactly (m - 1)/2 edges between
a and b. Moreover let G*/V(B) = G by identifying x and V(B). B is called a
limitation, and the transition from G to G* is called m - limiting relative to x.
Note that in G* the degree of every vertex in V(B) is m.

Assume that G* is obtained from G by limitings relative to some vertices
xi,..., xe of G. If P* is an a, b - path in G* for a, b E V, then we obtain an
a, b - path P in G from P* in an obvious way. We call P the path induced by
P*.

LEMMA 5 11, LEMMA 31: Let G - (V, E) be a graph, m > 3 be odd,
n E [0: m - 1], x E V with 6(x) Ž_ 3 and D C V with A(G; D) n n. Moreover
let G* be obtained from G by m - limiting relative to x. Set D* := D, if x V D,
and D* := D+ V(B) otherwise where B is the limitation by which x is replaced.
Then A(G*; D*) > n.

PROPOSITION 1 [1, PROPOSITION 3]: Let n > 2 be an even integer and
G = (V, E) be a graph with A(G) Ž_ n. Moreover let A C E with JAI < n/2 and
f, g E E - A. Then there exists a cycle C in G - A such that f, g E E(C) and
A(G - E(C)) > n - 2.

Let G = (V, E) be a graph, let P be an x, y - path and let h be an edge
not contained in G - E(P). If x = y, then we define Gh' := G - E(P). Now
let x # y. Then GP denotes the graph obtained from G - E(P) by adding h
between x and y. Moreover define GP :-= GP where f is the first edge passed
through by P. Now assume that f, g E E, s E V(f) n V(g) and V(f) 0 V(g),
and let h be an edge not contained in G - f - g. Then Gf'g denotes the graph
obtained from G - f - g by adding h between x and y where x E V(f) - s and
y e V(g) - s. We call Gf 'I a splitting and we define Gfg := Gf19. If P* is a
path in Gf'9, then we obtain a path P in G from P* in an obvious way. P is
called the path induced by P*.

PROPOSITION 2: Let n > 2 be an even integer and G = (V, E) be a graph.
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Moreover let W C V with IWI > 2, c E W, A C E with IAI < n/2 and
f E [c] - A. Assume that \(G) > n - 2 and \(G/W) > n. Then there exists a
c, W - path P in G - A such that f E E(P) and A(GP) > n - 2.

Proof: Let G* be the graph obtained from G by (n -- 1) - limiting relative
to every vertex x E W with 6(G; x) > n and by (n + 1) - limiting relative to
every vertex x E V - W with b(G; x) > n + 2. When doing so, we let f E [cIcG.
Let W* be the set of all vertices of G* which belong to W or to a limitation by
which a vertex of W is replaced in G*. Then by Lemma 5, A(G*) > n - 2 and
A(G*/W*) > n. Moreover Lemma 7 in [1] states that Proposition 2 is true if
for each x E W, 6(G; x) < n - I and for each x E V - W, 6(G; x) < n + 1. Thus
there is a c, W* - path P* in G* - A with f E E(P*) and A((G*)P*) >_ n - 2.
The path in G induced by P* satifies the conclusion of Proposition 2. 0

The proofs of the next two lemmas will be given in the following chapters.

LEMMA 6: Let n > 6 be even, G = (V, E) be a graph, U, S C_ V with
Un S =0, cE V - S and f, g E [c] such that

(i) 6(x) < n + 1 for each x E V

(ii) 6(x) < n - 1 for each x E U

(iii) 6(s) is even for each s C S

(iv) ISI _ 1

(v) A(G;V-S) > n-2

(vi) A(GIU; (V - S)/U) > n

Then there exists a cycle C in G such that f, g E E(C), )A(G - E(C); V - S) >
n - 4 and A((G - E(C))/U; (V - S)/U) >_ n - 2.

LEMMA 7: Let n > 6 be even, G = (V, E) be a graph, U, W, S C V with

U f S =0, c E W - S and f E [c] such that

(i) 6(x) < n + I for each x E V

(ii) 6(x) < n - 1 for each x E U + W

(iii) b(x) < n - 3 for each x E U n W

(iv) 6 (s) is even for each s E S

(v) ISI < 1, JwJ > 2

(vi) X(G; V - S) 2_ n - 4

(vii) A(G/U; (V - S)IU) > n - 2

(viii) A(G/W; (V - S)/W) > n - 2
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(ix) A((G/U, W); ((V - S)/U, W)) - n if U nl W = 0, and A(G/(U + W);
(V-S)/(U+W)) >Žn if UnW#A 0

Then there exists a c, W - path P in G such that f E E(P), )(GP; V-S) Ž n-4
and A((G')IU; (V - S)/U) > n - 2.

Note that in Lemma 6 and Lemma 7, U may be the empty set.

3. Proof of Lemma 6

Let n > 6 be a fixed even number. We write PRML6(G, U, S, c, f, g) if G,
U, S, c, f and g satisfy the premises of Lemma 6. In this case we let
CONL6(G,U, S,c,f,g) be the set of all cycles satisfying the conclusion of
Lemma 6. Note that by (i) and (ii), each cycle in CONL6(G, U, S, c, f, g) con-
tains a simple subcycle in CONL6(G, U, S, c, f, g).

The proof of Lemma 6 is by induction on 2p(G) - ISI. Let p > 0 be an
integer and assume the ' "owing:

ASSUMPTION 1: If PRML6(G,US,c,f,g) and 2jt(G) - ISI < p, then
CONL6(G,U,S,c,f,g) $ 0.

Now let PRML6 (G,US,c,fg), 2tz(G) - ISI = p and CON
CONL6(G, U, S, c, f, g) = 0. We have to find a contradiction. By (iii) and
(v), 6(c) > 2. Therefore let w.l.o.g. f 0 g.

CLAIM 1: For each x E V - c, {f,g} g [x].

Proof: Otherwise the cycle C with E(C) = {f, g} is contained in CON by

(v) and (vi) 4#=. 0

CLAIM 2: For each s E S, 6(s) > 2.

Proof: If not, 0 j CONL6 (G - s, U, 0, c, f, g) g CON by Assumption 1
0

CLAIM 3: G has no (: n - 1) - cut (X,X) with IX1, XI _> 2.

Proof: Let (X, 7) be such a cut with c E X. Then (A, X) divides V - S by
(iv). Set G* := GIX, U* := U/X and S* := X n S. Moreover let G' := GIX,
U' := U/X and S' := X n S. By (vi), X E U* and X E U'. Moreover
by Assumption 1 there is a simple C* E CONL6(G*, U*, S*, c, f, g). If X
V(C*), then by PRML4 (n - 4, n - 2,2, G - E(C*), U, V - S, X, X) we obtain

C* E CON #t. Therefore X E V(C*). Let {hi, h2} := E(C*) f[X, X]G. Then
by Assumption 1 there is a simple C' E CONL6(G', U', S', X, hl, h2). C* and
C' yield a cycle C in G. By PRML4(n - 4, n - 4,2, G - E(C), U, V - S, X, X),
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CE CON* 0

CLAIM 4: G has no (< n + 1) - cut (X, X) with U C X and XI, XI > 2.

Proof: Let (X, X) be such a cut. Then (X, X) divides V - S by (iv). Set
G* := GIX, S* := S n X, G' := G/X and S' := S X.

Case I: c E X.
By Assumption 1 there is a simple C* E CONL6(G*, U, S*', C, f,9). If

X 0 V(C*), then by PRML3 (n - 4, n,0,G - E(C*),V - S,X,X) and
PRML3 (n - 2, n, 0, (G - E(C*))/U, (V - S)/U, X/U, X) we obtain C* E CON
#. Therefore X E V(C*). Let {h1 ,h2 } := E(C*) fl [X,XIc. Then by As-
sumption I there is a simple C' E CONL6 (G', 0, S', X, hi, h2). C* and C' yield
a simple cycle C in G. By PRML3 (n - 4,n - 2,0.G - E(C), V - S, X,-X) and

PRML3 (n - 2, n - 2, 0, (G - E(C))/U, V - S, X/U, X) we obtain C E CON W.
Case 2: c E X.
By Assumption 1 there is a simple C' E CONL6 (G', O,S',c,f,g). If

X i% V(C'), then by PRML3 (n - 2, n - 2,2, G - E(C'), V - S,-X, X) and
PRMLa(n -2, n, 0, (G - E(C'))/U, (V - S)/U, X, X/U) we obtain C' E CON
* Therefore X E V(C'). Let {h,, h2} := E(C') n [X, X]0 . Then by Assump-
tion 1 there is a simple C* E CONL6(G*, U, S*, X, hl, h2). C* and C' yield a
simple cycle C in G. By PRML3 (n - 4, n - 2, 0, G - E(C), V - S, X, X) and
PRMLa(n - 2, n - 2,0, (G-E(C))/U, (V-S)/U, X/U, X) we obtain C E CON

CLAIM 5: S=

Proof: Let s E S. Then IN(s)I :> 2:

F Assume that N(s) C {x}. Then b({s, x}) _< 6(x) - 2 by Claim 2. If x E U
or x E V - U, then by (ii) and (v) or by (i) and (vi) respectively we obtain
V = {s, c} and thus f, g E [s] contradicting Claim 1. 1_]

Let h,i E [s] with V(h) : V(i). Moreover, if {f, g} nf {h,i} # 0, let h E
{f, g}. Set G* := Ghi. Then PRMLre(G*, U, S, c, f, g) ((v) and (vi) follow by
Claim 3 and Claim 4 respectively). Therefore by Assumption 1 there exists
C* e CONL6 (G*, U, S, c, f, g) which induces a cycle of CON * 0

CLAIM 6: For each x E V - U - c, 6(x) = n + 1.

Proof: Otherwise by Assumption 1 there is a simple C E
CONL6 (G, U, {x}, c, f, g). By 6(G - E(C); x) _Ž n- 2 and Lemma 1, C E CON

CLAIM 7: E(V - U - c) =0.
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Proof: Let h E E(V - U - c). Then PRML6 (G - h, U, S, c, f, g) ((v) and
(vi) follow by Claim 3 and Claim 4 respectively and by Claim 6). Therefore by

Assumption 1, 0 # CONL6(G - h, U, S, c, f, g) C CON *. C1

Case 1: c E U.
By (v) and Proposition 1 there exists a cycle C in G such that f, g E E(C)

and A(G - E(C)) > n - 4. Moreover by (ii) we can assume that C is simple.
By Claim 7, N(G;x) C U for each x E V-U. Hence for each x E V-U,
t5(G - E(C); x, U) > n - 2. Therefore C E CON 4P.

Case 2: cEV-U.
JN(G - f - g; c)j > 2 holds:

- Assume that N(G - f - g;c) _ {x}. Then b(G; c, x) _> n - 2 by (vi).
If x E U, then b(G;{c,x}) <_ 3 < n -2 1y (ii), and if x E V - U,
then 6(G; {c,x}) :_ 5 < n by (i). Therefore by (v) and (vi) we obtain
V = {c, x} and thus f, g E [xIG contradicting Claim 1. _

Let h, i E fc] - f - g with V(h) # V(i), and set GC := Gh,. Then by 6(G*; c) >
n - 2 and Claim 3, A(G*) > n - 2. Therefore by Proposition 1 there is a cycle C
in G* - h such that f, g E E(C) and \(G* - E(C)) > Žn - 4. By 6(G*; c) i n - I
we can assume that C is simple. By h V E(C), C is also a simple cycle in G
with A(G-E(C)) > n-4. By CON = 0, A((G-E(C))/U) < n-3. Let (X,X)
be an (_• n - 3) - cut of G - E(C) with V C X. By b(G - E(C); x) > n - 2 for
each x E V - U we obtain IXI > 2. Also IXI Ž 2 (otherwise since C is simple,
b(G; X) !_ n - 1 contradicting (vi)). Moreover c E X (otherwise by Claim 7,
6(G- E(C); X,X) Ž> fXI(n - 2) Ž n - 2 #=). By Claim 4 and (i), for each x E
X - c, 6(G; x, c) <_ n/2 and thus b(G; x, U) Ž n/2 + 1 by Claim 6 and Claim 7.
Therefore for each x E X-c, 6(G-E(C);x, X) >_ n/2-1. Now IXI = 2 and thus
IE(C) n [X, XIcG I< 4. Therefore b(G; X, X) S 6(G - E(C); X, X) +4 < n + 1
contradicting Claim 4. Now the proof of Lemma 6 is complete. I

4. Proof of Lemma 7

Let n > 6 be a fixed even number. We write PRML7(G, U, W, S, c, f) if G,
U, W, S, c and f satisfy the premises of Lemma 7. In this case we let
CONL7(G,U, W, S,c, f) be the set of all paths satisfying the conclusion of
Lemma 7. Let P E CONL7(G,U,W,S,c,f). Then CONL7(G,U,W,S,c,f)
contains a W - admissible subpath of P:

F- Assume that IV-Sl Ž! 2. Let e E Wsuch that Pisac, e-path. By
(ii) and (iii), [cIG n E(P) = If} and hence e 6 c. Let P' be a simple
c, e -- subpath of P. Clearly, P' E CONL7 (G, U, W, S, c, f). Moreover P'
contains a W - admissible subpath Q. Choose d E W such that Q is a
c, d - path. Moreover let R be the simple d, e - subpath of P'. Then
GQ is obtained from Gf" by replacing h by the c, e - path R + g. Hence
Q E CONL7 (G, U, W, S, C, f).
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Now let IV - S1 _ 1. Then by (v), V = W = {c, s} for s E S. Therefore
f E E(W) and the path Q with E(Q) = {f} is a W -- admissible subpath
of P contained in CONL7 (G, U, W, S, c, f). __

Let p > 0 be an integer. We assume the following:

ASSUMPTION 2: If PRML7 (G, U, W, S, c, f) and 2M(G) - ISI < p, then
CONL7(G,U, W,S,c,f) 510.

Now let PRML7(G,U,WS,c,f), 2y(G) - ISI = p and CON
CONL7(G, U, W, S, c, f) = 0. We have to find a contradiction. Let d E V(f) -c.

CLAIM 1: d ý W.

Proof: Otherwise the path P with E(P) = {f} is contained in CON by

(vi) and (vii) #. 0

CLAIM 2: For each s E S, 6(s) > 2.

Proof: Assume that 6(s) = 0. Then IW - sl > 2:

- Otherwise W = {-,s} and hence 6(W) < n - 1 by (ii). Moreover by
Claim 1, V-W 6 0. Thus by (ix), U nW = {c}. Therefore 6(W) <_ n-3
by (iii) contradicting (viii). _

Therefore by Assumption 2, 0 $ CONL7 (G - s, U, W - s, 0, c, f) C CON 41:.
0

CLAIM 3: Ilvi > 4.

Proof: By Claim 1 and (v), IVI ? 3. Now assume that IVI = 3. Then by
Claim 1 and (v) we may let V = {c, d, e} and W = {c, e}.

Case 1: e C N(d).
Let g E [e, dJ and let P the simple c, e - path with E(P) = {f,g}. Then

by (vi), (viii) and d V W we obtain 6(G"; z) > n - 4 for each z E V - S and
thus A(Gp;V-S) > n-4 since IVI = 3. If dE U, then UfnW # 0 by (ii)
and (ix). Hence (GP)/U = G/U and thus P E CON by (vii) #:. Therefore
d E V - U - W and thus by (ix), b(Gp; d) >_ n - 2 if d i S. Now by IVIUJ < 3
and (vii), A((GP)/U; (V - S)/U) > n - 2 and thus P E CON 41:.

Case 2: N(d) = {c}.
Then 6(c) = 6(d) + 6(e) and 6(W) = 6(d). Hence by Claim 2 and (vi),

6(c) >_ n-2 and thus c 0 U by (iii). If d E U, then by (ii) and (ix) we
obtain e E U n W and thus S = 0. Therefore by (vi), 6(c) > 2(n - 4) > n + 2
contradicting (i). Hence d E V - U - W. Moreover d E S (otherwise 6(d) > n
by (ix) and thus 6(c) > n + 2 by Claim 2 contradicting (i)). Now by (ii) and
Claim 2, 6({c, d}) < n- 3 contradicting (vii). 0
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CLAIM 4: G has no (<ý n - 3) - cut (X, X) with fXf, IXf > 2.

Proof: Let (X, X) be such a cut with c E X. Then (X, X) divides V - S
by (v). Set G* := G/X, U* := U/X, W* := W/X and S* := X n S. Moreover
let G' := G/X, U' := U/X, W* := W/X and S' := XnS. By (vii) and
(viii), X E U* n W* and X E U' n W'. Moreover by Assumption 2 there is a
W* - admissible P* E CONL7(G*, U, W*, S, c, f). If X V V(P*), then by
PRML4(n - 4, n - 4,2, GP", U, V - S, X, X) we obtain P* E CON #$. There-
fore X E V(P*). Let h E E(P*) n [X,XIg. Then by Assumption 2 there
is a W' - admissible P' E CONL7(G', U', W', S', X, h). P* and P" yield a
W - admissible path P in G. By PRML4 (n - 4, n - 4,2, Gp, U, V - S, X, X),

PE CON#. 0

CLAIM 5: G has no (!n n - 1) - cut (X,-X) with U C X, and 1XI JI[ ? 2.

Proof: Let (X, X) be such a cut. Then (X, X) divides V - S by (v).
Set G* := G/X, W* := W/X and S* := S n X. Moreover let G' := G/X,
W':= W/X and S':= S n X. Then by (ix), X E W* and X E W'.

Case 1: c E X.

By Assumption 2 there is a W* - admissible P* E CONLr(G*, U, W*,
S*, c, f). IfX g V(P*), then by PRML3 (n - 4, n - 2, 0, G"', V - S, X,-X) and
PRML3 (n - 2,n - 2,0, (GP*)/U,(V - S)/U,X/U,'X) we obtain P* E CON
=#. Therefore X E V(P*). Let h E E(P*) n JX,-Xj3. Then by Assumption 2
there is a W' - admissible P' E CONL'r(G', 0, W', S', X, h). P* and PF yield a
W - admissible path P in G. By PRML 3(n - 4, n - 2, 0, GP, V - S, X, X) and

PRML3 (n - 2, n - 2, 0, (GP)/U, (V - S)/U, X/U, X) we obtain P E CON #.
Case 2: c E X.
By Assumption 2 there is a W' - admissible P' E CONL7 (G', 0, W', S', c, f).

If X 9 V(P'), then by PRML3(n-4,n-2,0,GP',V-S,X,X) and
PRML3(n - 2, n - 2, 0, (G"')/U, (V - S)/U, X/U, X) we obtain P' E CON

#. Therefore X E V(P'). Let h E E(P') n [X, XIG. Then by Assumption 2
there is a W* - admissible P* E CONL7(G*, U, W*, S*, X, h). P* and P' yield
a W - admissible path P in G By PRML3 (n - 4, n - 2, 0, Gp, V - S, X,X)

and PRML3 (n - 2,n - 2,0,(GP)/U,X/U,X) we obtain P E CON *. 0

CLAIM 6: G has no (: n - 1) - cut (X,X) with W C X and JXl > 2.

Proof: Let (X, X) be such a cut. Then (X, X) divides V - S by (v). Set
G* := G/-X, U* := W/X and S* := S n X. Moreover let G' := G/X, U' =
WIX and S' := S n X. Then by (ix), X E U* and X E U'. By Assumption 2
there is a W - admissible P* E CONL7(G*, U*, W, S*, c, f). If X V V(P*),
then by PRML4 (n-4, n-2,2, G ,U,V - S,X,X) we obtain P* E CON

* Therefore X E V(P*). Let {ha,h 21 := E(P*) n [X,X]G. Then by
Lemma 6 there is a simple C' E CONL6(G',U',S',X, hl,h 2 ). P* and C' yield
a W - admissible path P in G. By PRML4(n - 4, n - 4,2, GP, U, V - S, X,X),
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PE CON*:. 0

CLAIM 7: G has no (< n+1) - cut (X,X) with U + W C X and IXi > 2.

Proof: Let (XX) be such a cut. Then (X,X) divides V - S by (v).
Set G* := G/X, S* := S n X, G' := G/X and S' := S n-X. By
Assumption 2 there is a W - admissible P* E CONL7(G*, U, W, S, c, f).
If X i% V(P*), then by PRML3(n-4,n,O,GP',V-S,X,X) and

PRML3 (n - 2, n, 0, (GP*)/U, (V - S)I/U, X/U,-X) we obtain P* E CON =.
Therefore X E V(P*). Let {hIh 2} := E(P*) n [X,XJG. Then by Lemma 6
there is a simple C' E CONLe(G',0, S', X, hi, h2). P* and C' yield a W -
admissible path P in G. By PRML3 (n - 4, n - 2, 0, GP, V - S, X, X) and

PRML3(n - 2,n - 2,0, (GP)/U, (V - S)/U, X/U,-X) we obtain P E CON =.
0

CLAIM 8: G has no (< n + 1) - cut (X,X) with U C X, W C X and
JX_ >2.

Proof: Let (X, X) be such a cut. Then (X, X) divides V - S by
(v). Set G* := G/X, S* := S nX, G' := G/X and S' := Sn X.
By Assumption 2 there is a W - admissible P' E CONL-(G', 0, W, S', c, f).
If X 9' V(P'), then by PRML3(n-2,n-2,2, G',V-S,X,X) and

PRML3(n - 2,n,0,(G ')/U, (V - S)/U,'Y,X/U) we obtain P' E CON #.
Therefore X E V(P'). Let {hi, h2 } := E(P') n IX, XIG. Then by Lemma 6
there is a simple C* E CONL6 (G*,U,S*, X, hi,h 2 ). C* and P' yield a W -

admissible path P in G. By PRML 3(n - 4, n - 2, O, GP, V - S, X,X ) and

PRML3 (n - 2, n - 2, 0, (GP)/U, (V - S)/U, X/U, X) we obtain P E CON =.
0

CLAIM 9: S-0.

Proof: Let s E S. By Claim 2, N(s) # 0. Moreover tN(s)I = 1:

F Assume that not. Choose g, h E [sJ with V(g) # V(h). Moreover if
f E {g, h}, let g = f. Let G* := G9,h. Then PRML7 (G*, U, W, S, c, f)
((vi), (vii), (viii) and (ix) follow straightforward by Claim 4, Claim 5,
Claim 6 and Claim 7,8 respectively). Therefore by Assumption 2 there is
P* E CONL7(G*, U, W, S, c, f) which induces a path in CON #:. -J

Let a E N(s). Then 6({a, s}) <_ 6(a) - 6(s) < 6(a) - 2 by (iv). 8 E W follows:

F OtherwisesEV-U-W. IfaEUnW,aEW-U,aEU-Wor
a E V - U - W, then by Claim 3 and by (iii), (ii), (ii) or (i) we easily
obtain a contradiction to (vi), (vii), (viii) or (ix) respectively. I

Moreover a E U (otherwise by (i), 6({a, s}) 5 n - 1 contradicting Claim 3
and Claim 5) and hence by (iii), (vi) and Claim 3, a V W. 6(s) = 2 follows
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by (ii), (vi) and Claim 3, and Assumption 2 yields a (W + a) - admissible
P* E CONLu(G - s, U, W - s + a, 0,c, f). Let x E (V(P*) n (W - s + a)) - c.
Then x = a (otherwise P* E CON #=). Let P be the c, s - path obtained from
P* by adding s and an edge of [a, SIG. Then G' is obtained from (G - s)P"
by replacing h by a simple c, a - path which uses the vertices c, s and a. Now

P E CON follows 4 -. U

CLAIM 1If: For eachx E W-U-c, b(x) = n-1, andfor eachx E V-U-W,
6(x) = n + 1.

Proof: Otherwise by Assumption 2 there is a W - admissible P C
CONL?(G, U, W, {x}, c, f). Then 6(GP; x) _ n - 2. Therefore by Lemma 1,

PE CON . o

CLAIM 11: E(V-U-c) =0.

Proof: Let h E E(V - U - c). Then PRML7 (G - h,U,W,S,c,f)
((vi), (vii), (viii) and (ix) follow by Claim 4, Claim 5, Claim 6 and Claim
7,8 respectively and by Claim 10). Therefore by Assumption 2, 0

CONLr(G - h, U, W, S, c, f) CCON o

Case 1: c c U.
By (vi), (viii) and Proposition 2 there exists a c, W - path P in G such

that f E E(P) and A(GP) > n - 4. Moreover by (iii) we can assume that P
is W - admissible. By Claim 11, N(G;x) _ U for each x E V - U. Hence by
construction, for each x E V - U we obtain 6(Gp; x, U) > n - 2. Thereforc
P E CON #.

Case 2: cEW-U.
fN(G- f;c)I _> 2 holds:

- Assume that N(G - f; c) C {x}. Then 6(G; c, x) >_ n - 3 by (vii). If
x E U + W, then by (ii) we obtain 6(G; {c, x}) < 3 < n - 3 contradicting
Claim 3 and Claim 4. If x E V - U - W, then by (i), 6(G; {c, x}) • 5 <
n - 1 contradicting Claim 3 and Claim 5. _1

Choose g, h E [c) -f with V(g) 6 V(h), and set G* := Gg,h. Then by 6(G*;c) >
n - 4, Claim 4 and Claim 6 we obtain A(G*) > n - 4 and A(G*/W) > n - 2.
Therefore by Proposition 2 there is a c, W - path P in G* -g such that f E E(P)
and A((G*)P) _> n - 4. By 6(G*; c) _< n - 3 we can assume that P is W -
admissible, and by h §ý E(P), P is also a W - admissible path in G with
\(GP) :> n - 4. Therefore A((GP)/U) <• n - 3 by CON = 0. Hence there
exists an (: n -3) - cut (X,X) of GP with U _ X. By b(GP;x) _> n -2
for each x E V - U we obtain IXI > 2. Also IXI _> 2 (otherwise since P is
W - admissible, we obtain 6(G; X) < 6(GP; X) + 2 <- n - 1 if X n W = 0
and 6(G; X) = 6(Gp; X) !< n - 3 if X n W -6 0 contradicting (ix) and (vii)
respectively). Moreover by (vii) and Claim 11, for each x E X - c we obtain
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6(GP; x, U + c) > n - 2 even if x E V(P) n W. Therefore c E X (otherwise

6(GP;X,X) > IXI(n-2) > n-2 4 t). By Claim 5, for each x E (XnW)-c we
obtain 6(G; c, x) • n/2-1 and thus b(G;x, U) Ž n/2 by Claim 10 and Claim 11.
Moreover by Claim 5, for each x E X - W we obtain 6(G; c, x) < n/2 and thus
6(G; x, U) >_ n/2 + 1 by Claim 10 and Claim 11. Therefore for each x E X - c,
b(Gp; x, X) Ž n/2 - 1. Now IXJ = 2 follows. Let x E X - c. If x E W, then
IE(P) n [X,XIGI :5 2 and thus 6(G; X, X) - b(GP; X, X) +2 < n - 1 which
contradicts Claim 5. Therefore x E X - W. Then the edge by which P is
replaced in GP connects c with a vertex of X. Moreovet IE(P) n [X,XIGI1 : 3.
Thus once more we obtain 6(G; X, X) : ((GP; X, X) + 2 < n - 1 contradicting
Claim 5. This completes the proof of Lemma 7. I

5. Proof of Theorem 1

Theorem 1 follows by the following proposition:

PROPOSITION 3: Let n > 6 be even, G = (V, E) be a graph and U C_ V
with A(G) > n - 2 and A(G/U) >_ n. Moreover let f,g E E. Then there
exists a cycle C in G through f and g such that A(G - E(C)) >_ n - 4 and
\((G -- E(C))/U) > n - 2.

F Assume that Proposition 3 is true. Let n, G = (V, E), C 1, f and g satisfy
the premises of Theorem 1. Then A((G - E(C 1))/V(Ci)) Ž! n so that by
Proposition 3 with U = V(Ci), there is a cycle C2 in G - E(CI) with
A(G-E(C1)-E(C2)' > n-4 and )((G-E(Cj) -E(C2 ))/V(Ci)) > n-2.
Assume that \(G - E(C2)) • n - 3. Then there exists an (:5 n - 3) - cut
(X,X) of G - E(C2). By construction, (X, X) divides V(C 1). Therefore
JE(CI) n [X,X]GI :> 2 and hence A(G - E(CI) - E(C2);X,X) < n - 5
contradicting A(G - E(C 1) - E(C2)) > n - 4. -j

Now we -,rove Proposition 3. Let n, G = (V, E), U, f and g satisfy the pre-
mises of Proposition 3. W.l.o.g. we can assume that 6(x) •_ n + 1 for each
x E V and 6(x) !5 n - 1 for each x E U (if not, consider a graph which
arises from G by (n - 1) - and (n + 1) - limiting relative to each vertex
x E U with 6(x) > n and to each vertex x E V - U with 6(x) _> n + 2
respectively). If h, i E E, then we call a cycle C in G h, i - regular if
h,i E E(C), A(G - E(C)) Ž n - 4 and A((G - E(C))/U) > n - 2. Let
M := {h E E; there exists an f, h - regular cycle in G}. If c E V(f), then
PRMLO(G, U, 0, c, f, f) and thus f E M by Lemma 6. Assume that g V M.
Then it is easy to find an h E E - M with V(h) nl V(M) $ 0. By construc-
tion there exists i E M with V(i) n V(h) #6 0 and an f, i - regular cycle D
in G. D is simple by the degree - conditions in G. Moreover by E(D) 9 M,
h V E(D). Let c E V(i) n V(h). Then by Lemma 7 there exists a V(D) - ad-
missible P1 E CONL7(G - E(D), U, V(D), 0, c, h). Let {c, d} := V(Pi) n V(D).
Moreover let P2 be the simple c, d - path in D containing f and let P3 be the
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other simple c, d - path in D. P1 and P2 yield a cycle C in G and we obtain
(G - E(C))P3 = G* for G* = (G - E(D))PI. Now by A(G*) Ž! n -4 and

A(G*/U) Ž_ n - 2, C is f, h - regalar and thus h E M

6. Additional notes

Clearly by Theorem 1 and Proposition 1, Corollary 1 follows. Also by Pro-
position 1 and by an easy induction on I we obtain the following statement:

Let n > 2 be even and I < n/4 + 1. Moreover let G = (V, E) be a graph with
A(G) Ž n, and let fi,..., fl, gl,..., ge be pairwise distinct edges of G. Then for
each i E [1 : ] there exists a cycle Ci containing fl and gi such that Cl, ..., C1 are
pairuise disjoint and that for each i E [1 : fl, A(G-E(C1)-...-E(Ci)) >_ n-2i.

Therefore the following conjecture arises:

CONJECTURE 1: Let n > 2 be even and f < n/4 + 1. Moreover let G
(V,E) be a graph withA•(G) >_ n, and let fl,...,ft, gi,...,gi be pairwise distinct
edges of G. Then for each i E [1 : t] there exists a cycle Ci containing ft
and gi such that C1,..., C are pairwise disjoint and that for each I g [1: e],
A(G - UE, E(Ci)) > n - 21111.

In this conjecture f < n/4 + 1 is necessary: Let I > n/4 + 1 and let G =

(V, E) be a graph with exactly three veitices a, b, c, 6(a, b) = 6(a, c) = n/2 and
6(b,c) = 2f- 2. Let {fl,.-.,fe-1,gl,...,g-1_} := [b,c], fe E [a,b] and ge E Ia, cl.
Then it is easy to see that A(G) > n and that there are no cycles as described
in Conjecture 1.
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ABSTRACT. We show that for each fixed k there exists a linear-time
algorithm for the problem: given: an undirected plane graph G = (V, E)
and subsets Xl, ... , Xp of V with lxi U ... U X,[ _< k; find: pairwise
vertex-disjoint trees T1,.  Tp in G such that T, covers X, (i - 1. p).

1. Introduction

Consider the following disjoint trees problem:

given: an undirected graph G = (V, E) and subsets X 1 ... , Xp of V:

find: pairwise vertex-disjoint trees T1 .... Tp in G such that T1 covers
Xi (i = 1'....p).

(We say that tree T, covers Xi if each vertex in Xi is a vertex of Ti.)
Robertson and Seymour [5] gave an algorithm for this problem that runs. for

each fixed k, in time O(1V13) for inputs satisfying JXI U.-U Xp I < k. (Recently.
Reed gave an improved version with running time O(1Vi 2 log IVI).) In this paper
we show that if we moreover restrict the input graphs to planar graphs there
exists a linear-timc algorithm:

THEOREM. There exists an algorithm for the disjoint trees problem for pla-
nar graphs that runs, for each fixed k, in time O(IVI) for inputs satisfying
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XI U .-.. U XpJ !5 k.

If we do not fix an upper bound k on 1X, U .- .uXp, the disjoint trees problem is
NP-hard (D.E. Knuth, see [1]), even when we restrict ourselves to planar graphs
and each Xi is a pair of vertices (Lynch [2]).

Our result extends a result of Suzuki, Akama, and Nishizeki [7J stating that
the disjoint trees problem is solvable in linear time for planar graphs for each
fixed upper bound k on !X1 U -O U XXp, when

(1) there exist two faces f, and f2 such that each vertex in X 1 U... U XP is
incident with at least one of f, and f 2 .

(In fact, they showed more strongly that the problem (for nonfixed k) is solvable
in time O(kIVI). Indeed, recently Ripphausen, Wagner, and Weihe [41 showed
that it is solvable in time O(IVI).)

Equivalent to a linear-time algorithm for the disjoint trees problem (for fixed
k) is one for the following "realization problem". Let G = (V, E) be a graph
and let X C V. For any E' C E let 11(E') be the partition {K n XIK is a
component of the graph (V, E') with K n X # 0} of X. We say that E' realizes
H1 if n = II(E'). We call a partition of X realizable in G if it is realized by at
least one subset E' of E. Now the realization problem is:

given: a graph G = (V, E) and a subset X of V;

find: subsets El,.. . , EN of E such that each realizat01e partition of
X is realized by at least one of E 1,.. ., EN.

We give an algorithm for the realization problem for planar graphs that runs,
for each fixed k, in time O(tVI) for inputs satisfying JXI < k. In [3] we extend
this result to graphs embedded on any fixed compact surface.

2. Realizable partitions

We will use the following lemma of Robertson and Seymour [6], saying that any
vertex that is "far away" from X and also is not on any "short" curve separating
X, is irrelevant for the realization problem and can be left out from the graph.

Let G = (V, E) be a plane graph (that is, a graph embedded in the plane IZ2).
For any curve C on RZ2 , the length length(C) of C is the number of times C
meets G (counting multiplicities). We say that a curve C separates a subset X
of IZ2 if X is contained in none of the components of 1Z2 \ C. (So C separates
X if C intersects X.)

LEMMA. There exists a computable functon g : - Af with the following
property. Let G = (V, E) be a plane graph, let X C V and let v E V be such that
each closed curve C traversing v and separating X satisfies length(C) Ž_ g(IXI);
then each partition of X realizable in G is also realizable in G - v.

[G - v is the graph obtained from G by deleting v and all edges incident with v.]
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Moreover. we use the following easy proposition, enabling us to reduce the
realization problem t -naller problems.

PRoPosITIo, Let G = (V E) be an undirected graph and let X C V. More-
over, let V1 ..... , Y be subsets of V such that

(2' (i) each edge of G is contained in at least one of V1 ... , V,;

(ii) X C Y and V, n l'1 C Y for each i,j E {l .... ,t} uith i J i.

Let Ei,1 ..... Ei.N, form a solution for the realization problem with input (Iv), 1ln
Y (i = I ..... n). Then the sets E,1 , U t...U E?,,,,, where j, ranges over 1 ..... N,

(for i = 1..... n), form a solution for the realization problem 'with input G, X.

[f() denotes the subgraph of G induced by W.)

3. Proof of the theorem

We show that, for each fixed k, there exists a linear-time algorithm for the
realization problem for plane graphs G = (V, E) and subsets X of V with JXf :5
k. We may assume that G is connected.

For any subset WF of V let 6(W) be the set of vertices in IV that are adjacent

to at least one vertex in V \ W. Let Wo := W \ 6(W).
Let H be the graph with vertex set V, where two vertices v, v' are adjacent if

and only if there exists a face of G that is incident with both v and v'. For any
subset IV of V. let n(W) denote the number of components of the subgraph of
H induced by W. Note that K(W) can be computed in linear time.

We say that W is linked if K(W) = 1. Observe that if W 5- 0 then

(3) W is linked if and only if G does not contain a circuit C splitting W.

Here we say that C splits W if C does not intersect W and 0 # W nl intC 5# W.
where intC denotes the (open) area of ?Z2 enclosed by C.

We apply induction on K(X). If K(X) < 2, the problem car be reduced to
one satisfying (1). Indeed, if K(X) = 2 we can find in linear time a collection
F of faces of G such that the subspace X U Uf C F f of RZ2 has two connected
components and such that IFI <_ IX. Choose two faces f, f' E F and a vertex
v E X incident with both f and f'. "Open" the graph at v, by splitting v into
two new vertices, joining f and f' to form one new face. After this is repeated
JF1 - 3 times, the faces in F are replaced by two faces f, and f2 and the vertices
in X are split (or not) to a set X' of 1XI + 1Fl - 2 vertices, such that each
verteAz in X' is incident with f, or f2. By the result of Suzuki, Akama, and
Nishizeki [71 we can solve the realization problem for the new graph and X' in
linear time. This directly gives a solution for the realization problem for the
original realization problem. We proceed similarly if K(X) = 1.

If K,(X) > 2 we proceed as follows. Let X 1 , .... , Xf be the components of
the subgraph of H induced by X. (So t = K(X) < k.) We may assume that
6(X,) = X, for each i = 1, ... ,t (by attaching to each vertex in X, a new vertex
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of valency 1). Let p be a nonnegative integer. A p-neighbourhood is a collection
V1..... W, of pairwise disjoint linked subsets of V with the following properties:

(4) (i) for i = 1, .... t, WV D Xj, and if W, j$ Xi then Iý (W,)I = p

(ii) for all distinct i,j E {1. t}, there are p vertex-disjoint paths in
G between WT and il'.

We note:

PROPOSITION 2. Let W W,...,Wt be a p-neighbourhood. Let ij G {1 .. t} be
distinct, and let T be a set of vertices intersecting each path from WI" to ItJ such
that ITi = p. Then T is linked.

Proof Suppose not. Let C be a circuit in G splitting T. Let U, and U'j be
the sets of vertices that can be reached from Wi and Wt3 . respectively, without
intersecting T. So U, n U3 = 0. Then U[ n C = - or Uj n C -- ), since otherwise

all vertices in C belong both to Ui and Uj. We may assume that U, fl C = 0.
Hence we may assume moreover that b1i is contained in intC (as U, is linked).
Then each path from Wi to W• intersects T n intC, contradicting the facts that
there exist p disjoint such paths and that IT n intCi < ITI = p. I

In particular, 6(WJ) is linked for all i. (If W1 = Xi then 6(147i) = 6(X) = X.)
Call a p-neighbourhood W1 .  11. t maximal if for each i = 1-. , t and for

each linked U satisfying Wa C U C V \ Uj, Wi one has ;S(U)j > p.
First we describe an algorithm which, given a p-neighbourhood W 1. 7.t,

finds a maximal p-neighbourhood:

1. Choose i E { 1, ... , t }. Determine an inclusionwise maximal set U
satisfying Wi _ U C V \ ji 17,j and i6(U)J = p. Replace Wi by U.
If no such U exists, we leave Wi unchariged.

2. Repeqt for all i E {1,...,t} in turn. This gives a maximal p-
neighbourhood.

Note that by Proposition 2, 6(U) in Step I is linked, and hence U is linked.
Note moreover that Step 1 can be performed in time O(pIVI) with the Ford-
Fulkerson augmenting path method (one augmenting path can be found in time
O(IVI)). See also [4].

Second we give an algorithm which, given a maximal p-neighbourhood, finds
either a p + 1-neighbourhood or a reduction for the realization problem:

1. If there e.-ist i 3 j and a vertex v such that both Wi U {v} and
1Vy U {v} are linked, apply Proposition I to V1 := Wi U {v}, V2 :=

W3 U {v}, V3 := V \ (Wi' U WIV) and Y := X U 6(W,) U 6(W.) U {v}.

Otherwise, for each i = 1,... ,t with 16(Wi)l = p, choose a vertex
vi E V \ W1 such that WV, U {vi} is linked, and let UI := W. U {v };
for all other i let Ui := Wi.
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2. If there exist i 4 j such that there do not exist p + I disjoint
paths connecting bU and U., find a subset U of V such that U, g
U, Uj C U' := V\ U0 and 16(U)I = p. Apply Proposition I to
V, := Wt-,...,V := Wt, Vt+I := (U\(W•'u..-u )u,(',+ =

(U'\(W U... uWt))U6(U) and Y Xu6(WuI) .u u6(WI)u6(U).

3. Otherwise, Ul,..Ut form a p + I-neighbourhood.

PROPOSITION 3. In Step 1, if there exist i and j as stated, then K(VI f Y) < t
for h = 1,2,3.

Proof. Without loss of generality, i = I and j = 2. We have K(1,1 n Y) =

K,(XiU6(Wi)U{v}) <_ 2 < t, since both X, and 6(WI)u{v} are linked. Similarly,
n(V2 AnY) <2<t.

Finally, K(V3fnY) < t, since V3fnY = X3 u ... uXtu6(Wi)u6(W 2)u{v}. where
X,... , Xt and 6(W 1 ) U 6(W 2 ) U {v} are linked (as 6(WI) U {v} and 6(12 ) U {I}
are linked). I

PROPOSITION 4. Let A, B C V such that 6(A) and 6(B) are linked, and such
that B 9 A' and A' U B0 4 VG. Then 6(A) U (A n 6(B)) is linked.

Proof. Suppose 6(A)u(AA6(B)) is not linked. Let C be a circuit in G splitting
6(A)U(An 6(B)). Since 6(A) is linked, we may assume that 6(A) C intC. Since
C splits 6(A) U (A n 6(B)), we know that there are vertices in A n 6(B) that are
in the exterior of C.

Since G is connected, there exists a path in G from a vertex in A in the exterior
of C to a vertex of C disjoint from 6(A), and hence C intersects A. Therefore.
VC C A. Hence every vertex of G in the exterior of C belongs to A. As b(B)
is linked and as 6(B) does not intersect C (because A n 6(B) does not intersect
C), we have that 6(B) is contained in the exterior of C. As B 9 A' this implies
that each vertex in intC ij contained in B. So A' U B° = VG, contradicting the
assumption. I

PROPOSITION 5. In Step 2, if there exist i and j as stated, then K(Vh n Y) < t
for h = l,...,t + 2.

PT oof. Without loss of generality, i = I and j = 2. By the maximality of W1
we know that U intersects at least oLt- cf WK,2, W3. ... , Wt. So U intersects at
least two of W. .... , Wt. Similarly, U' intersects at least two of W . ... Wt.

For each h = ... ,t we haveK•(Vh n Y) <_ 2 < t, since Vh Y = Xh U 6(Wh) U

(Wh n6(U)) and since 6(Wh)U(WhfN6(U)) is linked by Proposition 4. (Note that
U V Wh since U intersects at least two of Wi.... Wt, and that U 0 U Wh- 5 VG
since U' intersects at least two of Wt,.. .- Wt,.)

Next we show c(Vt+1 n Y) < t. Note that Vt+1•n Y = 6(U) U (U n (6(W 1 ) u
... U 6(Wt))). Since U' intersects at least two of W 1, ... ,Wt, it suffices to show

that if U' intersects Wh then 6(U) u (U n 6 (Wh)) is linked.
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Suppose U' intersects Wh and 6(U) U (U (-- 6(Wh)) is not linked. As b(U) and
6(Wh) are linked (by Proposition 2), Proposition 4 implies that W, C UV" or
,V0 Ui U° = VG. Hc .'ever, Wh C U' contradicts the fact that W i iintrr-rts

U'. Moreover, 4h' U U' = VG contradicts the fact that there is anothti A t"
intersecting U'.

This shows i•(Vt+l n Y) < t. Similarly, K(V+ 2 n Y) < t. I

Finally we give the algorithm which finds a reduction:

Starting with the 0-neighbourhood X1 .... Xt, for p = 0, L ... 2g(k) -
1 apply the above algorithms to find a reduction or a 2g(k)-neighbour-
hood.

If we find a 2g(k)-neighbourhood WI,.- .. t, then for all distinct
i.j E {1. t}, find a shortest path P,, in H between W, and IV..
Among all P1,j choose one, P := P 1 ,2 say, of minimum length.

If length(P) > 2g(k), delete from G all vertices of P except the first
g(k) and the last g(k). If length(P) < 2g(k) leave G unchanged. Call
the new graph G'.

Let R be the set of vertices in P that are not deleted. Apply Propo-
sition I to G' and V1 := Wi,V 2 := !V2.V3 := V \ (W" U WIV) and
Y := X u 6(W u 6( 2 )UR.

PROPOSITION 6. In G', K(Vh n Y) < t fOT h = 1, 2.3.

Proof. K.(V 1 •f Y) = K,(X 1 U 6(W14)) < 2 < t. Similarly. K,(V 2 n Y) < t. Finally.
n(V3 n Y) = ,(X 3 U ... U Xt U 6(Wl) U 6(W 2 ) U R) < t since 6(W 1) U 6(W-2 ) U R
is linked. U

PROPOSITION 7. Deleting the vertices does not affect realizability.

Proof. Let Q be the set of vertices deleted. We must show that for any vertex
v E Q, any closed curve C traversing v and separating X has at least g(k)
intersections with G - (Q \ {v}) (since it means by the lemma that we can
delete v, even after having de!,uted all other vertices in Q). In other words, any
closed curve in 1Z2 intersecting Q and separating X should have at least g(k) - I
intersections with G - Q.

Let C be a closed curve intersecting Q and separating X, having a minimum
number p of intersections with G - Q. We may assume that C intersects G only
in verticc- C. Suppose p <_ g(k) - 2. It is not difficult to see that, by the
mnili--li,, r p, there exist x,y E Q on C (possibly x = y) such that, if we
denote by K and K' the two (closed) x - y parts of C, then one of these parts.
K say, intersects G only i. Q, while K' intersects Q only in the end points x and
y of Ki'. We may assume that K is part of P. Hence as P is a shortest path.
length(K) < length(K' = p + 2. So length(C) = length(K) + length(K') - 2 <
2p ,2 2g(k) - 2.
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Hence C does not intersect any face incident with any point in any W,, since
otherwise C would contain a curve of length at most g(k) - 1 connecting Q and
W'i, contradicting the minimality of P. As C separates X, there exist i # j
such that W, and It' are in different components of 7Z2 \ C. This contradicts
the facts that there exist 29 (k) pairwise disjoint paths from W, to lV3 and that
length(C) < 2g(k). I
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Surface Triangulations Without Short

Noncontractible Cycles

TERESA M. PRZYTYCKA and J 7ZEF 11. PIZYYTYCIKI

ABSTRACT. We discuss three methods of constructing surface
triangulations that do not have short noncontractible cycles (equiva-
lently, that have high representativity). The three methods arc: the
covering spaces technique, a combinatorial method, and a method
that applies hyperbolic geometry. Using the first method we show
that for any genus g and n > cig log logg there exists a triangu-
lation of a genus g surface with an n vertex graph such that the
representativity is at least c'1 ) _n\g/' io-To (where c1 , c'l are con-
stants), Using the second method we show that for any genus g
and n > czg log g there exists a triangulation of a genus g sur-
face with an n vertex graph such that the representativity is at
least c' Vn-/• ov (where c2,c' are constants). Finally, the third
method allows us to develop an argument which leads to tile conjec-
ture that, for any g and n sufficiently large, a surface of genus g can
be triangulated with representativity at least c. 1VVf/logq (whcre
c 3 is a constant).

1 Introduction

Properties of graph embeddings have been recently investigated in a number of
papers [1,20,19]. Robertson and Seymour [18] introduced the following concept

of representativity of a graph embedding. Let G be a graph embedded in a
surface E. Denote by 7r(E) the family of all nooncon(ractible closed paths on E.
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The representaf-,,ity (or the face width), p(E2, G), of an embedded graph G is

equal to the minimum over ,-r2) of the number of intersections of a given path

with the grapii G. Such a minimal closed path can be chosen in such a way that

it cuts G only in vertices, and thus representativity can be equivalently delfined

as the length of a shortest noncontractible faczal walk (that is, a walk of type

Z'I, fl 2,f ... , vfkv, where, for any i, v, is a vertex and f, is a face of the

graph). Therefore the representativity of a surface triangulation is equal to the

length of the shortest noncontractible cycle (or equivalently to the edge width of

the triangulation). Recently much attention has been given to the investigation

of howv combinatorial and topological propert~es of an embedding depend on

the representativity of the embedding. It has been informally stated [1] that

representativity measures how well a given embedding appro:•imates the surface,

Robertson and Vitray [19] consider as a major effect of high representativity the

fact that it makes the embedding "highly locally planar" and that "the locally

Euclidean property of the surface is mirrored by the locally planar property of

(liet embedded graph".

In this paper, we address the problem of triangulating a surfacC such thal

the representativity of the embedding is maximized. Let f(!:. i) be t lie nIaxi-

mum representativity that can be achieved by triangulating the surface E with
an ?l vertex graph. Joan Iutchinson [13] showed that if E is an orientable

surface withoult boundary then f(S,n) = O(V/¶ hlogg) where q is the genus

of the surface'. iHutchinson conjectured that f(E,n) = O(V/i7)g. This con-

jecture has been disproved by the authors [16] and replaced by the conjecture

that f(1,n) = O(1/1glogg) (i.e. a surface of genus g can be triangulated

with representativity at least Cax/n/glogg where c3 is a constant). Thus, we

conject ure that the upper bound given by Hutchinson is tight Up) to a constant.

Our graph theoretical terminology follows [2]. Thus a cyclr in a graph

does not have self-intersections while a closed walk can repeat both edges and

vertices. Unless otherwise specified, we use surface to describe a compact,

connected, orientable 2- manifold. Informally, this describes a sphere with g

handles (g is the genus of the surface) and d boundary components. We use

2g,d to denote a genus g surface with d boundary components and we adopt,

the notation that, E = Eg,0.

To be consistent with standard topological terminology we assume that a

(closed) path oil a surface may have self-intersections while a srmple (clused)

In the paper we use log nt to demo (e log2 n. We use 0, 0, and Q• notal ion in its slatidard

meaning [1.
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path is not allowed to intersect itself.

A graph is said to be embedded in an orientable surface },, if it can be
drawn on the surface in such a way that no two edges cross and :w 6oundary
of the surface (if any) is a part of the graph. If the graph G is embedded in a

surface E the complement of G relative to E is a collection of open sets called
open faces. If all of the open faces are open discs, we say that the embedding
is a 2-cell embedding. In this paper we will consider only 2-cell embeddiugs.

An embedding is called a trzangulaiton if every face is bounded by three
edges. A cycle C on a surface E is called noncontractible if neither of the
components of E - C is homeomorphic to an open disc.

The paper is organized as follows. In Section 2, we discuss the covering
space technique of constructing triangulations of high representativity. The

section contains a proof of a result not published elsewhere, and thus it con-

tains more technical details than the other sections. In Section 2, using the
covering space technique, we show that, for any genus g and n > clg log logg,

f(., n) = Q2(V/_1iV'oglogg) (where cl is a constant). A main step of the

construction is to obtain triangulations of surfaces with boundary such that
the representativity of the triangulation is Q(iý/_7loglogg). Then, based on
these triangulations, we construct high representativity triangulations of closed

surfaces. The second step involves technicalities that are not inljortailt for

understanding the covering space method, and we postpone the details of this
step to the appendix. To make Section 2 accessible for a reader not familiar

with algebraic topology we include various comments and definitions that may

be skipped by a reader familiar with the topic.

In Section 3, we review the combinatorial technique (presented with more
details in 117]) which allows us to triangulate a genus g surface with represen-

tativity Q(v/gVT--g). However we need to assume that n > cog logy where

c_) is a constant.

Finally, in Section 4, we relate the problem of constructing a high represen-
tativity triangulation with the problem of computing the length of the shortest

closed geodesic in a hyperbolic structure. We introduce the notion of an ap-
proximation of a surface with a geometrical structure, with the help of a trian-

gulation; and discuss a construction of triangulations that approximate a given
hyperbolic structure. This section provides evidence for the conjecture that
any genus g surface can be triangulated with representativity OF(VII/glogg)
for n big enough. As in Section 2, in this section we also give definitions anld

informal descriptions that are needed to make the section accessible for a reader
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not familiar with hyperbolic geometry.

In this paper we concentrate on orientable surfaces. However most of the
results presented can be extended to nonorientable surfaces.

We believe the theorem of M.Hall, which we use in the second section of the
paper, will find more applications in covering graph theory. We thank Professor
J.McCool for pointing out this theorem to us. We also thank Professors P.Buser

and S.Wolpert for helpful discussions.

2 Constructing High Representativity Trian-
gulations Using Covering Space Technique

The covering space technique was used in the construction disproving llutchin-
son's conjecture [13,16]. Here we improve the main result, of [16]. We in-
crease the representativity of the constructed triangulations from V/'n-log' g
to V/;-79/lOglogg using a theorem of M.Hall [9]. 2

In the first subsection, we provide basic topological facts and definitions.
In the second subsection, we show a construction of a covering space with the
property that all simple closed paths that are in preimages of homotopically
non-zero closed paths of a base surface are "long" (formal definitions are pro-
vided in Subsection 1). Finally, in the last subsection, we triangulate the surface
constructed in the second subsection.

The constants achieved are not the best possible and have been chosen to
keep technical computations simple.

2.1 Basic Definitions
In this section, we describe the concept of a covering. To rnirminize technical-

ities, we restrict this presentation to the case of surfaces. For a more general

treatment of the topic see [14,11]. In this paper, we only use coverings involving
surfaces and graphs.

Definition 2.1 Let Xand X be two surfaces. A continuous mapping p "

AI zs said to be a covering map if each point r E X has an optn neighborhood
U•- such that p-l(U,) is the disjoint sum of open subsets oj A' each of which is

mapped homeomorphically onto U, by p. The surface X is callcd the covering
surface, and the surface X is called the base surface.

2 Let logk n denote the function log composed k times. Then log* n = k iff logk n < I and

log k-I n >
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Definition 2.2 The coveringp X •- X is called a k-fold coienrny iflp-'(x)I
k for any x E X.

It is sometimes convenient to imagine that in a k-fold covering, for each U,.
from Definition 2.1, there exist k copies of U, in the covering space X each of
them mapped onto U, ICY p.

Having chosen a point x E X we can consider the set of all closed paths

from x to x. The point x is called a base point for those paths.

Definition 2.3 Two c!osed paths with a base point x are equivalent relathrc

to the base point z if they are homotopic relative to the base point z (one can

be transformed continuously to the other in such a way that endpoznts are not

moved).

In Definition 2.3, we introduced an equivalence relation on closed paths with
a base point. In the definition below we do not fix a base point.

Definition 2.4 Two closed paths are equivalent if they are homotopic (one can

be transformed continuously to the other).

Theorem 2.5 The set of equivalence classes of closed paths based at .r E X

forms a group.

The group formed by the set of equivalence classes of closed paths baseU

at x E X is denoted by 7r,(X, x) and called the fundamental group or the first

homotopy group of X with the base point x.
We use a special kind of covering called a regular covering. This covering

has a number of properties which will be useful in the construction. However
to define regular covering we need a few more facts:

Theorem 2.6 If p : FX X is a covering with 1o E X, xo E X suchthat

p(Zo) = Zo then the induced homomorphism p. : iri(X, o) t-, -i(X, o) is a

monomorphism.

Note that p.(7r,(X, o0)) is a subgroup of 7r1(X,xo). We define regular cov-

ering as follows:

Definition 2.7 A covering p : X t X is said to be regular if the group

p.(ir1 (Xio)) is a normal subgroup of 7r,(X,xo) (that is, for each

E G p.(iri(,X, io)) and /I E 7r,(X,xo),hgh-1 E p.(7ri(Xý, 4o)).

A covering (resp., a regular covering) p: X '-- X, defines a subgroup (resp.,
a normal subgroup) of 7ri(X,xo). Conversely, a subgroup (resp., a normal

subgroup) of 7r,(X, o) defines a covering (resp., a regular covering). The mul-

tiplicity (the folding number) of the covering defined in this way is equal to the
index of the subgroup (see [14,11]).
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The first homology group (denoted by HI(X)) is obtained from the first

homotopy group -,r2(X,xo) by abelianization '. (Thus in the definition of the

first homology group there is -'o need for a base point.) We use ha to denote
the abelianization homoniorphism (here h, : Hri(X,xo) • H,(X)).

The following standard technique for construction of a regular covering will
be used later in the paper. Let G be a group and h a homomorphism h :

7ri(X,xo) ý G that is "onto". Then the kernel, ker(h) C 7rj(X,xO), defines a

regular cover of X. Since the index of ker(h) in 7r,(X,xo) is equal to the order,

r(G), of the group G, the multiplicity of the covering is equal to r(G).

We divide all simple closed paths on a surface into two classes: a simple

closed paths 7 on surface X is called a separating path if X - is discon-

nected, and otherwise it is called a nonseparating path. More generally we

divide all closed paths into homologically non-trimzal paths (this generalizes

non-separating closed simple paths and homologically trivial closed paths (this
generalizes separating closed simple paths).

Let 7 be a path on the surface X which begins at x and ends at y. Let i E

p-'(x). Then 7 uniquely defines the path from i to some 9 where ý E p-'(y).

Assume that y is a closed path with a base point x. Let 7 " denote the closed
path composed of the sequence of k paths 7-. Consider the smallest number r

such that the path in the covering space which starts at i and corresponds to 7Y

is closed. We call the number 2- the developing numberof -r with respect to the
given covering of 7 with base points x, i. The closed path which corresponds to
Yr in the covering space is called a generalized lift of - in the given covering and

with the given base point. 4 Developing number has the following properties:

PI: In a regular covering the developing number does not depend on the choice
of base points x E X and i E p-'(z).

P2: In a regular covering, generalized lifts of equivalent closed paths have equal

developing numbers.

Theorem 2.8 In a k-fold covering p • 2 g,,d if X(Eg,d) is Euler character-

istic of Eg,d then the covtring surface E has the Euler characteristic y(E) =

kx(EZ4,d) = k(2 - 2g - d).
We say that the word. g, over the alphabet {ai,a'1, a], .. .,aia-1)

is reduced (resp., cyclzcally reduced) if no two consecutive (resp., cyclically

consecutive) letters in g are inverses of each other. Let G be a free group with
3 Abelianization of a group is obtained by adding to the group presentation, for any ele-

ments a, b of the group, the relation ab = ba.
4 The concept of generalized lift is in a close relation to the standard topological notion of

a lift.
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a free generatin6 ,et {a,a 2 , ... ,ak} and let 9 E G. The length, Igj, of q is the

number of symbols in g where g is represented by a reduced word.

2.2 Construction of the Covering Space

Our goal is to show how to construct a triangulation without short noncon-

tractible cycles. In our construction we start with FIl which is the simplest

surface with boundary and non-zero genus. Then we construct any surface E,
( g > 1) by constructing covering surfaces of E1,1 with the property that all

generalized lifts of any "short" nontrivial closed path on E1,1 are "long", glu-

ing them together along boundary components, and capping off the remaining

boundary components with discs.

In this section, we show how to construct a regular covering of E1,1 (the

punctured torus) in which all generalized lifts of any "short" closed path are

"long". We start with introducing a combinatorial measure of the length of a

closed path, called complexily.

a-]

b x ob

y4

a

Figure 2.1 The presentation of E1,1

Consider the presentation of E1,1 as a square, with opposite edges identified

(Figure 2.1). Let x and y be the oriented intervals dual to the fundamental

cycles a and b as shown in Figure 2.1.

Let Z = {x,y,x-i,y-'},B = {I,y} and let z E B. With any closed ori-

ented path -y we associate a word over Z in the following way. Start from any

point on the path and travel along the path according to the orientation. The

word associated with the path corresponds to the order in which the given path

cuts z and y (without loss of generality it is enough to consider only paths



310 TERESA M. PRZYTYCKA AND J6ZEF H. PRZYTYCKI

in general position5 ). If a path cuts z as in Figure 2.2a then the corresponding
symbol in the word is z, and otherwise (Ifigure 2.2 b) this symbol is z-. In

particular, the closed path corresponding to the word x intcrsects the interval

z in one point.

- Z
.r~z r

a) b)

Figure 2.2
Thus the homotopy class of an oriented closed curve can be described by an

element of the free group ,r1(EI,I) generated by B,
Definition 2.9 The complexity of a closed path y on E1,1 is defined to be the

length of a cyclically reduced word over Z that describes the homotopy class

of -Y.
Informally, if we measure the length of a path by the number of crossings

of the given path with x and y then the complexity of a closed path 7 is the
length of the shortest path over all paths that are equivalent to y and are in
general position with respect to intervals x and y.

Definition 2.10 Let X be a covering space of El1. Then the complexity of a
closed path on X is equal to the complexity of its projection on the base surface.

The following properties of a regular covering are crucial for our conistruc-

tion:

P3: The complexity of a generalized lift, of -f with developing number r is
equal to r times the complexity of y. In particular the complexity of a
generalized lift of -y is always greater than or equal to the complexity of

-y. This follows from the simple fact that if w is a cyclically reduced word
then wr is also cyclically reduced and Iw7 = riwi.

P4: Two paths whose projections on E1,1 are homotopic have equal complexi-
ties. In particular, the compl'xities of two homotopic paths are equal.

For any constant 1, we are going to construct a covering space of E1,1 such

that for any closed path C on E1,1 the complexity of any generalized lift of C

S'We say that a path is in general position with respect to a set of paths if it, does not cut

a common point of these paths and whenever it culs a path from the given set of paths it is

perpendicular to the path it crosses.
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is at least 1. By property P4, it suffices to work only with representatives of

homotopy classes. The following lemma gives an upper bound on the number

of different homotopy classes of complexity less thani 1.

Lemma 2.11 There are at most 2. 3-1 nonhomotopic paths on E1,1 of com-

plexity less than 1.

Proof: The number of different homotopy classes of closed paths of conmplexity

s is equal to the number of cyclically reduced words of the group ,-r1(- 1 ) of

length s. Thus there are at most 4 -3`' different homotopy classes of closed

paths of complexity s. Thus there are at most

1-2 31-1 - 1

1+4 3 = +4 2-- - -)- < 2.3'
3=0

different homotopy classes of complexity less than 1. 0

2.2.1 The Basic Idea of the Construction

Let I be a constant. We construct a covering in which all generalized lifts of

any homotopically nontrivial closed path on E1,1 have complexity at least 1. To
do this, for any homotopically nontrivial closed path, we construct a regular

covering of E1,1 such that all generalized lifts of a given path (thus also of all

closed paths in the same homotopy class) have complexity at least 1. We use a

different technique for homologically trivial and homologically nontrivial closed

paths. Finally, we construct a regular covering that is a common covering for

all coverings constructed before. In this regular covering of E1,1 all generalized

lifts of all homotopically nontrivial closed paths Ejj have complexity at least !.

2.2.2 Lifting a Homologically Nontrivial Closed Path

In this subsection we construct a regular covering of Ei, with the property that

every generalized lift of a fixed closed, non-zero-homologous path has complexity

at least 1, where I is a constant.

We start with the following lemma.

Lemma 2.12 Let E be a surface with boundary and let {bl,.. ., bk } be a base

of H1(E). Let -y be a fixed closed non-zero-homologous path on E such that

ha(7) = ibi, where ha is the abehianization homomorphismn and i is a non-zero

Integer. Then for any .. ons;ant s there exists a regulars-fold covering p r" ,-
such that the developing number of - is equal to 7.
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Proof: We use the construction described in Subsection 2.1. Define the homo-
morphism

/I, : Hl(E) - Z,

by h-#(bl) 1 and h,(b,) = 0 for j > 1.

The composition h-rhb is "onto" so the kernel ker(h.,h•) defines an s-fold

regular covering of E. Let "' be a generalized lift of •. Since r = g1 is thegcd(s,t)
smallest number such that hjha(.Yr) = 0, the developing numIber of - equals
to r. 0

We will use the following two corollaries to this lemma.
Corollary 2.13 For a non-zero-homologous closed path -y on EI.l there exists
a regular s-fold covering E., such that any generalized lift of -y has complexity

at least s.

Proof: Choose B = {x,y} to be the basis of HI (ESl) (recall the definition of

B from the beginning of this section). Since -t is non-zero-homologous we can

write ha(-y) = il + iy where il $ 0 or i2 $ 0. Assume that i1 $ 0. Then

eornplexity(-Y) J[ill.

Let " be a generalized lift guaranteed by Lemma 2.12. Thus the developing
number of 5' is ' Therefore

cornplexity(f) > [i >_ s.
gcd(s, ij)

0

Corollary 2.14 Let E be a surface with boundary and s be a constant. For
any closed path -y on E such that ha(y) is a member of a basts ,j Ilt (ES), there

is a regulars-fold covering p : < o -, .:ch that the developing number of iss

Proof: Immediately from Lemma 2.12 by assigning i = 1. 0

The covering announced at the beginning of this subsection is guaranteed

by Corollary 2.13 applied with s = 1.

2.2.3 Lifting a Homologically Trivial Closed Path

Let -) be a homotopically nontrivial closed path that is homiologous to zero
and let I be a constant. In this subsectioi we construct a regular covering of

Ulj such that any generalized lift of -y has complexity at least 1. TI'lw' coil-
struction proceeds in three steps. First, using a. corollary of a theorem of Hall,
we construct a (not necessarily regular) covering of EII in which at least one
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generalized lift of y is homologically nontrivial. Then, to this particular lift of
"r, we apply the construction from the previous subsection. We obtain a (not

necessarily regular) covering of EI, in which at least one generalized lift of -,

has complexity at least I. Finally, we construct a regular covering of El', with
the required property.

The following theorem, which is a special case of a theorem of M,.ilall [9,3,
10,21], will be used in the proof of the main theorem of this subsection. Since we

need to refer to some facts from the proof of the theorem, for the completeness

of the presentation, we give a proof of this special case.

Theorem 2.15 (HAll) Let G be a finitely generated free group and w a non-

tr'zal element of G (i.e. w $k 1). Then there exists a subgroup H of G of finite

zndex such that w is an element of o free generating set of H.

Proof: Let A = {a 1,a 2 , .. . ,ak} be a free generating set of G. Let F be the
wedge of oriented circles with vertex x0 and edges labeled with elements from

A (see Figure 2.3). Thus 7r, (F, x 0 ) = G.

We can assume, without loss of generality, that w is represented by a cycli-

cally reduced word. Otherwise we can write w = guwg-l wl.ere w' is cyclically
reduced and g E G. If H' is a subgroup of G that has the properties of the

theorem with respect to w' then 1I = gH'g-I also has the properties of the
theorem wilh respect to w and the index of H equals the index of H'.

Loet 14' be the subgroup of G generated by w, let p . F 1' F be the covering

defined by IV and let -0 be a fixed point in p-1(xo). Thus p.(-r1(F,Z0)) = W
and therefore the fundamental group of F is isomorphic to 1,V.

a 2

Figure 2.3 The wedge of oriented circles

Let -y be the closed path in F representiing w and let , be the generalized

lift of y starting at O. Note that y generates -,rT (F, 0o). Since every embedding

of a graph into a graph induces a monomorphismn on fundamental groups, it
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follows that the embedding i j --, F induces the isomorphism i. : 7r,('i, iv)

7r1(F, i0 ). Therefore j is a cycle with 1w! edges (for otherwise TV would not be
generated by one cyclically reduced element).

Let p/l be the restriction of p to jf. We extend the mapping, p/i, to a

covering p : r P r where r is obtained from ;' by adding edges (but nlot vertices)

in the following way. The labels and orientation of edges in -Y induces, via p,
labels and orientation of edges in •,. Then we add to j, labeled directed edges

in such a way that each vertex has exactly k incoming and exactly k outgoing
edges each labeled with a different element from A. A simple counting atgunient
shows that this is always possible. The projection p is yielded by the labeling

of edges in r. By construction, p : r ý-, F is a covering. The multiplicity of this

covering -equal to the number of vertices in r, that is the number of edges inI
j (which, as noted before, is equal to jwj). Let ti' be the element of %,i(I, io)

representing j. Since, for any graph G and a cycle C of G with x0 E C there
exists a free generating set, X, of 7r,(G, x0 ) containing C, it follows that ii- is

an element of a free generating set of ir 1 (i', io).

Let HI = .(,rt(r, =o)). Thus H is a subgroup of G. By definition p.(t,) =

v;. Thus w is an element of a free generating set of H (compare Figure 2.4).
Furthermore we have the following property:

P5: The index of H in G is equal to ItwI.
13

F I/ •G D H

. ((r ,xo) T.(7rdfXo))

Figure 2.4
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Now we are in the position to prove the main theorem of this subse'ctiOnl.

Theorem 2.16 Let -y be a closed homotopically nontrivial and homologically
triwal path in EII of complexity s. Then there exists an s-fold cu'tur'ng • of
EIl such that a generalized lift of -y is an element of a basis of I1 (ES).

Proof: Let G = r 1(E1 ,1,x 0) and let w be a cyclically reduced word reprf-sent-
ing 7 in the free group G. From Theorem 2.15 it follows that there exists a
subgroup H of G such that w E H and wv belongs to a free generating set of
H. Furthermore. by property P5 given in the proof of Theorem 2.15, the index
of H in G is 1w]. It. is well known that the abelianization homomorphism h,
sends element f a free generating set of 1I to a base of ha(H). Thus II definles

an s-fold cc _,ing, • , of EIl such that the generalized lift of -Y starting from

i:o (where i 0 is a fixed point from p-'(x)) represents an element of a basis of
H1 (t) and therefore is homologically nonzero. 0

Now we are ready to show the construction of the regular covering for a
closed path 7 that is zero-homologous.

Theorem 2.17 For any homotopically nontrivial zero-homologous closed path
y on EI,, which has complexity less than s there exists a regular coverilg t• :

S£-- Eij, of multiplicity at most s2-2 such that any generalized lift of -I. has

complexity at least s.

Proof: Let p: • $- VII be the s-fold covering guaranteed by Theorem 2.16 and
let p. : F be the regular s-fold covering guaranteed by Corollary 2.14. TIhe
composition pp' : E ý-- E defines an s2-fold covering of EII. Using standard
tools from covering spaces theory [,4,11] (see also Theorem 4.A in [16]). we
construct a covering p-, that is a regular covering of both EII and t. The
multiplicity of this covering is at most s2j2 . Since p. is a regular covering of
El,,, by property P4 of regular coverings all generalized lifts of all paths onl EII
that are homotopic to -y have equal complexity. Since p-y is a regular covering

of t. by property P3 the complexity of a generalized lift of -y is at least s. 0

2.2.4 Construction of a Common Covering

In this section we prove the theorem that guarantees the existence of the cov-
ering announced in Section 2.2.1.

Theorem 2.18 Let I > I be a constant and 71,.. ., yk be a family of closed,
honiotopically nontrivial and pairwise nonhomotopic paths on EII of complh'zty
less than 1. Then there exists an m-fold regular covering p El j -- ,,, Irhere
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14J113''41' 
26~

(and forI > 8, n < '2 such that each generalized lift of -y (i I .. ,k) has

complerity at least I.

Proof.- By Lemma 2.11, k < 2 . 3 1- 1 (we exclude the hornotopically trivial

closed path). For each y,, i < k, construct a regular coveringp, : Ei --. !tIl such

that each generalized lift of -t, has complexity at least 1. If -y is nonhoinologous

to zero use Corollary 2.13. and otherwise use the construction from Theorem

2.17. By Corollary 2.13 and Theorem 2.17, p, is at most an -212-fold covering.

Using standard tools from covering spaces theory [14,111 (see also Theorem 4.A
in [16]), we construct a regular ni-fold covering p -E, that is also a
covering of each of Ej where m < (1212)2 3'- -2 . Thus n < a4123'- -41 < ,2-.

Furthermore, if I > 8 then 14121'--41 < .. "2 •

Corollary 2.19 For any I > 4 the m-fold covering constructed in Theorem

2.18 has the following parameters:

1. If d is the number of the boundary components of the covering space then

1 < d < rn/l.

2. Let r be the developing number of the boundary, bE1.1, of E l.Then
T > r= , >.

3. If g is the genus of the covering space then . > g > - r(1 -2).

Proof: Let B = {x, y} be the base of ,r(E,1I) chosen at the beginning of Section

2.2. Consider the 1-fold covering, pj : E, P E1,1, constructed as in Corollary

2.13 for the closed path corresponding to x. Let 6EY, 1 be the boundary of V-1,.

Because 6EII is a homologically trivial, its developing number in this covering
is equal to one. Thus, the covering space E, has I boundary components. Since

our m-fold covering of ES,1 is also a covering of Er it follows that I < d. On

the other hand, bEI.• is a homologically trivial closed path with complexity

4. Therefore, by Theorem 2.18, we apply to this path the construction friom

Theorem 2.15 prior to the construction of the common covering. This implies
that the developing number of the boundary component is at least, 1. Since the

complexity of 6•vj is four, the complexity of a generalized lift of 6Et,, is at

least 41. Furthermore, because X;Ij has only one boundary component and the
covering is regular, mn = rd. Thus d < t-. These prove properties 1 and 2. Since

the Euler characteristic of E1,1 is -1, by Theorem 2.8 the Euler characteristic of

the covering space is -m and therefore m = d + 2g - 2. This implies property

3. 0
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2.3 Construction of Triangulations

LDt T be a triangulation of E1,1 in a general position to x, y such that any edge
of T cuts x U y at most once. We call such a triangulation a base triangulation.
Let n(T) denote the number of vertices in T. Let ý be a covering space of EII
and p the covering mapping. The triangulation T defines a triangulation Tý of
the covering space such that vertices of T are preimages of vertices of T and
edges of T are defined by preimages of edges of 7'. The triangulation IT' is called
a covering triangulation of the base triangulation T. Note that the length of a
closed path in T is greater than or equal to its complexity. Therefore we can use
the ideas from the previous section to construct, for any base triangulation 7T, a
covering triangulation T; in wvhich all noncontractible paths have length greater
than any given constant. This gives a high representativity triangulation of a
surface with boundary.

Theorem 2.20 For a given I > 4, let t be the coverzng space of E,. con-
structed as in Theorem 2.18. Let T1,1 be the triangulation of E1,1 as presented zn
Figure 2.5 and let T be the triangulation of E that is the covering trizangulation

of T1 1 . Then the represeutalivity of T is at least I and I > I '"Lloglogg

where g is the genus of ý. Furthermore n(T) < 10g.

Proof: Let ni be the multiplicity of the covering p : I- as given by

Theorem 2.18. Then n(T) = 4m and, by Corollary 2.19, g > ½Lm(l - 1).

Therefore ncr") < 8 T_. r . Thus, for I > 4, !T < 10. Furthermore log logg < 31.

Therefore I > I log log g O

-1
a

b b

a

Figure 2.5 The triangulation T1,1 of EII
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To get the result for a closed surface ( Ihat is, a surface without boundary

we need to cup off boundary components with discs or glue pairs of boundary

collipOnlenlIs using an anuiilar collar. Discs and/or an•,iil should Ibe triangulated

in such a way that the identification does not introduce noncontractible cycles of

length less than 1. The details of the construction are presented in the Appendix.

The construction presenled in the Appe)ldix leads us to the following hleorem:

Theorem 2.21 For any g > 1 there ensts an 2nteger N. such that for nly

n> N9

f( no) >. 1 4gg.

F.urthermore if g ? 28'0 then N. < -gloglogg and othervise Nq < 7 g.

3 The Combinatorial Technique

In this section we sketch a combinatorial technique that allows us to construct

triaigulations of high representativity. For a full presentation we refCr the

reader to [17]. We use a result of Erd6s and Sachs [7,81 and a method sinaiar

to that used by Buser [4]. To describe the result of Erd6s and Sachs we need

to introduce a few more definitions.

Let G be a graph with at, least one cycle. The girth of G is equal to the

length of the shortest cycle in G. The number of edges incident with a vertex is

called the valency of the vertex (a loop is counted twice). A graph all of whose

vertices have valency 3 is called a cubic graph-

The following theorem is a special case of theorem of Erd6s and Sachis [7,8).

Theorem 3.1 (17,8]) For any I > 2 and for any 2' - 1 > N > 2r-1 - I there

erists a cubic graph of 2N vertices with girth at least 1.

Below we sketch the idea of the construction implied by this theorem.

Tlh(oremi 3.2 ([17]) For a ny y >_ 2 and any n > 4.5g log g

n) V

Proof. (sketch) Let. I > 2. 'ake lhe cubic graph, Go, of 2N veitices and girth

at least 1 that, is giaraii teled by Theorem 3.1. Since Go is cubic it has 3N edges.

'I'lius its cyclomatic nulber is N + 1. Consider the boundary of the regular

neighhorhood of G0 embedded in the 3-dimn iesional space 10 (sIe Figmrc.. 3 1)
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This boundary forms an orientable surface E, of genus 9 = N + 1.

Figure 3.1

For each edge, e, of the graph we choose a simple closed path C(e) corre-

sponding to e as illustrated in Figure 3.2.

" ""F I c (e ).....

e

Figure 3.2

Observe that if, for any edge e from Go, we cut the surface along cycle C(e)

then the surface breaks into 2N pairs of pants (where by a pair of pants we

understand a sphere with three holes) such that. each pair of pants corresponds
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to one vertex (see Figure 3.3).

Figure 3.3. Breaking the surface into pairs of pants

Let PP(v) denote the pair of pants corresponding to the verteX v. We can

embed Go on 'S by embedding every vertex, v, on PP(vt). Ftirthermno'c if C(e)

is a common cycle of two pairs of pants then we join the vertices corresponding

to these two pairs of pants by an edge (also denoted by e) cutting the cycle

C(e) in one point as in Figure 3.4.

...........

Figure 3.A

All cycles of this embedding are noncontractibke, Now we construct a new

embedded graph 01 by adding, for each edge r of G0. a vertex, v(c), subdividing
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e. We embed v(e) oil the common point of the cycle C(e) and the edge e. Let P'

be equal to 1 if I is even or I + I otherwise. From G1 we construct a new graph
G2 together with its 2-cell embedding. For each edge e we construct a cycle,

cO(e),cl(e),...,cJ'-(e),cO(e) where c0 (e) = v(e),ci(e) E C(e), (see Figure 3.5).

c(e)

e v(e)

I I I

Figure 3.5. C(e)

The number of vertices of G2 is 3NI'+2N. Since each closed noncontractible
path in G2 either contains some C(e) or a cycle in GO, all noncontractible cycles

of G2 are of length at least 1. Now each pair of pants looks like presented on

Figure 3.6.

Figure 3.6.

The last step of our construction is to triangulate each pair of pants. First,

for each pair of pants PP(v), we add a vertex v' and edges (c'/2(C1 ), v'),
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(c"/ 2 (eO), v'), (c'/2(e3), v'). Next, we subtriangulate each of the three resulting

faces as in Figure 3.7(a).

(a)

(b)

Figure 3.7. Triangulation of a pair of pants

Observe that the role of vertices v and v' is symmetric. Note that any cycle

going through one of the vertices v and v' can be replaced by a shorter cycle

which does not go through such a vertex. Thus we can remove all such vertices

frorn the triangulation. (The remaining embedded graph is also a triangulation).
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The resulting triangulation of a pair of pants is presented in Figure 3.7 (b). We
denote this triangulation by G 3.

All noncontractible cycles in this triangulation have length at least. I (see
[171 for a formal proof).

Thus, for a fixed genus g = N + 1, we can construct a triangulation all of

whose non-contractible cycles have length at least 1. The number of vertices of
the triangulation is equal to n. - 3N1', where 21 > N + 1 > 21-1. By routine

computation (see [17]) n. •_ 4.5glogg and I >_ -,7/' Furthermore,

n. 2_(2g - 2). Therefore we can use Lemma 5.8 with r 5 (i.e. = and
74-=- •) to get

f(E, n) _ V ly .

4 The Hyperbolic Geometry Technique

A graph that is embedded in a surface can be considered as a structure that
approximates this surface. In this context the representativity of a graph is
often viewed as a parameter of the approximation.

In this section we formalize the concept of approximating an orientable

surface with the help of a triangulation. We relate the problem of the approx-

imation of a surface to a geometrical structure of the surface (i.e. a spherical,
"a Euclidean, or a hyperbolic structure depending on the Euler characteristic of
"a surface). We discuss whether the representativity of a triangulation can be
used to measure how good the approximation is.

Informally, when approximating a surface with the help of a triangulation,
we would like to spread the vertices of the triangulation evenly on the surface.

If we adopt this intuition, an approximation should depend on the metrical
properties of a surface. The metric of a surface is determined by a geometrical
structure of the surface. We will give an informal description of the notion of a

geometrical structure later in this section. It is important to note that a surface
has many geometrical structures. Therefore a triangulation which is a "good
approximation" of one of the structures may not be a "good approximation" of
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another one.

a

t/-// bVVVV/17 !iA/f/1

-I -Ia a

a) 
b)

Figure 4.1

Consider first two different triangulations of the torus, each of them using

the same number of vertices n = k2 , where k is an even number (Figure 4.1).

The representativity of the first triangulation is V/if, and the representativity of

the second triangulation is IL". One may ask which of our two triangulations

approximates the torus better. Informally, these two triangulations approxi-

mate two different Euclidean structures of the torus. (The metrics on the tori

are induced by the Euclidean metric on the plane taking into account the iden-

tifications of edges of the rectangles (see Figure 4.1)). One cannot claim that

one of the triangulations presented in Figure 4.1 approximates the torus better

than the other. However, the first triangulation approximates a geometrical

structure that has a bigger injectivity radius (that is, the maximum radius of

a ball which can be embedded in the surface with an arbitrary point of the

surface as its center). Thus paraphrasing the terminology of Robertson and

Vitray, the first triangulation is more "locally planar" than the other.

A surface of genus greater than one possesses a hyperbolic structure. Below,

we introduce informally the notion of the hyperbolic structure. It will be mod-
eled on the hyperbolic plane, H 2 , which we define first. For a formal discussion

of the topic we refer the reader to [22].

We use the Poincar6 model of H2 . Let Int(D2 ) = {z E C :1zI < 1) where

C is the set of complex numbers. We introduce a metric on Int(D 2) by de-
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forming the Euclidean metric in every point, z, by the function h(z) =
We call the new metric the hyperbolic metric. It is important to observe that
the deformation does itot depend on a direction but only on the point. Thus
the Poincar6 model is conformal, that is, hyperbolic angles between curves are
equal to the Euclidean ones. The boundary of Int(D2 ) is called the circle at
infinity (for the distance of any point on the circle from the center is infin-
ity). In the Poincar6 model, geodesics (that is, curves of minimal distance) are
curves determined by circles perpendicular to the circle at infinity (including
the straight lines through the point 0). Inversions with respect to geodesics
preserve D' and are isometries of H2 . Furthermore, these inversions generate
all isometries of H2 .

b d

d " 3 b

Figure 4.2

A hyperbolic surface (that is, a surface with hyperbolic structure) is obtained
by gluing together pieces of H 2 using isometries 6 (tbat. ;s, w,,, Af h•t ohLjv i,i ,
such a way that the metrics on the common part of any two pieces are identical).
Below we show a practical construction of a hyperbolic structure on a surface
of genus g > 1 (see Figure 4.2). Consider a regular 4g-gon in the hyperbolic
plane with vertex angle 7r/2g and identification of the opposite sides (where
the sides of the polygon are drawn along geodesics). This identification gives a

f In the language of differential geometry, a hyperbolic surface is defined as a Riemmaiuan

surface with constant negative (equal to -1) curvature.
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hyperbolic structure on a surface of genus g.7 To see this, note that identified

edges have the same hyperbolic length, all vertices of the polygon are idei,,,fied

to one vertex, and the sum of all angles along this vertex is equal to 2z. (Note

that the last property is not true when we work with the Euclidean regular

4g-gon).

Since the area of a triangle with angles a, ,3, 7 is equal to r - (a + 0 + Y) we

can easily check that the area of the constructed hyperbolic structure is equal

to 2x(2g - 2). This fact is true for any hyperbolic structure on a surface of

genus g > 1 and is known as the Gauss-Bonnet theorem.

Theorem 4.1 (Gauss-Bonnet) The area of a hyperbolic surface of genus g >

I is equal to - 2 7rx(ra) = 21r(2g - 2).

Consider a surface E together with a metric d. Now we introduce the defi-

nition of an approximation of a pair (E, d) with the help of a triangulation.

Let T be a triangulation of E and let u, v be two vertices of T. Let 7 be

a curve on E joining u and v (if u = v then y is a closed curve). We define

d.,(u, v) (respectively], dy(u, v)) to be the length of the shortest curve in (E, d)

(respectively, the shortest path in T) joining i and v that is homotopic to -f

relative to u and v.

Definition 4.2 We say thata triangulation Tofa surface Ets a fl-approl2rnatiotl

of E (where 0 < /3 < 1) with respect to the metric d if and only if for every two

vertices u, v of T, and any path - on E joining u and v, the following is true:

FT d- (u,v)-

We treat the factor 4" as a "scaling" factor (we will discuss this in more

detail later). In what follows we assume that d is a hyperbolic metric.

Conjecture 4.3 There exists a constant 03 (0 < 13 < 1) such that, for any

hyperbolic surface E and n >> g there exists an n vertex triangulatlio that

is a 03-approxiniation of E. Conversely, for any triangulation 7T (if a sur-

face Eg of genus greater than one, there exists a hyperbolic structure that is

/3-approximated by T.

Observe that if a triangulation T is a fl-approximation of a surface then the

subdivision T2 ofT (recall Figure 2.1) is a #3'-approximation of the same surface

where, for n(T) >> g, ;3' is approximately equal to /3. To see this observe that

A genus g surface has more than one geometrical structure. The geometrical structutics

of a surface of genus g > I are precisely the hyperbolic structures forming a Teichmii~ler's

space (which topologically is homeomorphic to the open Gg - 6 dimensional ball).
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in a single subdivision step the distance between any two vertices increases 2

times while tile number of vertices grows approximately 4 times (recall formula

(1) from the proof of Lemma 2.28).

We discuss now arguments towards Conjecture 4.3. We split the discussion

into two parts.

Part I. First we would like to argue that, for any hyperbolic structure, there

is a triangulation which approximates this structure tip to some constant factor.

Assume that we spread n vertices evenly on the surface 8 Then , gives
the "density" of the vertices of the triangulation.

We require that our "evenly spread" triangulation has the following prop-

erties:

There exist constants 6 > 0 and 1 > c > 0 such that

TI: All angles of the triangulation are greater than 6,

T2: For any two edges of the triangulation the ratio of the length of the shorter
edge to the length of the longer edge is in the interval [1 -].

Let L (respectively, 1) be the length of the longest (respectively, the shortest)
edge of the triangulation. Then the area of any face is O(L2). On die olher

hand, by property TI, the area of any face is Q(2). Therefore tile ratio of
the area of the smallest face to the area of the largest belongs to the interval

tc, 4] where c is a constant depending on 6 and c. Thus, by the Gauss-13onnet
theorem, the area of each such triangle is O( (• q-2)) where f is the number

of triangles. Therefore the area of a triangle is 6(2) and the hyperbolic length

of an edge is O(Vf).
I a). Now we prove the inequality:

0' <- d.,(u, v)

V9 d-, d(uv)

Take two points u,v of the triangulation and a curve -y joining them. Let

dr(u, v) be the hyperbolic length of the path in the triangulation that realizes
d.(u, v). Then

d-y (u, v) 5_ d-y (ut,v) :S d- (it, v) L <_ c'd-, (u, v) -

where c' is a constant.

Thus assigning f3' = we obtain the required inequality.

8 Imagine, for example, n electrons placed on our hyperbolic surface. WVe can expecr hieni

to spread evenly on the surface
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I b). To prove the inequality

d4y(u, v) <S< Je
d.(u, v) -f"ge

we project the path that realizes d-,(u, v) vn the edges of the triangulation. By

property TI, the hyperbolic length of this projection is O(d,(u, v)). Since the

hyperbolic length of an edge is 0( V/1) this implies the above inequality.

Finally we can chose 3 = rin(O', 0").

It remains to prove that there exist "evenly spread " triangulations that have

properties TI and T2 defined above. An important step towards construction

of such triangulations is the following theorem:

Theorem 4.4 ( Colin de Verdi~re, Marnn 16]) On a given hyperbolic sur-

face there exists a family Tn of geodesic triangulations such that

1. The upper limit of diameters of a triangle tends to 0 as n '-. cr.

2. 3N, Vn > N the angles of the triangulation T-, are in the interval [2 77r, - r].

Part II. We would like to show that given a triangulation of a genus g

surface, one can construct a hyperbolic structure which is approximated by

this triangulation. The following theorem could be an importatit step towards

such construction.

Theorem 4.5 (Duser [5]) Given a triangulation of a closed surface there er-

2sis a hyperbolic structure in which all edges of the triangulation are drawn along

geodesics.

If Conjecture 4.3 is true then to obtain a triangulation of maximal repre-

sentativity w? need to find a triangulation that approximates the hyperbolic

surface with maximal shortest geodesic. The length of the shortest geodesic is

equal to twice the injectivity radius. Unfortunately, for g > 1, it is not known

either what the value of the maximum injectivity radius is or which hyperbolic

structure achieves this maximum. However if Conjecture 4.3 is true then a

lower bound for the length of the shortest nontrivial geodesic could be used to

to get a lower bound for the length of the shortest noncontractible cycle and

vice versa.

Let ýp(Eg) denote the maximum over all hyperbolic structures of E. of

the length of the shortest geodesic. Using Theorem 3.1 Buser [4] proved that

p(Eaq) = Q(I/-n--g). Using a simple area argument, it is not difficult to prove that

p(Eg) < 2 In4g [4). Thus the best currently known upper and lower bounds for

the length of the shortest noncontractible cycle and the length of the shortest

geodesic agree.
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Conjecture 4.6 There exists a constant a such that for any g > I there ezsts

a hyperbolic surface of genus g whose shortest geodesic is at least a log g where

at ts a constant.

To motivate this conjecture consider the geometric structure presented in

Figure 4.2. In this structure the edges and the diameters (from the midpoint of

an edge to the midpoint of the opposite edge) have length 2arc cosh ct~g(,.r/4y).

For big g this value can be approximated by In g. If one could prove that these

edges and diameters are the shortest geodesics of this structure the Conjecture

4,6 would be proven.

Note, that Conjecture 4.3, part la, and Conjecture 4.6 imply the following

conjecture

Conjecture 4.7

f(Eg, n) =- ( logg)

5 Appendix:

In the Appendix, we show how the construction of Section 2.2 can be used to ob-

tain triangulations of closed surfaces with representativity claimed in Theorem

2.21.

To get a triangulation of a closed surface (that is, a surface without bound-

ary ) from one or more surfaces with boundary we need to cap off boundar-y

components with discs or glue pairs of boundary components using an annular

collar. Discs and/or annuli should be triangvlated in such a way that the iden-

tification does not introduce noncontractible cycles of length less than I. The

following simple lemmas describe triangulations of discs and annuli that have

the required property.

Consider a triangulation of an annulus with two boundary components

,l A, 62 A. Let v, u be two vertices of this triangulation that belong to the same

boundary component. WVe use 6(v, u) to denote the length of shortest paths

between u and v that entirely belong to the boundary componenL.

Lemma 5.1 Consider a triangulation of an annulus as presented in Figure

5.1 a. The boundary components are cycles of length k and the depth of thc

triangulation is j. This triangulation has the followzng properties;

1. The number of vertices of the triangulation is (k + 1)j.

2. Each nonconractizble cycle has length at least k.

3. Any path Joinirg different boundary component has length at least j.
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4. Any path joining two vertices, u and v, from the same boundary compo-

nent has length at least 6(u, v).

k
k

(a) (b)

Figure 5.1 The triangulation of an annulus and a disc

Lemma 5.2 Consider the triangulation of a disc obtained from the triangu-

lation of an annulus from Lemma 5.1 by contracting edges of the boundary

component 62A and deleting multiedges (see Figure 5.1 b). Then the length of
any path joining to vertices u,v on the disc boundary is at least min{2j, 6(u, v)}.

Lemma 5.3 Consider a triangulation of an annulus obtained from the triangu-

latwon from Lemma 5.1 by contracting consecutive edges of boundary component
62A so that I (1 > 2) edges of 62 A remain and deleting multiedges. Then

1. Each noncontractible cycle has length at least 1.

2. Any path joining two vertices, u and v, from the boundary component 62A

has length at least 6(u, v).

3. Any path joining two vertices, u and v, from the boundary component 61A
has length at least min{2j, 6(u, v)}

4. Any path joining two vertices from different boundary components has

length at least j.

Let '16 be a triangulation of a surface Eqd" Let T1 be the triangulation obtained



SURFACE TRIANGULATIONS WITHOUT SHORT NONCONTRACTIBLE CYCLES 331

from To by subdividing each face of To as in Figure 5.2 b.

a) b) c)

Figure 5.2

Thus the triangulation T1 is a subdivision of the triangulation To. Let Tj be
the triangulation obtained from To by i iterations of the subdivision described

above (that is, for i > 1,Ti = (Ti_ 1) 1). A sequence T0,T 1,... of subdividing
triangulations satisfies the properties stated in the following simple lemma:

Figure 5.3 The triangulation T1,2 of E1,2

Lemma 5.4 Let fL be the number of faces of the triangulation Ti. Then, for

any i > 1
I. fj = 4fj- 1,
2 p(EC ,d, T ) = 2 ( g d Ti 1).

Lemma 5.5 Let T 1,2 be the triangulation of r 1,2 with no = 8 vertices, fo =

12 faces, and e0 = 22 edges as presented in Figure 5.3.' Let (T1 ,2 )i be the

9 Note that T 1 ,2 is a 2-fold covering of the triangulation of S1,1 from Figure 2.5.
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tnangulation of E1, 2 obtazned from T1,2 by i subdiviszon steps, and let rni be the

number of vertices of the triangulation (TI, 2 )i. Then

n =-- 6 • 4 -+ 2- 2

Now we are in the position to give a lower bound for the function f(g. 1)
that is, for the maximum representativity of an n-vertex triangulation of a

closed surface of genus g. To illustrate our approach we start with the following

example.

Example 5.6

Let I > 4 and let gi be the genus of the surface E = rg,,d constructed as in

Theorem 2.18 (5; is the m-fold covering of E1,I). Let T9 ,,d be the triangulatvk

of Eg,.d that is the covering triangulation of T1,1 . The number of vertices of

this triangulation is equal to 4m. Let Tg. be the triangulation of E., obtained

from T_,,d by cupping off boundary components of E_,,d by discs triangulated
as in Lemma 5.2 with j = and k = .. By Lemma 5.2 the represent.ativitv

of T., is at, least 1. The number of vertices, n(Tg,), is bounded by

n(T ) < ?I(T 91,d) + d( 4. - d(4m) <_ 21m.

dG- 2 d~y

Since, by Lemma 2.18, log logg, < "i nd by Corollary 2.19. gi > >w(1 -

3 M we obtain

1V---(T logloggi < I.

4 gt

Now, we generalize the construction from Example 5.6 to an arbitrary g.

Lemna 5.7 For any g > 1, there exists an integer N9 such that

f(Eg, NS) > IN./g log -o g.

Furtlhernore if g > 28" then Ng < -glog logg, and otherwise NA ' 7g.

Proof: For any I > 4 define Eg,,d and T9,,d as in the Example 5.6.

Consider any g > 1. Let I be an integer such that

2 b 1- _<g<2.

We consider separately the cases of I < 11 and I > 11.

CASE I: g > 2810 (i.e. 1 > 11).
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Let g = igj + k where k < gi. Since gt < 2 3 -- /1412 we have i > 1412.

Construct E. and Tq as follows. Consider i copies of Eg,,d and k copies of
V1,2. Each copy of Yg,,d is triangulated with T9 , as in Example 5.6. Each copy
of E,2 is triangulated with (TI,2)k,, where (T 1,2 )i is defined as in Lemma 3.5

and ki = [log -1 ( that is I < 3 - 2k' < 21). Note that (T1,2)k, and Tg,,d have
representativity at least 1. Furthermore, for I > 4, each boundary component
of Tg,,d has at least 41 vertices and each boundary component of (TI,2)k, has

less than 21 vertices.

Now we glue together i copies Tg,,d and k copies of (Tl, 2 )k, as in Figure 5.4

using collars triangulated as in Lemma 5.5.

triangulated c -ar

Ti I T9~ ... Tg' I (7'1,2_)k, (T1,2)1-, .- (Tl..2)t-

i k

Figure 5.4

Then we cap off remaining boundary components with discs triangulated

as in Lemma 5.2. The resulting surface has genus g and is triangulated with
representativity at least I. After approximating the number of vertices used

in this triangulation (see a more detailed calculation below) we obtain tihe

inequality stated in the lemma.
210

CASE II: g < 28
If g > 4 then we construct E. and its triangulation T9 , by cyclically gluing

g - I copies of T1,2 as in Figure 5.5. The representativity of T1,2 is three. If
the gluing of g - I copies of T1 ,2 is done carefully then we do not. introduce
cycles of length two. Therefore p(E,,7T) = 3. The number of vertices is equal

to 4(g - 1). Therefore 2 < 4 and so n < 4g. Finally
9



334 TERESA M. PRZYTYCKA AND JOZEF H. PRZYTYCKI

VyTo-g g 5 2 VF--g'Ig < 2V'T 10 < 12 =4p(E, Tg)

T, T I1,2

II

Figure 5.5

For I < g < 4. L• and its triangulation T. is obtained by gluing 9 copies of T1,2
(as before one has to be careful not to introduce noncontractibke cycles of length

two) and cupping off two remaining boundary components by discs triangulated

as in Lemma 5.2 with j = 1. The representativity of the triangulation is 3. The

number of vertices is equal to 4g + 4 + 2 = 4g + 6. Therefore

n 6
-<4+- <7.
g g

Finally

-,/log log g !•V7 < 12.
V g

Now we give a more detailed computation for case 1.

CASE I : Details of the computation.

First we approximate the number, n, of vertices of T.

By Lemma 5.5, the total number of vertices on copies of(T 1 ,2 )k, (not counting

annuli connecting them ) is k(6 - 4 1og 11 + 2 flog 11+2 - 2) < k(6 .4(1)2 +

"- 2) < 6k 2 .

5
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- The total number of vertices on annuli connecting copies of (Tl,2)k, plus the

vertices on the disc cupping off the remaining boundary component on

the last copy of (Tl,)k, is at most kJ2 .

- By an argument similar to the one used in Example 5.6 the number of

remaining vertices of 71, is at most i. 21m.

Thus

n < 2ilm + 7k12.

Therefore
n 2i:m + 7kM2

g ig, + k

But g < 23' and ig1 + k > igi > i2m(1 - 1) and therefore

n 2ihm + 7kW2
-<g < i!m(1 -

Since i > 1412 k < gi , and I > 11 we obtain

n 4! 1 41 1 9 1
- < + I 1 < + 7 2 + - < 5(1 - 1).

Therefore

n < 5(1- 1)g < 3gloglogg.

Finally,
"V11Voglog g :5 -V-1Vog-o < V/5xi~V-3l < 41.

0

In the last lemma, we constructed, for any g > 1, a triangulation of E.
such that the representativity of this triangulation is at least ci log go for

some constant c. Now we will extend this result to any sufficiently large it.

Lemma 5.8 Assume that for a genus g there erists an integer N. > l.(2g-2)

such that

f (E.9 , Ng) >c 99 g

where 0(g) is a function of g and c is a constant. Then for any n i_ Ng

f (E.9, n) >_ c• 0(g)"
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Proof- Let no = N. and let To be a triangulation of E. that uas representativ-

ity at least ci-•k(g). Subtriangulate To iteratively according to the scheme'

presented in Figure 5.2. Let ni, e1 , fi be respectively the number of vertices,

edges and faces after the ith iteration. By Euler's formula we have for every i

ni - ej + fi = 2 - 2g.

Since we are dealing with a triangulation it follows that 2ei = 3fi. Thus e, =

3(ni + 2g - 2).

Furthermore ni = n,_ 1 + ej_ 1, and therefore

ni = nil + 3(nii + 2g --- 2) = 4nj- 1 + 3(2g - 2)()

which implies

i--I

ni = 4ino + 3 (2g - 2) 3 4i = 4'n0 + (4' - 1)(2g - 2).
j =0

Thus

4'n 0 = ni - (4' 1)(2g - (). (2)

Let Ti be the triangulation resulting from To after the ith subdivision step. By

Lemma 5.4 we have

p(Eg, T,) = 2'p(>g, To).

However, by the assumption of the lemma

p(E, ITO) Loo.),

and thus for any e

p(A 9,T,) > 2'.c no,(g) c 4in 0 (l -) + 4-4no.

Therefore, by (2),

p(-, T,) > CO(g)- 1-V'1 - e)(nj - (4i - 1)(2g - 2)) + 4,eno

1
cO(g)- 1/(1 - e)n 1 - (4i - 1)(2g - 2)(1 - e) + 4'cno

c(g)-7g (1 - c)ni + 4'en0 - 4i(2q - 2)(l - c) + ( 2 g - 2)(1 - c) >
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"1
c0(9)- ~/I- c)nj +I 4icno - 4'(2/q - 2)( 1 - c

c4(g) E( - )ni + 4iE(no - - (2g - 2))

Uk q' T') > COW A rih.I ~\

This implies that,

f(r, , hi) _ co(g) V/-' -Z), (3)g
For any n there exists i such that nlj > n > ni. By (1) and by the assumption

of the lemma it follows that

3•
nj+j : 4ni + •_ no,

But, for any i, we have ni > no, and so

3c 3r
n+ 1 _< 4ni + _ni = ,,(4 + i_-

Thus
1-c

ni >_ fi+ 4 --

Observe that if we subtriangulate a triangle using one additional vertex as in

Figure 5.6 then we do not decrease the representativity of the triangulation.

Figure 5.6 Adding a vertex to a triangulation
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Because n > ni it follows that

f (Eg, n) >! f (Eg, ,,7)

Thus

n --. ni[- >

C .

Now we will use the above lemma to prove Theorem 2.21 of Section 2.

Theorem 5.9 (Theoren 2.21) For any g > 1 there exists an integer N. such
that for any n > Ng

f (Eg 71 T2n -1(

Furthermore if g > 23'W then N9 < -gloglogg an~d other•vise NA < 7g.

Prc?.,f" Let g < 23"'. By Case 11 of the proof of Lemma 5.7, for q > 4 we can
set N. = 4(g - 1) ai,d for 2 < g < 3 we can set N9 = 4g + 6 . So in both cases

N g > 2(2g - 2).

Let g > 26" . Thus we deal with CASE I of the prcof of Lemma 5.7.
Therefore we have

n(Tg) >! i.- n(T,,) > i.- n(Tg,,,).

By Corollary 2.19, n(T,,d) > 8gt, and since (i + 1)gt > g, we have further

i 7.in(T.) > Sigj = 8. ?(i + 1)g, > 8-g > 4g > 2(2g- 2).

Therefore we can use Lemma. 5.8 for E = ( i.e. = 2). Because

> 1we obtain

1 T
f(E•,n) >_ lvogIlog•g.

as required. 0
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Representativity and Flexibility on the Projective Plane

R. P. VITRAY

ABSTRACT. Let G be a graph embeddable on a surface, S. The flexibility
of G (with respect to S) is the number of distinct (up to homeomorphism)
labeled embeddings of G into S. The flexibility of the topologically
minimal 3-representative projective planar embeddings has been deter-
mined along with global projective twists which explain the flexibilities.
This result, along with Whitney twists, can he used to analyze the number
of embeddings of any 3-representative projective planar graph. As a
consequence it can be shown that every 3-connected, 4-representative
projective planar embedding is rigid (i.e. has only one labeled embedding).
Thus an alternative method is supplied for obtaining embedding results
shown independently by Negami. It is conjectured that a 3-connected, k+3-
representative ,nrededing on a surface with k crosscaps is rigid.

I. Introduction

In 1932 and 1933 Hassler Whitney published a series of monumental graph theoretic
papers in which he defined a combinatorial dual of a graph and showed the exiistencc of
such a dual was equivalent to the existence of a representation of the graph on the plane
with a finite set of points joined by curves intersecting only at those points. This led to two
related results. First, all embeddings, up to isomorphism, of a 2-connected graph in the
plane can be obtained by a sequence of twists of blocks of the graph attached at two
vertices; and, second, any 3-connected graph has, up to isomorphism, at most one
embedding in the plane. It remains an open area of research to extend Whitney's results
to nonplanar surfaces. A natural first step is to analyze the projective plane where already
the situation is more complicated. Here, graphs which are 3-connected often have
nonisomorphic drawings which are not in general related by Whitney twists.

In their landmark work on graph minors, Robertson and Seymour have developed a
tool for attacking this problem in the concept of representativity. For any fixed surface of
positive genus, the embeddings of representativity at least n form an upper ideal under the
quasi-ordering of minor inclusion. Robertson and Seymour have shown that for any such
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set the collection of nonisomorphic minor minimal members is finite. There is no limit on
the size of such a finite collection but in those instances where the minor minimal
embeddings can be found interesting results can be obtained pertaining to the entire st.

On the projective plane, hereafter denoted PP, the complete set of nonisomorphic
minor minimal 3-representative embeddings is known I 11. An analysis of these embeddings
yields a theory explaining the flexibility ol projective planar cmbeddings.

2. Definitions

A surface isa compact two-dimensional manifold without boundary. For convenience,
E will be used exclusively to denote nonspherical surfaces. An 0-arc is a subset of Z
homeomorphic to the unit circle and an essential 0-arc is one that is not contractible to
a point. If 'P is an embedding of a graph G in a surface Y then G is the underlying graph
of Z. In an abuse of language, graph theoretic terms will also be used in reference to an
embedding (so, for example, the point in Y_ which is the image of a vertex of G will be
referred to as a vertex of I). If v is a vertex of ' then the wheel neighborhood of v is the
union of theclosuresof the faces ofT+' which have v in their boundary. The representativity
of 1P, denoted p(Y), is given by:

(1) p() = MIN ({IC r I : C is an essential O-arc in }1

Let A be a triangular face of an embedding, ', in E. If we draw three internally disjoint
paths from a point, v, in A to the three vertices on the boundary of A, delete the edges in
the boundary of A, and assign v to be a vertex, we obtain a new embedding, 4", in E. 41'
is said to have been obtained from ' by popping a triangle. The inverse operation,
punching a triad, can be used to obtain T' from T' and the two operations together are
referred to as Y-A operations on Z(or simply Y-A operations if Z is understood). Note that
the Y-A operations defined combinatorially for a graph G do not necessarily carry over
to an embedding ' of G. In particular if a triongle of G does not bourd a face of T then
it cannot be popped. It is elementary to show that the representativity of an embedding is
invariant under Y-A operations ([ I).

For any two embeddings, T I and 'P2, of a graph G in Z, a isomorphismfrom 'TP to
W'2 is a homeomorphism from X to Y. which maps the image of G under ' I to the image
of G under 'P2. If such a homeomorphism exists, 4'P1 and 'P2 are said to be isomorphic.
If T1 and '2 are both embeddings in E then T I is a subembedding of 'P2 if P1! is iso-
morphic to an embedding obtained from 'V2 by a sequence of edge and vertex deletions.
Also, T I is a minor of 'Y2, denoted T'l I-m T'2, if TPI is isomorphic to an embedding
obtained from a subembedding of 'P2 by a sequence of contractions of nonloop edges
where the contractions correspond to the quotient map of 2. which identifies the points of
the edge. The set of nonisomorphic minor minimal embeddings on E of representativity
at least n will be denoted Mn(W). It follows from the work on Robertson and Seymour that
Mn(E) is finite for any choice of n and E (although this result is not needed here). For many
questions, including the one of flexibi lity, it is appropriate to restrict the edge contractions
to edges which are incident with divalent vertices. Under this restriction, ' I is an em-
bedding minor of Y2, denoted 'P I e '2. Under embedding inclusion, there arc still a
finite set of nonisomorphic minimal embeddings of representativity at least n, denoted
En(E), and they can be obtained from Mn(L) by expar.ding vertices of valence greater than
2 in all possible ways, where expansion is the inverse operation to contraction.
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A libeling ot a graph G is a one to one mapping from ( 1, 2 ...... IV(G)I to the vertices
of G. Two labctiný, of G are equivalent if there is an autumorphism of G which induces
the identity map on the labels. Suppose Y ! and Y2 arc both embeddings in Eof a graph
G with labeling f. The two embeddings are f-isomorphic if and only if there exists a
isomorphism from TI to T2 which preserves the labeling of the vertices. A graph G is
n-flexible on I (or simply n-flexible if 7 is understood) if n is the maximum number of
embeddings of G which are not f-isomorphic for some fixed labeling f (it is clear that n
does not depend on the particular choice of f). A rigid graph is one which is )-flexible.
Any flexibility of a graph embedding which can be explained via the results of Whitney
will be referred to as a Whitney twist.

3. Projective Flexibility

All of the members of M3 (PP) can be obtained from K6 by Y-A operations (see [I 1)
and all of the members of E3(PP) can be obtained from the members of M3(PP) by a finite
sequence of vertex expansions. It is natural therefore to begin our investigation of the
flexibility of these embeddings by determining the flexibility of K6 on !"P.

PROPOSITION I. The graph K6 is 12-flexible on the projective plane.

Proof: It is well known and easy to show using Euler's formula that any embedding of K6
in the projective plane is isomorphic to F0 , the embedding shown in Figure I (where the
antipodal points of the outer circle are identified),

2

6 3

5 4

Figure 1

Further note that since K6 is a complete graph all of its labelings arc equivalent. It
follows that any two labeled embeddings of K6 in PP which are related by a rotation and/
or reflection of PP are f-isomorphic; so, an upper bound for the number of f-isomorphism
equivalence classes can be found by examining the sequence of labclings around the
vertex labeled 1. This is equivalent to solving the well known combinatorial problem of
counting the number of ways of seating 5 people at a round table where two seatings are
different if and only if there is some pair sitting next to each other in one of the seatings
who are not sitting next to each other in the other seating. The solution to this problem is
easily seen to be 12 (see nearly any elementary discrete mathematics text). Therefore, K6
is at most 12-flexible on the projective plane. Finally, by inspection, none of the twelve
embeddings generated in the above described manner are f-isomorphic.]
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Fortunately, there are only fifteen embeddings in E3(PP) (see fI D). It is thus possible
toexamine each of them as in proposition 1. This has been done and yields the following
theorem.

THEOREM 2. The flexibility of the elements ofE,3(PP) are as shown in figure 2, where the
flexibility of each embedding is given in parentheses.

1(12)

II(6) (2)

11(6) (2)

(2)

IV(4)(2

VI (3)
V (3) 

0 (2) 
VI(3

VII (2)

Figure 2

The seven embeddings deroted by roman numerals are the members of M3(PP). Note
that I is an embedding of K6 and that VII is an embedding of the Petersen graph. Also the
graph embedded in V is isomorphic to the graph embedded in VI. Thus the underlying
graphs of these embeddings are not the seven graphs which can be obtained fror K6 by
combinatorial Y-A operations (the missing graph cannot be embedded on the projective
plane).
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If F is a projective embedding and p(r) _> 3 then r is q-twi.stable if there exist vertices
1, 2, 3, 4, 5 and 6 which are related as in (a) of figure 3,

6

66

(a) (b)
Figure 3

where the shaded regions represent any planar embedding (the"q" stands for quadrangle).
If F is a q-twistable projective embedding of a graph G with labeling f then there is a
projective embedding, rq, of G with the same labeling which is a subset of the structure
in (b) of Figure 3. The drawing rq is obtained from r by detaching rat the vertices labeled
I and 6 and flipping the two quadrangular regions containing these vertices in their
boundaries. Since the vertices with distinct labels are distinct, it is easy to see rq will not,
in general, be f-isomorphic to r. The set of vertices labelled I, 2, 3, for example, are on
a common region of F but are not on a common region of Fq, (note p(F) >_ 3 implies that
the regions must be distinct). The drawing Fq is called a q-twist of r.

The embedding F is t-twistable if there exist vertices 1, 2, 3, 4, 5, 6 and 7,.0
"---5- 6 • 5

(a) (b)

Figure 4

which are related as in the structure in (a) of Figure 4, where, again, the shaded regions
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represent any planar embedding (the "t in t-twistable stands for triangle). if I- is a t-twistable
projective embedding of a graph G with labeling f then there is a projective embedding,
rt, of G with the same labeling which is a subset of the structure in (b) of Figure 4. The
drawing rt is obtained from r by fixing the shaded region with vertices of attachment 1,
2,3; flipping the shaded region with vertices of attachment 1,5,6; sliding the regions with
vertices of attachment 2,6, 7 and 3, 5, 7 down to the bottom of the drawing; and, sliding
the regions with vertices of attachment 3, 4, 6 and 2, 4, 5 up to the sides of the drawing.
The drawing rt is called a projective t-twist of r.

In the case that F is an element of E3(PP), inspecting the various embeddings of the
drawings in figure 2, leads to the following theorem (a similar result is derived by Negami
via a different method [21).

THEOREM 3. If TPand 'I are elements of E3(PP) with the same underlying graph and
equivalent labelings then tit can be obtained from Tliby afinite number of projective q-
twists and t-twists.

More generally, suppose F is an embedding on the projective plane of a graph G with
a labeling f such that p(F) > 3. There exists an embedding from among the embeddings
shown in Figure 2 such that 'T •_e r ([31). Thus each embedding of G in PP corresponds
to one of the embeddings of IF enumerated in Theorem 2 (although some of the possible
embeddings of T' may not correspond to embeddings of G). If C is a connected component
of f which is distinct from IF then C must be contained in one of the faces of TV, each of
which is homeomorphic to the plane. It follows that C is a planar embedding which may
be embedded in any of the faces of IF, and the manner of embedding for any particular face
is entirely determined by Whitney twists. Any block of f distinct from T' but contained
in the same connected component of F as T is also contained in a face of T' with a single
vertex of attachment, v. Such a block may be embedded in any face of TF which is incident
with v in a manner which is also determined by Whitney twists. Hence, we need only
explain the flexibility of the block of F which contains T' to explain any flexibility not
explained by Whitney, i.e. we may as well assume that G is 2-connected.

Let D3 be a bridge of ' in F. By inspection of the embeddings in figure 2, there is a
vertex, v, of T such that 03 is a subset of W(v), the wheel neighborhood of v. Also, W(v)
is homeomorphic to a closed disk in R2 , so, if F and F, induce f-isomorphic embeddings
of T' then their embeddings of 0 can only differ by Whitney twists and theorem 3 has the
following corollary.

COROLLARY 3.1. Let Fand F' be projective embeddings of representativity at least 3
with the same underlying graph and equivalent labelings then F, can be obtained from
Fby afinite number of projective q-twists, (-twists, and Whitney twists.

Note that if F is a 3-representative projective embedding we may choose 'V, a minor
of r from among the embeddings of figure 2, with minimum flexibility. Evidently, the
number of different embeddings which can be obtained from F by q-twists or t-twists is
equal to the number of different embeddings of 'V. Furthermore, 3-connected graphs do
not have Whitney twists. It follows that a 3-connected, 3-representative projective
embedding has flexibility 1, 2, 3, 4, 6 or 12.

Observe that an embedding which is q-twistable or t-twistable cannot be 4-represen-
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tative. Thus theorem 3 has the following as a second corollary (a slight strengthening of
another result obtained independently by Negami [21).

COROLLARY 3.2. If Fis a projective embedding of a 3-connected graph with p(r) > 4
then Fis rigid.

4. Related Results and Questions

It has been shown that if r is an embedding of a graph G on a surface Ig with g handles
and p(F) > 2g + 3 then r is a genus embedding of G and any other embedding of G on 7g
can be obtained from r by a sequence of Whitney twists (131). In particular, if G is 3-
connected then r is rigid. On the other hand, Archdeacon has shown that for any constant
B there exists embeddings 'V1 and W2 embedded on different surfaces each with the same
underlying graph and each with representativity at least B. It is not known whether 2g +
3 is the best possible lower bound. The analogous lower bound for Ek a surface with k
crosscaps would be k + 3, but this bound has not been shown to work in general (although
it has been shown on some surfaces, note corollary 3.2 above).

Randby has shown that minor minimal n-representative projective embeddings for
any fixed n are always related by Y-A operations. Using a refinement of representativity,
Schriver has been able to show an analogous result holds for all orientable surfaces. The
question remains open for nonorientable surfaces other than the projective plane.

For flexibility, the best possible result would be to find a finite collection of
"twists" which would determine the flexibility of embeddings on any surface. Alterna-
tively, one might show that no such collection exists.
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On Non-null Separating
Circuits In Embedded Graphs
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ABSTRACT. Suppose G is a graplh embedded ill a surface L of oriceitable

genus g > 2 or non-orientable genus k > 2. We prove that representativity

p > 6 for orientable surfaces and p > 5 for non-orientable surfaces are

sufficient conditions for the existence of a circuit C in G which separates

E into two nontrivial parts. The proof yields a polynoniially houilded
algorithm to find such separating circuits. Examples where such circuits

do not exist are given when p = 2.

1. Introdhtiction

Under what conditions do there exist no-nuill-homotopic separating circuits
in a graph embedded in a surface of orientable genus y > 2 or non-orientable
genus (number of cross-caps) k > 2? The interest. here is not just in finding
structural conditiots implying the existence of a certain type of circuit in an
embedded graph, but also in the potential applications of such a circuit to in-
duction on the genus of a surface. Suppose there exists a non-null-homotopic

circuit in an embedded graph which separates the surface into two parts each
containing some of the graph. We cut the surface along this separating circuit
and cap off the boundary circuits in the two connected parts by disks. Each disk

may include any rrinor of the other part which embeds in it; often this minor will
consist of one vertex joined by edges to vertices of the separating circuit. The

resulting graphs are minors of the original graph and are embedded in surfaces
with lower genus. Therefore, for classes of embedded graphs closed under this
type of surface minor, we can perforir this surgery and apply induction on the
genus.
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Define an embedding %P of a graph G on a surface E to be a triple (N, G, V)
such that G is a closed subset of the surface E, and V is a finite subset of G
such that the connected corriponents of G\V are a finite number of open I-
cells. As usual, an elerrent of V is called a vertex, the closure of each 1-cell
of G\V is called an edge, and a connected component of £\G is called a face
of %P. We denote by V(%P), E(%I), F(41) the sets of vertices, edges and faces
of 'P, respectively. Evidently, the pair (G, V) defines a finite topological graph
in the usual sense. All graphs considered here are topological and we will use
standard graph theoretical terminology [61 regarding them. In particular, a path
is a homeomorphic image of the interval [0,1) contained in G whose endpoints are
vertices of G and a circuit is a homeomorphic image of the unit circle contained
in G. A subgraph of (G, V) is a graph (G', V') with G' C G and V' = G' n V
while a topological subgraph is a graph (G', V') with G' C G and V' C V.
More generally, a minor of (G, V) is a graph (G", V") obtained from a subgraph
(G', V') by contracting (sequentially) some edges to vertices. Note that, when
contracting an edge of the graph in an emibedding (E, G, V), in order to preserve
the surface embedding structure, we adopt the convention that the edge must
always have distinct endpoints. To siniplify notation we will usually refer to G
as the graph of ai embedding ('2, G, V), rather than the pair (G, V).

Let V be a closed surface which is not the 2-sphere. A closed curve I in E is
essential if it is not null-hornotopic. If %V is an embedding of a graph G in E, theun
the representativity of *1 is defined to be p(%Y) = rniii{•l" n G1 : 1' is an essential
closed curve in E}. Since representativity is a parameter which describes the de-
gree to which the embedded graph G is a discrete "aplproximation" of the surface
E, we use representativity to give some sufficient conditions for the existence of
essential separating circuits in G. A partial answer to the opening question of
this paper derives from the following observation. The set of embeddings on a
fixed surface of graphs which contain no non-null-hornotopic separating circuits
forms a proper minor-closed subclass £ of emubeddings. Consequently, the rep-
resentativity of the graphs in C is bounded, according to the results in Section 9
of [3], and so if the representativity is high enough, then G contains an essential
separating circuit. We conjecture that p(%P) > 3 is sufficient to assure the exis-
tence of an essential separating circuit. Robertson and Thomas [4] have shown
that if the surface is the Klein bottle and p(I) > 3, then G has an essential
separating circuit (in their paper, they use nested separating circuits to find the
orientable genus of graphs embedded in the Klein bottle, and this can be seen as
an application of essential separating circuits). lRichter and Vitray [5] recently
proved that if p(q') > 11, then G has essential separating circuits.

Il this paper we will prove that p( 4
') _> 6 for orientable surfaces (with at least

2 handles) and p(%P) > 5 for non-orientable surfaces (with at least 2 cross-caps)
is sufficient for the existence of such circuits in embedded graphs. In Section 2
we prove some lerniras which are crucial to our main result. Section 3 contains
the main theorem. In Section 1, a i)olynol-iial-tirte algorithm is given for finding
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a separating circuit under these sufficient conditions. In Section 5, we present
examples with p(%P) = 2 which have no essential separating circuits in their
embedded graphs.

2. Some Lemmas

Let %V be an embedding of G in E, where E is not simply connected. A 3-
component of a graph G can be represented by a maximal 3-connected topological
subgraph of G, where two of these are considered equivalent if they differ only
in the choice of pairwise internally disjoint paths in G for their edges. Given
an embedding T = (E, G, V) there may be equivalent representations Gi, G2 of

a 3-component of G which are horneomorphically distinct as subeinbeddings of
q'. A 3-component of G is essential if it contains an essential circuit. Robertson
and Vitray have the following result, where the essential 3-component is unique
up to a homeomorphism of E fixing its vertex-set pointwise (see [6] for details).

Propositiou 2.1 ([6], page 308). If p(\P) :_ 3 then G has an unique esscntial
3-component, say H. Moreover, p(Ilty) = p(*), where T114 zs the restriction of

the embedding *I to H.

Since 'Pt is a minor of \P, the existence of essential separating circuits in
H would imply the existence of essential separating circuits in G. As we are
studying what representativity bound implies the existence of essential separat-
ing circuits, note that if p(qf) > 3 then the assumption that G is 3-connected

can be rmade without loss of generality.

Let G be a 3-connected graph embedded in E with p(%P) ? 3. For each vertex
v, the symmetric difference of the boundaries of the faces incident with v is a
circuit C passing through all the neighbors of v and bounding a closed disk D,
c(:in aining v. Thi- closed disk is the wheel neighborhood of v ([6], page 298).
The existence, for all v E V(G), of a wheel neighborhood D, with at least three

edges incident to v, is necessary and sufficient for p('P) > 3 and G to be 3-
connected. This criterion generalizes as follows [2]. Let k be a positive integer.

Then necessary and sufficient conditions for p(%I) > 2k + 1 are that, for ally
v E V(G), there exist k disjoint nested cirmuits bounding disks containing v, and

necessary and sufficient conditions for p(%) > 2k are that, for any face f of 141,
there exist k disjoint nested circuits bounding disks containing f.

Suppose *I is an embedding and f is a face of *. Denote the boundary of

f by Of and the closure of f by f(= f U Of). Note that if p(qf) ? 2 and G is
nonseparable, then Of is a circuit. Let f, 9 be two faces of q1. If Of nOg 0 0 , we
say f and g are attached. If f and g are aatached, then 9f n Og is the union of
connected components, called the attachments of f and g. Clearly, if p(') Ž> 2
and G is nonseparable, then each attachment is either a path or a vertex of G.

A closed curve r in E is '*.-minimal if I' is simple, essential, r n G C V(G)
and II " GI = p(*I). It is easy to see that a *-inminimal curve r always exists in
E when p(*) is defined. Let %P be an einebedding of a 3-connected graph G with
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p(%'I) > 3. Then any vertex has a wheel neighborhood and any two faces have at
most one attachmllent, wihiclh is either an edge or a vertex of G. The consecutive

faces through which F l)mscss Will have one attachtnilent and non-consecutive faces
Will have disjoint boun(harics. Ic[ice we ininiediately have the following lemma.

Lemma 2.2. Let G be a 3-counected graph and '% be an embedding of G in a

surface E with p(%P) >_ 3. If F is a k.-,inimal curve it E, then G has a circuit
C which is (freely) homotopic to F .

Actually as both F and C! are simple curves they are in fact ambient isotopic,
as can be seen by pushing F into the face boundaries along which it passes to

forin C.

Let G be a 3-connected graph and AI' be an einbedding of G in E with p(4 )
k > 3. Let F be a 'p-nuininial curve in t and fI,f2,.*..,f be the k faces in

sequence through which r passes (called the face rI-Iq for F), and V, v2 , ... , vL be

the vertices such that vi E Of i-flOfi for i = 1,2,..., k (with flo = fA) and FfG =
{v~l, 2,v ... ,. V}. We describe the face ring fi, ... , A and r as shown in Figure 1
with the top line and the l)ottoin line identified as indicated by the arrows. WVe

can formally assign two sides to the section of F, denoted by F(vI, ..., vk), between
vI (through V2, ... , Vk-) and Vk. For i = 1,2,..., k, denote by Dt, (D',) the left

(right) half disk into wiich r (livides the wheel neighborhood D,, including
fi-I and fi, where i is read modulo k. Note that if Ofi-In ffl is ani edge, then
one of Dt and D" is exactly D,.

(a) (b)

Figure 1:

Let D be a closed disk in 1P. Then the interior (if D is denoted by D*. The
following lennna is easy to prove.

Lemma 2.3. Let G be a 3-connected graph and 'F be an embedding of G in
g with p(%F) > 4. Let F, fi,D, D' i = 1,2,..., k be defined as above. Then

(1) DI- n D' DI n D',., and D, n D" tire closed disks;
Vt ti+1 V • ti Vi V- I Ui1+

(2) (D,) 0 U (D,), (D,)o U (D ),, and (D'), U (D", ), are simply

connected.

Proof: As p(xk) >_ 4, each face fi has a closed disk neighborhood Dj, which is
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bounded by a circuit Ci in G such that Ofj and Ci are nested and Ofi n Ci = 0.

Clearly, D,, U D,,, is cout.ained in Di. It is easy to see that D, nl Dv, =

D., nl D",+ f= , which is a closed disk. If fi is tihe only face which has both vi

and vi+1 on its boundary, thcii D* nD,+ = f,. If there is another face f which
also has vi and vi+. on its boundary awl is on the right side of r (see Figure
2), then f is the only face besides fi whici has this l)roperty.Y and( Of nl Ofi is an
edge, since G is 3-connected. Tlierefore DW, n D".t fi U f is a closed disk.
Hence (1) is true.

The truth of (2) follows ilninediately from (1). 0
Remark: Since D' and D', (D,,+,) may meet in more than one component

(see Figure 2), the boundaries of (D")'"U(D' )* and (D 0 U(D" 4, 0 Ioay be

not simple. However, the closed walk in the graph which is traced out in these
boundaries following the circular order of the open disks (D' ), U ( o,+ or
(D•")o U (D`,+')° is well-definled. Here we (1o not distiiiguisl the walk anld the

l)oilit set of the subgraplh it. traverses.

r r

fi4.1  fi+1

(a) (b)

Figure 2:

Let E be at surface. A closed curve inl 7 is 2-sided if it is orientation-preserving

ap 1 I-sided if it is oriettationt-reversing. Our method involves the following
important lemma:

Lemma 2.4. Let G be a 3-connected graph, and qI be an embedding of G in
E with p(lk) >_ 5 (or with p('T) > 3 when G is trivalent). Let r be a T-minimal
curve in E. It follows that:

(1) if r is 1-sided, then there exists a MWbius band M in E containing r which
is bounded by a circuit C in G;

(2) if F is 2-sided, then there exists an annulus A In E containing r which is

bounded by two circuits Cl, C2 in G.

Proof: Assume k is an embeddinig of a 3-connccted graph G in a surface E

with p(T) > 3 and r is a 'I-xnxxinixal curve in E. Let fl, f2,..., ft be the face ring
through which F passes and v1, n2, ... , ur be the vertices such that vi E Ofi-I flOfi
for i = 1,2,...,k (with fA = fk) and Fr n G = {IVl,V2, ...,vk}. We want to expand
N I V= U ft U ... U . to an anmnlus (or a Mbbius band). Since consecutive
face boundaries jieet at a vertex or an edge and non-consecutive faces have
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disjoint boundaries, if Ofi fI Ofi is an edge, for i = 1, 2, ... , k, then N is as
required already. This is true when G is trivalent, and thus justifies the claim in
parentheses.

Now we assume G is not trivalent and p(%Y) > 5. Let H = (U (Do,)e)L
(U i odd (D",) 0 ). By Lemrna 2.3 and its following remark, H is bounded by
two walks P, and P2 in G as shown in Figure 1. In Figure 1(a), P1 and P2 are
two closed walks, while in Figure 1(b), P1 and P2 form one closed walk after
identifying their !.ndvertices. Note that P1 and P2 need not be simple. When k
is even, H is formed by alternate right and left open half disks of (D,,)*. When
k is odd, the two consecutive open half disks (D k)' and (Dr,) 0 are both right
open half disks, while the other open half disks are chosen alternately.

Claim 1: if r is 2-sided then P1 f nP 2 = 0 and if r is 1-sided then P, and P2

meet only at their endvertices.
Suppose the claim is false. Then there is a common vertex w if P1 and P2

which is an internal vertex of P1 or P,,. Then w E PflODv, and w E P,.fl&Dv,, for
some ij < k. Note that w may riot be one of the vertices v,, for s E {(1,2,...,k),
because for odd s, v, is not on P2 and for even s, v, is not on PI. Let F1 be
a simple curve on E which consists of a segment Fr of F between vi and vj
meeting G in the fewest number of vertices and a curve ['1 from vi to vj meeting
G only at v1,w and vj and passing through P1 andI P2 at w. Note that rF
intersects r in Fr only and crosses F through this intersection. Therefore F17 is
homologically non-null, that is, F1 is a nonseparating simple curve in E. Since
rain{Ij-ii, k- ij-iIl < [,•j and jFrnGd < min{Ij-iI,k-I j-ill+2, it follows
that FI1 n GI < k when k > 5. This implies p('l) < k, which is a contradiction.
Hence Claim 1 is true.

Claim 2: For i = 1, 2, if Pi is not simple then we can find a simple walk
Pi' C Pi which is homotopic to Pi.

Suppose P1 is not simple, and let w be a repeated vertex of P1 . Since P1
traverses edges in the wheel neighborhoods of v1 V2, ... , vk, we may assume that
w repeats on Dy,, Do, with 1 < i < j < k. As D,,, n Di,, $ 0 implies i - j < 2,
we can find a simple closed curve F2 in E which consists of a segment F' of
r between vi and vj meeting (G in the fewest number of vertices and a curve

2rF from vi to vj rneeting G only at vi,w and vj. Now i - j < 2 irmplies that
1F2 nfGI < k if k > 5. Since p(%P) = k, we know that F2 is null-horrotopic and so
bounds a disk. Thus we can delete the part of P, bounded by F2 and obtain P,*
which is contained in P1 and is homotopic to P1 . If P1# is still not simple, we
repeat this procedure until we obtain a simple walk P hornotopic to PI. Hence
Claim 2 is also true.

By Clain' 1 and Claim 2, if F is 1-sided, then P, U P2 is a circuit,, and if r is
2-sided, then P,' and P, are two circuits. When F is 1-sided, let M be the closed
region bounded by P' U PU and containing H, and when F is 2-sided, let A be
the closed region bounded by P1 awid P2 and containing Hi. By the construction
of P' and P2, M is a MN6bius band and A is an annulus. Thus Lemma 2.4 is
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true. El
A t-configuration 0 is formed l)y three internally disjoint simple curves A,, A2

a41d A3 with com11o1i distitct ends. Note that 0 contains three simple closed
curves r 1 , r2 and 173, where rl = A2 U A 3 , r2 = A3 U A1 , r3 = A, U A 2 . The
following is obvious.

Lemma 2.5. Let 0 be a 0-configuration in a surface E and ri, r2, r3 be
its three simple closed curves. Then

(1) if two are null-homotopic then the third is also null-h nmotopic;
(2) either all three are 2-sided or one is 2-sided and two are 1-sided.

A closed curve r in , is k'-minimal 1-sided ifF is simple, 1-sided, FOG C V(G)
and iF n GI < ir' n GI for all 1-sided closed curves F' in E. This is well-defined
for all non-orientable eml)eddings. The following is a strengthening uf Lemma
2.4 for non-orientabte surfaces.

Lemma 2.6. Let G be a 3-connected graph, and TI' be an embedding of G in
a surface E with p(T) > 5 (or with p('P) > 3 when G is trivalent). Let F be a
41.minimal 1-sided curve in E. Then there exists a M4bius band Al containing
F which is bounded by a circuait C in G.

L2 L

LV L3  
L.3

-4-

(a) (b)

Figure 3:

Proof: If F is also a 'P-minimal curve, then this follows from Lemma 2.4.

Therefore we assume ir nl GI = k > p(%I1).
Let f 1, f2,..., fa he at k-face ring of F, and rF G = {v1 , ... , vk} be as in the

proof of Lemma 2.4. Form N, P, and P2 as before. If G is trivalent and p(I) >_ 3,
then N is the required Miious band.

Now assume G is not trivalent. If P1 and P2 meet at an internal vertex or P.
is not simple for s=1 or 2, then there exists a repeated vertex w. As in the proof

of Lemma 2.4, this w is on the rins of D,, and D,, where 1 < i < j <5 k. We
obtain a 0-configuration as shown in Figure 3, with vi and uj as its two ends,

such that A, U A 2 = F anid AL3 is a simple curve on E joining xi an(l xj and

Meeting G only at xi, w', :Xj. Figure 3(a) rcpresents the case where P, and P2

meet at an internal vertex, anid Figure 3(b) represents the case where P. is not
simple, s=1 or 2. Let. rl = A2 U -- :I aid Fr = A., U A,. WVc know r- = A, U A2
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is I-sided. If j - i < 2, then jr 2 nGI < 4. Since p(*) > 5, r2 is null-hornotopic
and bounds a disk. This can only happen when P1 (or P2) is not simple, as r2

is essential in the case of Figure 3(a). We delete the part of P1 bounded by r2

and obtain P*, which is contained in P, and is hornotopic to P1 , as we did in
the proof of Lemma 2.4.

If 3 < j - i < k - 3, then we have 5 < )112 n GI < k - I and similarly
Sfl n GI < k. But then r, and r2 must be 2-sided as r is *-minimal 1-sided.

This contradicts Lemma 2.5(2).
l f j -i= k-2, orj-i= k- 1, then r fnG[ <4, and we are back to the

first case.
Therefore, P1 and P2 meet only at endvertices, and for i = 1,2 we can find a

simple walk PI,' C Pi which is homotopic to Pi. Thus PI W P2 bounds a M6bius
band including F. This completes our proof 0

3. The Main Theorem

In this section, we will prove the main result of this paper, the following
theorem.

Theorem 3.1. Let G be a connected graph and *I be an embedding of G in
a surface E of orientable genus g > 2 or non-orientable genus k > 2. Suppose
either

(1) E has a separating 'Il-minimal curve and p('I) > 3, or
(2) E is a non-orientable surface and p('I) > 5 (or p(I) > 3 when G is

trzvalent), or
(3) E is an orientable surface and p(4s) > 6 (or p(%F) > 5 when G is triva-

lent).
Then there exists an essential separating circuit in G.

Proof: Theorem 3.1 is true in case (1) by Lemma 2.2.
Suppose E is a non-orientable surface and p(') > 5 (or p('l) > 3 if G is

trivalent). Let r be a %P-minimal 1-sided curve in E. By Lemma 2.6, r is
contained in a Mdbius hand which is bounded by a circuit C in G. Clearly, C is
an essential separating circuit. Therefore Theorem 3.1 holds in case (2).

Now we assume E is an orientable surface and p(%Y) > 6 (or p(%P) >_ 5 when
G is trivalent). Let £ be a 4-minimal simple curve in E. By Theorem 3.1(1),
we may assume r is nonseparating. By Lemma 2.4(2), bhere exists an annulus
A containing r which is bounded by two circuits C1 and C 2 in G. By cutting E
along C1, we obtain a new surface, which has two boundary circuits C1 and C1 ,
where C' is a copy of C, cut away from A. Capping C, and C, ofr by two disks
f, and f', respectively, gives a closed surface E' and an ermbedding V' of a graph
G' on E'. The Euler characteristic of E' has been increased by 2. Now find a
shortest face chain g = {gl, g9, ... , g,} in V' joining a vertex of C,2 and a vertex
of C'j. Without loss of generality, we may assume that the face yi is attached to
a face go in the right half disk D', in the notation used in the proof of Lemma
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2.4(2) ( if g, is attached to vi for some even i, then the proof is actually easier).
As c n C 2 = 0 it follows that I > 1. Let Fr be a simpl)e curve in E' from x0

to x• with Fl fn G' = {Xitx,...,z} as shown in Figure 4, where the xi's are
vertices in G' such that x0 E O9y fn C2, xt E D9y n Cl' and x, E 5ji fl 0g9i+ for
i= 1,2,_.., - 1.

Claim: There exists a closed disk B boun, ded by a circuit in G' which contains
Fl and ts such that OB fn C'.- and OB fn C', are two paths.

Assign two sides to FI (which is possible since rL is a curve hiomeoniorphic to
the interval [0,1] in E"), say its top and bottom. Consider all the faces incident
with C2 and xz. Clearly C2 n D., - 0 since yj is a face joining C2 and x1 .
Without loss of generality, choose gy, r, (fixing 92, -,.., g1) so that there is no
other face g' which joins C2 and x' and is above Pr. Choose g, similarly.

C2

ell

C)C2
C, v'2 02

Figure 4:

Now take the symmetric differenice of the houmdarics of all faces on the top of
Li which are incident with xi, for i = 0,1, ... ,1. The faCes yl,...,9 aric included

here, but the face f' is not included, and ieither are the faces incident with XO
in the annular region between C1 and C2. This forms two walks Q, and Q2 from
x0 to x1, with Q9 i)elow or touching F1 aid (22 above F1 . Let R denote the open
region containing gl, -.. , gt and bounded b)y (2, Q22. We want. to shJow;

(a) Ql r) Q2 = {xo, xI}, and Ql and Q(2 are homotopic to F1 .
(b) Q, is simple, and if Q2 is not siniple, then we can find a path Q'2 C Q2

which is hornotopic to Q2 .

(c) I1fW is not a closed di.sk or ORfnC 2 ( or ORfn C1) is not a path, then there
is au open disk 1R' containing 1R .such that R' is a closed dzsk such that OR' n C.
and OR' fn C, are patihs in G.

Proof of (a): The Iroof is situilar to the part, of the proof of Leininma 2.4
where we proved that P, and P2 ( o not. incet eac(:h other wheln the surface is
oricintable or meet only it ci(vertices whuen the surface is IioI1-orielltal)le. If
w E V(4'1) nl Q, fn Q2 exists wit], it interi,-l to Q, or (22, then for some i,j < 1
we can find a closed simple c-urve r, ott s', containing tile segment of r, hetween
xi and xj, which crosses P1 and passes through xi, w, xj consecutively. This
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w is on OD,, and ODE,. Extend F' to Cl (through go to vt if xo y vl) and
following r from v, to x, (crossing the first face joining F to zi if xt $ vi for
some i) to form a closed simple curve F1 in S. Then 171 is essential in r, as
it crosses C1 only once. Since F'l crosses P1 only once in :E, it is also essential

in E. Therefore IF l nG'J = I fl nGI >_ p(*) > 5. This implies Ij - il > 3.
Hence we can find a shorter face chain, which passes through zi, w and xi, to
join C2 and C'. This contradicts the rninimality of g = (gl, ... ,go). Therefore

Q, nlQ 2 = {XOX1j.
It is clear that Q, is homotopic to ri. Note that any vertex of G' on the

circuits C1 and C' has two nested half circuits which together with the corre-

sponding sections of C1 or C' bound closed disks containing this vertex. Any
vertex on C 2 has a wheel neighborhood and a half circuit (or a circuit) together

with a section (or vertex, respectively) of Cl bounding a disk containing this

wheel neighborhood. Any other vertex has at least two nested circuits in G'
bounding disks containing that vertex. Those statements imply that Q2 is also

hornotopic to rl. Thus (a) is true.
Proof of (h): As Q, is contained in l OgU 09 U -. U 09 it is clear from the

definition of shortest face chains that Q, is simple when p(\V) ? 3. If Q2 is not
simple, then there is a repeated vertex w and i and j (i < j) such that w is

on the boundaries of D,, and Dm1 . By the assumption that g is a shortest face

chain joining C 2 and C,, it follows that j- i < 2. Therefore we can find a simple

closed curve Fr' in E' which passes through xi, 1, zx consecutively and meets
G' in at most four vertices. Since 1"1' does not cross C1 and C'l, if Fr,' is essential

in Y' then it is also essential in E. Thus l"F1 n G'J = FI'r nGI !5 4 implies that Fr'
is null-hornotopic in V'. As Fr' bounds a disk which contains the closed section
of Q2 between the two repetitions of tw, we can delete this section and obtain a
walk Q' C Q2. Clearly Q' is homotopic to Q2. This procedure can be repeated
until we obtain a path Q"' which is hornotopic to Q2 ard joins C? and C•. Thus

(b) is also true.

Proof of (c): This needs more argument. By (b), we may assume that Q2 is
simple. Since R is bounded by Q, and Q2 and both Ql and Q2 are homotopic to
Fl, R is null-homotopic in V'. As Ql UQ 2 is a circuit, it follows that Ri is a closed

disk. Suppose ORrnC 2 has niore than one component. Let w be a vertex in one
of the components of MR ni C'2 which does not contain xo. Since g, is the only

face in R joining C2 and 'l, there must exist a face f which is above r, and is

incident with xo and w. Then u, is either on the rih of the wheel neighborhood

of vi for some odd i or w is one of the vi for soic even i. Now there exist

two simple closed curves F2 and I.3 in E' such that F2 n C' = {w, x, V1,..., vi}
and F3 n G' = {xo, , V, vi, , -...,vi, tV ). To insure that either 11' 2 n G'f < k or
Ir3 n G'J < k (so that at least one of 1'2 and 1'3,, bound a disk), we need

k-2 +4J <k,

which implies k > 7. If G is trivalent, then the anniilus A is formed by the
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union of the fi for i = 1, ..., k, where (f, , ... , fA) is the face ring through which
the TP-minimal 2-sided curve I' passes, and C2 is the union of sections of Of,
for i = 1, ..., k. Therefore the condition that k > 5 is sufUl••eut to imply either
jF2 n G't < k or 1173 n G'j < k. Hence, for a trivalent graph, we only need k > 5.

If 172 bounds a disk in E', then we expand R to R, by adding in all the faces
together with the parts of their boundaries contained in 172 but not contained
in the annular region between C, and C2 . Repeat this procedure until no such
r2 's occur. Let the resulting open disk be R'. If OR, fl C2 has more than one
component, and 1 2 is the closed simple curve on V' as defined above, then r2

is essential in V'. This implies that I12 n G'j = Ir2 n GI > k, and therefore
I1r73fG'l = r1n7lG < k. So r3 is null-hornotopic in E, and hence null-homotopic
in V', as 1r3 does not cross C, and C' in E'. Since C2 is also null-homotopic in
E', it follows by Lemma 2.5(l) that r72 is null-homotopic in "', as 02, C 2 anr
ra form a 0-configuration. This is a contradiction. Thus (c) holds if p(*) ? 7.
If p(%Y) = 6, since in Lemma 2.4, 11 is constructed by takitig tile union of the

half disks (Dr)° and (Dr.), alternately, either 1F72 n G'I < 6 or 11:3 n G'I < 6.
By the argument above, we can show that ORn l ., is also a path if p(41) 6.

Similarly we can prove that OR' f C1 is a path. Clearly, R' is homotopic to
Fi, and therefore it is miull-hoinotopic in E'. If G is trivalent, then a similar
argument will show that Of' n C2 and Off' nCf1 are paths when p(4') > 5. Thus
(c) is true. By (a), (b) and (c), tile above claiin is true with B = T'.

The union of the annulus A and the band 13 gives a torus with a disk removed.
As E is an orientable surface of gemis > 2, the complement of A U B in E is a
non-trivial surface with a disk remroved. This conmipletes our proof. 0

Remark: If the surface is non-orientable with genus at least 2, then the union
of the annulus A and the disk B gives a torus with a disk removed or a Klein
bottle with a disk removed (the later case occurs when the disk B is connected
to C' in a twisted way). This is not the case we are considering here. However
we do need this in Section 4, where we give a polynoriial-time algorithm to find
essential separating circuits, since we do not have a polynomial-time algorithm
to find a %P-minirnal 1-sided curve. If k > 3 then the complement of A U B in
E is a non-trivial surface with a disk removed. The case k = 2 follows from tile
result in [4].

4. Finding an Essential Seiuarating Circ:uit in Polynomial-Tilime

The proof of our main theorem yields a polymmomially bounded algorithm, as
will be explained in this section.

Theorem 4.1. Let G be a nonseparable graph cinbedded tn a surface E with
p('l) 2! 6 (or with p(%P) >_ 5 when G7 . Irsialcrt). Then there is a polynoinial-
time algorithm to find an essental .scparaling cIrcTIit In (;.

Remrnark 1: We will start the algorithlimi with a lri-miliimal curve P by applying
the polynomnial-timne algorithm giwveii ti [6] for computing p(1I) from input %Y. The
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input AV may be given by the graph G and the facial walks of the embedding.
The facial walks are circuits under the hypotheses of Theorem 4.1.

Remark 2: When G(%P) is nonseparable and p(%I) > 2, the radial graph R(4')
of %k is a graph embedded on E obtained by placing a vertex in each face f
of 1V and connecting each such vertex by edges to all the vertices of G on the
boundary of f. The choice of R(I) is unique up to a homeomorphism of %I$ fixing
G. Call the added vertices the facial vertices of R(%Y). The vertex set of R(%I)
is the union of the set F'(4') of facial vertices and V(QL). The edge set of R(4I)
consists of all the edges chosen joining facial vertices and vertices in V(%I). Note
that R(') is a bipartite graph embedded on E, and a *-minimal curve in E,
which meets V(') and F(I) alternately, corresponds to a circuit in R(%Y).

Proof of Theorem 4.1:
Step 1. Find a l-miiniral curve r ift E. For k = p(%P) denote the vertices

of G through which F passes by vI- .V.. tk and the faces through which r passes
by f ,.-.,fk in cyclic order and with vi E Ofi-i nflfi, for i = 1, ..., k, with indices
reduced iriodulo k. This uses polynomial time (see [6], page 312).

Step 2. Test if F is a separating curve. Since p(fl) > 5, F is separating
if and only if {vI,..., U}) forms a non-trivial vertex cutset of G. This is just a
connectivity test.

Step 3. If r is separating, then the symmetric difference of f_ .... fk
gives two essential separating circuits CIC2 which are homotopic to F. If F is
non-separating, assign left and right sides to the segment of F from v, to vk.
Starting from vi, find the symmetric difference C of the alternate left and right
half disks of v, -, 17k. Then, as p( %P) > 6, C is either a closed walk or the
disjoint union of two closed walks. If a component of C is not simple, remove
a closed sub-walk W to obtain C' C C'. The subwalk W can be obtained in
the following way: Let w be a repeated vertex on C. Then w is on the rims
of the wheel neighborhoods of two vertices vi and vj, for 1 < i < j < k. We
know that j - i < 2. The walk W is between two appearances of w, and its
edges are on the rims of D,,, D,,+, (or D,,+, if i - i = 2). It is homotopically
trivial as shown in the proof of Lemma 2.4. Repeat this process to find C" with
two simple components and homotopic to C. Rename C" as C. If the graph is
trivalent, then take the symmetric difference C of Ofl, ... , fk, which is a circuit
if F is 1-sided and two disjoint circuits if F is 2-sided.

Step 4. If C is a circuit, then C' is an essential separating circuit which
separates a cross-cap fron, the rest of T. This is the required separating circuit.

Step 5. If C = C, U C2 where CI alnd C2 are disjoint circuits in G, then
by Lemma 2.4, we know that C, and C02 b)ou•md an annulus. Cut E along CI,
splitting Cm into two circuits C- arid C'. Cap off C, and ,, by two disks f, and
f• to obtain an embedding V'.

Step 6. Find a shortest face chain from C'2 to C. Process this in the radial
graph /'1(i') by finding a shortest path joining the facial vertices for fi and f~l-

Step 7. Expand the shortest face chain to a null-hoinotopic balId B by the
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miiethod used ill the proof of the niain theorem. Then tile symmetric difference

of the boundaries of the annulus and the null-hoinotopic band gives a separating

circuit which separates a torus or a Klein bottle (with the interior of a closed

disk removed) from the rest of E.

Since each step uses polyno,:r-ial Gaic, the a!8orithm is i,p!y:omialfy bounded.

5. ExamplIes of Embeddiugs Without Essential Separating Circuits

In this section we present some examples of embeddings with representativity

2 which do not have essential separating circuits. For nonseparable graphs, an

embedding 1P with p( 4' ) >_ 2 is an embedding in which the boundary of each face

is a circuit in the graph (such an embedding is called a closed 2-cell embedding

[6] and a strong embedding in (1]). A cycle double cover of a connected graph G

is a famrily of cycles (a cycle is the edge-disjoint union of circuits) of G such that

each edge of G appears in exactly two of these cycles.

Let G be a nonseparable graph and S = {cl, ... , el be a cycle double cover of

G. Suppose each ci E S is a circuit in G. Then ci contains at most one pair of

edges incident to a fixed vertex v. Let E, be the set of edges which are incident

with v E V(G). For each vE V(G), define a graph G,, with vertex set E, and

such that two vertices e and e' of G, are adjacent if and only if e and e' are

contained as edges in some circuit ci E S. Note that G, is a 2-regular graph and

when connected it is itself a circuit. Since G, is a circuit if and only if the edge

rotation at v guarantees a disk neighborhood of v in the 2-complex formed by

pasting disjoint open disks oiut.o the circuits cl,..., cj, the following proposition

is obvious.

Proposition 5.1. A nonseparable graph G has a surface embedding %V with

p(%P) >_ 2 if and only if G has a cycle double cover S = (cl,..., c,} such that ci

is a circuit in G for I < i < 1, and the induced graph G,, is connected (i.e., is a

circuit) for all v E V(G).

.. \ ..... . .. ". ... .

..... .. . ..

....... ... ... ..... . ...

Figure 5: An orientable embedding of 2G2,,+ 2 of genus n

Exaxixples 5.2. Let 2C,,,, for m > 3, denote the in-circuit with each edge

duplicated in parallel. Four circuits c, c2,C3 and c 4 are defined by the four

broken carves in Figure 5 and Figure 6. It is easy to see that the following

embedding induced by the cycle double cover S = {c, c2,c3, c4 ) of 2C,,m is a

(p Ž> 2) emnbedding. The ex;uample in Figure 5 is an orientable embedding and

ihe examples in Figure 6 are non-orientable embeddings. To check the non-

existence of separating circuits, we observe that there are only four faces, and

if there is any essential separating circuit, there riust be two faces in each part,
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and the separating circuit cannot be formed by two parallel edges (a 2-circuit).
A case by case check (three cases) shows the non-existence of essential separating
circuits. A calculation of the Euler characteristic gives the genus.

...... ....... :/.................*J**.

(a) k even

.. .... .... .- A.

Wb k odd

Figure 6: A non-orientable embedding of 2 6 'k+2 of genus k
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Projective-Planar Graphs

with Even Duals II

SEIYA NEGAMI

ABSTRACT. A face of a 2-cell embedding of a graph is said to be even if
its boundary walk has even length. A graph G is said to have an even dual
on a closed surface F2 if there is an embedding of G on F2 with only even
faces. It will be shown that a connected graph G has an even dual on the
projective plane if and only if G has a 2-fold planar bipartite covering and
contains no two disjoint odd cycles. Moreover, the forbidden structures
for graphs with projective-planar even duals will be determined.

1. Introduction

If a graph G is 2-cell embedded in a closed surface F2 so that each face is
bounded by a closed walk of even length (such a face is called an even face),
then its dual GC on F 2 is even, that is, each vertex of G* has even degree. So
we say that G has an even dual on F2 if there is such an embedding of G on F2.
For example, a planar connected graph has an even dual on the sphere if and
only if it is bipartite.

Recently, the author [5] discussed the relationship between even duals and
planar coverings of projective-planar graphs and showed the following theorem:

THEOREM 1. Let G be a nonplanar connected graph. Then G has an even dual
on the projective plane if and only if either G is a projective-planar bipartite
graph or its canonical bipartite covering B(G) is planar.
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A graph G is called an n-fold covering of G if there is an n-to-I surjection
p : V(G) -- V(G), called the projection, which induces a bijection PIN(') :
N(i,) - N(v) between the neighborhoods of corresponding vertices i, E p-'(v)
and v G V(G). li particular, B(G) in the theorem is the covering of G obtained
in the followiug way and is called the canonical bipartite covering of G. When
G is bipartite, set B(G) = G. Otherwise, prepare two copies ul and u2 of each
vertex u E V(G) and join ul to v2 and u- to v, by edges if there is an edge
uv E E(G). The resulting graph is B(G). This has been defined and discussed
ii [3].

By the general arguments in [51, the two alternatives in the theorem both
imply that G has a 2-fold planar bipartite covering. Indeed, it is easy to see that
any graph with an even dual on the projective plane satisfies this condition.
The converse implication does not hold however wit1'out the nonpllanarity of G.
-jut we shall establish the following refinement of Theorem 1, eliminating the
non-planarity hypothesis.

THEOReM "). Let G be a connected graph. Then G has an even dual on the
projective plane if and only if G has a 2-fold planar bipartite covering and does
not contain two disjoint odd cycles.

Figure 1. Obstructions for projective-planar even duals

Moreover, we shall determine the forbidden structures, called obstructions,
for those graphs which have even duals on the projective plane. Each obstruction
is obtained from one of the six graphs in Figure 1 in the following way. Subdivide
the first four in Figure 1 to be bipartite so that there is a path of odd length
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joining two x's and identify the x's to a single vertex. Subdivide the last two
so that any odd cycle, if any, passes through the edge e, which also may be
subdivided.

THEOREM 3. Let G be a connected graph which is not bipartite. Then G has
an even dual on the projective plane if and only if G contains no two disjoint
odd cycles and no obstruction.

To prove these theorems, we shall develop a theory of pairs of graphs and
their free involutions with "equivariant minors" in Section 2, and establish a
characterization of those graphs with free involutions that can be embedded on
the sphere so that their involutions extend to involutions on the sphere in Section
3. The proofs of Theorems 2 and 3 will be given, in Section 4, as an application
of this theory.

2. Free involutions on graphs

Let G be a graph which may have multiple edges but no loop and let r
G -. G be a free involution on G, that is, an automorphism r E Aut(G) of
period 2 which has no fixed vertex and leaves no edge invariant. The pair (G, T-)

is called an involutive pair of G and is supposed to satisfy these assumptions
throughout this paper, unless stated otherwise. In particular, the pair (G, T) is
said to be a connected involutive pair if G is connected. Then the quotient of G
by the action of r is a graph, denoted by Gir, and G covers GCr doubly. The
natural covering p : G -- G/r is the same one as is defined combinatorially in
the introduction if both G and G/r are simple, and G/r has loops if r leaves
multiple edges invariant pairwise.

Now let F2 be a closed surface and h : PF F2 an involution on F2 , that
is, a homeomorphism of period 2 which may have fixed points, and call the piar
(F 2 , h) an involutive pair of F2 . An involutive pair (G, r) is said to be embeddable
in an involitive pair (F 2 , h) of F 2 if there is an embedding f : G -, F 2 such
that hf = fr. Roughly speaking, we embed G on F2 so that the action on F 2

generated by h realizes the symmetry of G under r, and we say that r extends
to h. If: F-P -- F 2 is a homeomorphism, then (F 2 ,gh9- 1) also is an involutive
pair of F 2 and is said to be conjugate to (F 2, h). It is clear that an involutive pair
(G, r) is embeddable in (F 2, h) if and only if it is embeddable in any involutive
pair conjugate to (F 2 , h).

As is well-known, any graph G decomposes uniquely into subgraphs B 1,...,
B,,, called blocks of G, so that each of them is either a 2-connected subgraph
in G or isomorphic to K 2 and is maximal with this property and that B, and
B, have at most one vertex, called a cut vertex, in common if i 9 J. Since any
automorphism preserves this block decomposition, r(B,) coincides with one of
these blocks for any involution r : G -- G, say B, = r(B,). If B, met Bi only
at a cut vertex v E V(B,) n V(Bj), then v would be fixed by r, contrary to our
assumption of r being free. Thus, either r(Bi) = B, or r(B,) n B, = 0. We say
that B, is invariant in the former case and is equivariant under r in both cases.
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LEMMA 4. Any co,:nected involutie pair (G, ") has a unique invariant block,
which contains an invariant cycle.

Proof. Let P be a path in G with end points v and r(v). If P is a shortest
such path for all v E V(G), then P U r(P) is an invariant cycle. Then the block
containing this invariant cycle is invariant and any other block is not invariant
since otherwise a cut vertex separating them would be fixed. a

Let (G, r) be an involutive pair and let S be a subgraph or a set of vertices
or edges of G. Then S is said to be equivariant under r if either r(S) = S or
T(S) is disjoint from S. When S is a vertex cut of G, each component of G - S
is called a fragment of S. For a technical reason, we require an equivariant
frayiotrit F cf S to be disjoint from -r(S) in addition to the above condition. If
F is atL -juivariarit fragment, then r leaves H = G - F U r(F) invariant and

H ,1. 7 1 ) is an involutive pair.
F,or example, suppose that G has an invariant edge cut {uv, r(uv)} whose

rerncval decomposes G into two invariant subgraphs H1 and H 2 with u E V(H 1 )
and c E V(H 2 ). Then both S =- {u, r(u)} and S2 = {u, r(v)} are equivariant
cuts of G if H, has more than two vertices. In this case, if F = H1 - u is
connected, then F is a fragment of $2 but is not equivariant since r(u) E FfT(S).
On the other hand, H1 - S, is an equivariant fragment of S if it is connected.

LEMMA 5. Let (G,7-) be a connected involutive pair with IV(G)I ? 5. If G
is not 3-connected, then there exists an equivariant cut of one or two vertices
which has an equivariant frogment.

Proof. If G is not 2-connected, take one of the end blocks, say B, which contains
a unique cut vertex v. Then {v} is an equivariant cut with an equivariant
fragment B - v. In this case, they are not invariant; otherwise, v would be fixed
by r.

If G is 2-connected, take a 2-vertex cut S = {u, v} one of whose fragments,
say F, is minimal under inclusion. That is, we suppose that F does not include
any other fragment of any other 2-vertex cut. Because r is free and has period 2,
S has to be equivariant (i.e. r(S) = S or r(S) n S = 0). If r(S) = S, then both
F and i-(F) are components of G-S and hence either F = 7-(F) or Ff7r(F) = 0,
that is, F is an equivariant fragment of S.

Now suppose that T(S) n S = 0. If r(S) C F, then r(S) would cut off a
fragment included in F, contrary to the rminimality of F. If F contains only one
of r((u) and T(v), say r(u), then F consists of only T(u) since otherwise {u, T(u)}

or {v, r(u)} would cut off a fragment smaller than F. Since G is 2-connected,
r(u) has to be adjacent to both u and v in this case, but the edge ur(u) would
be fixed by r, contrary to r being free. Thus, 7-(S) n F = 0. This implies that
r(F) n F = 0 and hence S and F are each equivariant. M

LEMMA 6. Let (G, r) be a connected involutive pair and let S = {u,-r(u)}
be an invariant set of two vertices of G. Then G does not decompose into two
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connected subgraphs B and r(B) which meet at S if and only if G contains an
invariant cycle disjoint from S.

Proof. The sufficiency is clear since an invariant cycle can be contained in
neither B nor r(B). Suppose that every invariant cycle contains S. By Lemma
4, G has an invariant cycle C, which has to contain u and r(u). If B is a path in
C with mnd points u and r(u), then B U r(B) = C and B n r(B) = S. Assume
that B is a connected subgraph of G with B n r(B) = S which maximizes
IE(B U r(B))l. It remains to show that B U r(B) = G.

Suppose that B U r(B) $ G. Then there is an edge xy of G with x E V(B)
which belongs to neither B nor r(B) since G is connected. If Y 0 V(r(B)), then
there would be a connected subgraph B' with Xy E E(B') for which B'fr(B') =
S and B C B', contrary to the maximality of B. Hence Y E V(r(B)). In
this case, r(x) E V(r(B)) and r(y) E V(B). Since B is connected, there is a
path P in B which joins r(y) to x. If P passed through neither u nor r(u),
then PxYT(P)-r(x)r(y) would form an invariant cycle disjoint from u and r(u).
Thus, any path between r(y) and x in B has to pass through one of u and r(u),
and hence B decomposes into two connected subgraphs Bi and B2 such that
x E V(Bi), r(y) E V(B 2) and B1nB 2 C S. In this case, the connected subgraph
B, U r(B2 ) + xy contradicts the maximality of B. Therefore, B U r((B) = G. M

Let (G, T) be an involutive pair and uv an edge of G. We consider deletion
and contractioik of both uv and r(uv) at a time, called equivariant deletion and
equivariant contraction of edges. It is clear that (G - {uv, r(uv)}, TrtG_{,,.r(vv)})
is an involutive pair, but so is (G/{uv, r(uv)}, r') only when r(u) $ v; otherwise,
the involution r' induced by r would have a fixed vertex u = v, which we forbid
here.

An involutive pair (H, o,) is said to be an equivariant minor or simply a minor
of (G, r) if (G, r) can be deformed into (II, a) by a finite sequence of equivariant
deletions and contractions of edges. To keep our assumption of involutive pairs,
we forbid contraction of edges lying on a cycle of length 2. If we contract edges
on an invariant cycle of length 2, then the resulting involution is not free, as
mentioned above, and the involution a on H would have a fixed vertex. Thus,
this is not the case if (H, a) satisfies our assumption. On the other hand, if the
cycle C of length 2 is not invariant, contraction of edges on C and on T(C) yield
two loops in the resulting graph. However, these loops will be removed later to
make a loopless graph at the final stage. So first delete edges corresponding to
the loops and next contract the others.

LeMMA 7. Let (G, r) be an involutive pair and (H,a) one of its minors. If
(G, r) is embeddable in (F2 , h), then so is (H, a).

Proof. Delete and contract edges of G on F2 symmetrically. The surface F2

will not be pinched as long as we keep our deformation rule; because each cycle
has length at least 2 at any stage. 5

The equivariant minor relation makes naturally the set of involutive pairs a
partially ordered set, so that (H, a) < (G, r) for an involutive pair (G, T) and
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an equivariant minor (H, a) of it. By Lemma 7, the embeddability of involutive
pairs is inherited from the upper to the lower. So we might be able to establish
a Kuratowski type theorem, making a complete list of forbidden minors, that
is, the list of minimal elements among those that are not embeddable in a given
involutive pair of a surface. In fact, we shall do it for involutive pairs of the
sphere in the next section.

The following two lemmas are prepared in order to reduce the embeddability
of involutive pairs with low connectivity to those with 3-connected graphs.

LEMMA 8. Let (G, 7) and (F2 , h) be involutive pairs of a graph G and of a
closed surface F2 and suppose that G decomposes into three subgraphs B, H,
7(B) so that:

1. B and H have a unique vertex v in common,

2. H is invariant under r,

S. B is disjoint from r(B) and

4. B is planar.

Then if (H, rnH) is embeddable in (F2 , h), so is (G, r).

Proof. Embed H on F2 so that r't- extends to h and let A be one of faces
of H incident to v. Then we can add a planar embedding of B in such a small
neighborhood of v within A that h(B) is disjoint from B. Now r extends to h.

LEMMA 9. Let (Gr) and (F2 , h) be involutive pairs of a graph G and of a
closed surface F2 and suppose that G decomposes into three subgraphs B. H,
r(B) so that:

1. B and H have precisely two vertices u and v in common,

2. H is invariant under r,

.. Bn r(B)= {uv} or=0 and

4. B + uv is planar.

Let H' be the graph obtained from H by adding edges uv and r(u)r(v) and let rT
be the free involution on H' naturally induced by r. Then if (H', r') is embcddable
in (F 2 , h), so is (G, -).

Proof. Embed H' on F2 so that r' extends to h. Since B + uv is planar,
we can embed B on the plane so that both u and tv are incident to the infinite
face. Then we can add two copies of this planar embedding of B along ?tv and
r(u)r(v) so that r extends to h. M

By Lemma 5, if G is not 3-connected, then G has a decomposition compatible
with r. The only case which Lemmas 8 and 9 do not cover is that G decomposes
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into two invariant connected subgraphs H and B which have precisely two ver-
tices u and v in common. Since B contains an invariant cycle. (H + {uv, vu}, r')
is an equivariant minor of (G, r), where r'IH = TIn and r'(uv) = vu. However,
when H + {uv, vu} is embedded on a surface F2 so that uv U vu does not bound
a face, then we might not be able to add B to such an embedding of H even if
B + uv is planar.

3. Spherical pairs

Involutions on the sphere are classified into three types, namely the antipodal
map, the half rotation and the reflexion. That is, any involution is conjugate
to one of these standard involutions, which maps each point (x, y, z) E S2 to
(-x, -y, -z), (-x, -y, z), (x, y, -z), respectively, if S2 is regarded as the unit
sphere in R 3. The antipodal map has no fixed point and the half rotation fixes
only the north and south poles (0,0, +1), while the reflexion fixes the equator
{(X, y, 0) : •2 + Y2 = 1} pointwise.

An involutive pair (G, r) is said to be spherical if G can be embedded on the
sphere so that r extends to an involution on the sphere. A spherical pair (G, 7)

awd its embedding on the sphere are said to be antipodal or rotative if r extends
to the antipodal map or the half rotation, respectively. Actually, any spherical
pair (G, r) is either antipodal or rotative if G is connected. If G were embedded
on S2 so that T extends to the reflexion, then the equator would separate G
since r is free.

As is pointed out in [1], the uniqueness of duals of 3-connected planar graphs,
proved by Whitney [81, implies the following fact:

THEOREM 10. (Whitney) A 3-connected planar graph is uniquely and faithfvily
embeddable in the sphere.

That is, a 3-connected planar graph G has a unique embedding on the sphere,
up to homeomorphisms and automorphisms, and all the automorphisms of G
extend to homeomorphisms so that the symmetry of G under Aut(G) is realized
on the sphere.

However, we are concerned only with the extendability of free involutions,
rather than that of all automorphisms, and for us the assumption that G is
3-connected is unnecessarily strong. Relaying this assumption, the author has
already shown a sufficient condition for a free involution to extend a homeomor-
phism (Lemma 5 and Theorem 8 in [5]), which can be rephrased to the following
in our terminology:

LEMMA 11. Let (G, r) be a connected involutive pair and suppose that GIr is
either 2-connected or nonplanar. Then the involutive pair (G, r) is spherical i.

and only if G is planar.

Moreover, we would like a characterization of spherical pairs without reference
to thcir quotients. This will be obtained later as Theorem 15.

The planarity of G by itself does not guarantee the sphericity of an involutive
pair (G, r) in general. For example, the two involutive pairs (MI, r1 ) and (A12 , r2)
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as given in Figure 2 are not spherical. Both 71 and r2 leave each cycle x,y, of
length 2 invariant and interchange two tridents and two triangles, respectively,
which join the three invariant cycles. If Ali could be embedded on the sphere so
that r, extends, then the three invariant cycles would be placed on the sphere
in parallel around the axis, but then their joints, tridents or triangles, could not
be embedded in the sphere.

X_.
X1 X2 X3 X1 X

YY Y3 Y---IY2 Y

Figure 2. Non-spherical pairs

If an involutive pair (G,r) is antipodal, then an embedding of G/r in the
projective plane can be obtained as the quotient of its antipodal embedding.
Conversely, given a projective-planar embedding of a graph G', we get an an-
tipodal pair (G,7-) such that G covers G', taking the 2-fold covering of the
projective plane with the sphere. So we need to discuss when a spherical pair is
antipodal.

For example, the two involutive pairs given in Figure 3 are antipodal but
not rotative. Their graphs are the cube and the octahedron, so they are called
the antipodal cube pair and the antipodal octahedron pair. They are drawn on
paper to be invariant under the rotations around their center through ir, which
give their free involutions. If we arrange them on the sphere stereographically,
their involutions can be seen as just the antipodal map. Since the cube and
the octahedron are 3-connected, such spherical embeddings are unique and their
involutions extend to only the antipodal map.

Figure 3. The antipodal cube pair and octahedron pair
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LEMMA 12. A conn rcted sphrrical pair (G .r ) is antipodal and ',tatiiu if and
00Y if G splits into two subgraphs H and r( II) whirh n m.ft •n two v1 rti•cs ) and

Proof. By Lemma 4, we may assume that G is 2-conn,ectt-d. Embed G on the
sphere so tl, ,.t r extends to the half rotation h. Then each face of G is bounded
by a cycle, Let CI and C2 be the boundary cycles of t h- two faces each of which
contains one of the two fixed points of h. It is clear that CI nad (', have to have
at least two vertices tv and r( v) in common in any antipodal ,:mbe-dding of (G. r).
In the first rotative embedding, the whole of G is contained within the annular
region between C, and C2 , which implies that G splits into two subgraphs 11
and r(H) at v and T(V).

Conversely if G splits like that, we can embed G in two ways so that r extends
to the antipodal map and the half rotation, turning 11 with r(H) fixed. U

LEMMA 13. A connected spherical pair (G, r) is rotatire but not antipodal if
and on•b; if G contains two disjoint invariant crcles.

Proof. The sufficiency is clear. To show the necessity, embed G on the sphere
S- so that T extends to the half rotation h. Similarly to the proof of Lemma 12.
G can be assumed to be placed within the annular region between two invariant
cycvIs CI and C2, which bound a face with a fixed points of h at its center,
respectively. If C1 and C 2 have a vertex v and hence I r(r) in comrnon, then G
would have a decomposition as in Lemma 12 and would be antipodal. This, C,
and C'•, art! disjoint from each other. M

LEMMA 11. A con nctred spherical pair (G, T) is antipodal but no-t rltati,'e if
and only if either the antipodal cube pair or octahedron pair is an rquivariamnt
minior of(Q, T).

Prnof. Since the antipodal cube and octahdron pairs are not rotative, the
sufflconcy is clear by Lemma 7.

"To promv the n,,,ssity. we may supposc that (. r) is antipodal but not rota-
tiv,: and is miinimal anion g those with respect to the einuivariant miOwnr relation.
If G is not 3-ronnected. then contradictions follow immn-diately from Lemmas b

and 9 except th, cais, when G decomposes into two invariant subgraphs If and
B which inet at precisly two vertices. Howevr. if th, exceptional cans can not
b). redtc;e,.d to , , of tho others, th, -n -arh ,)f I/ and B contains an invariant
cycle with tMes,- wycl,-:1 disjoint fr om ,ach other. By l,ernm I 3. (c; w utd ,
rmttiv, . a ,on tral t iiin. Thus, G is 3-ci nct,-d.

,mil-, G on th,- spher, S- si that r extonds to tiL6 ntipMAai map. By
Lnima 1, Gi has an in variant y, (%. which may b,. ,'sibt,:','d is K,-i ng placd
al, ag ih, ,iuatr ,f S 2 . Slpp,,s that (' is a shrtst invariant ,yle-. Th.n
t,'r, is 1,'. Ch,-,rd of Q'. that is, no edge .re j x L'{;E ) - &(M with x.9, E Of'().
Ill. thi ,r, s aver m i v nrwit ,)i (, and thmrp- paths in G whi-h ,ii r o th•,.
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dirtinct vertices Ill, u and u3 on C.. If there is an edge e E E((;) bth of whos,

ends do not belong to C, then equivariant contraction of (and t( 1 ) yivlds an

antipodal embedding of G/(e, T(e)}. The resulting minor of (G, r) is antipodal

and rotativ,- by the minimality of 1G, -) and hence there is a verte-x J- E V( C•

such that {x, r(x)} separates G/{e, r(e)} by Lemma 12. But it would bt a 2-

vertex cut of G, c( -itrary to G being ',connected. Thus, v is adjacent to at1 , u2,

U3. Let Y be the subgraph of G induced by {vu(1 vu1VU2 ,1 3}.

Similarly, equivariant deletion of vu 2 and r(vu 2 ) yields a minor of (G, r)

which is antipodal and rotative and there is a 2-vertex cut {X, T(X)) of G -

{11U.2,r(VU12)} with x E V(C). Let Q be the path on C joining x and r(x)

through nj. Then Q - {x, r(x)} does not contain any neighbor of v except u2

and {Jul, u3 } C r(Q), If {ui, U3 } = {X, r(X)}, then there is a foul th vertex u4 inl

Q which is adjacent to v since otherwise {x, r(x)} would be a cut of G. In this

case, C'U Y U r(Y) + {vu"4 , r(1vu 4 )} shrinks to the octahedron. If r( u,) f { ut 113 }
and {uf1 ,713} t {x, r(x)}, then C U Y U T(Y) is an invariant subdivision of the

cube. If either ul or u3 , say ul, coincides with r( u-), consider equivariant

deletiont of tu 3 and T(vu,3 ). Then tul, u2} is a cut of G - {vu3, r(ru 3 )} and a

fourth neighbor of v can be found in the path on C joining ul and uI, not through

u3 , similarly to the first case. Thus, (G, r) has the antipLdId octahdron pair as

a minor in this case. E

The following two theorems are our goals in this section:

THEOREM 15. A connected involutive pair (G, r) is sphfrical if and only if G

is planar and neither (.11, r1 ) nor (AM2 , r-2 ), giv'en in Figure 2. is an equiVariant

minor of (G. r).

Proof. Sirnce (Ml, r, ) and (M32 , 72) are not spherical, the necessity is clear. To

show the sufficiency, suppose that (G, r) is not spherical with G planar anid is

minimal among those, that is, any proper minor of (G, r) is spherical. Then G

has to be 2-connected by Lemma 8.

First assume that G is nt 3-connected. Then G has an equivariant 2-cut

S = [u. v} with an equivariant fragment F by Lemma 5. Put 11 = G- FU r(F)

and B = (S U F), where (X) denotes the subgraph induced by X, that is, one

obtained from X by adding all the edges both of whose, end points belong to X.

Hence B can be obtained from F by adding S and all the e'dges joining S to F

and ieots 1I at S. Let 11' be tt with two edges uv and r(tt)T(Z!) added. Then

r indurces a free involution r' on H' with 7T'(uv) = rr(?1)7(e') atid tli in ''oiutiveý

pair (It'. r'7) is an eq uivariant minor of (G, r) and hi nce is spht-rical.

If 8 t r(7B), then G would decompose into It. B and T(B) ais just in le.mmat

9 ald wouuld be) spherical. ThIilus, B = r(B) and henlce u1 and r(11)r(c) art' a pair

of iii rtip': ipedge:s and form an invariant cycle of length 2. (We wr rite simply iu

for 7(,1)- ,1) lire. ) Moreover, we. can assume' that B d C,,s not ,:,,compose into

two si bgrapit H' trid r( B') which m:eet at .5. Thet B con taitis anr Inivariant cycle

C' whicii is disj@oiit from S by Lemma 6. Since 8 4- {+uv. 'n} has two drisJArut

imvariant crye, .s, rtamt''ly C and u' U .n, the' inv\oiutive ptir of B + Ill. Z,)} is
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rotativw by ILemma 13, and hence B can be embedded on th,- plan, so that r11

extends and both n and v are incident to the infinite face.
Embed H' on the sphere S2 so that r' extends to some- involution on S2. If

the invariant cycle uvtU vu bounded a face, we could add B to the face and would
get a spherical embedding of (G, r). Thus, 11 decomposes into two subgraphs
H, and H,, which lie in the two 2-cell regions bounded by uv U vu separately.
If r' extends to the antipodal map, then r'(111 ) = H12 and we can r,:-e-mbed !11
and H, in one of the regions together so that r' extevds to a half rotation, which
implies the same contradiction as above.

Therefore, r' extends to a half rotation and both I1- and H-1 are invariant
under r'. If H, decomposed into two subgraphs H: and r'(11:) which nmeet at
S, then we could replace H: and r'(H,') along ut, and vu, respectively, so that
ut, U vu bounds a face afterward. Thus, H, does not decompose arid contýins
an invariant cycle C, which is disjoint from S by Lemma 6. Considering the
quotients of B, H, and H2 , we find two disjoint tridents Y and r( Y) which join
u and v, respectively, to C, C1 and C2. Then C U C'I U C2 U Y U T()) forms a
subdivision of .l 1, invariant under r.

Now suppose that G is 3-connected. Replace each pair or set of multiple
edges with a single edge to get a simple 3-connected graph G' and consider an
involution r' ont G' which has no fixed vertex but may have invariant edges.
Embed G' on the sphere S2. By Whitney's theorem, the spherical embedding
of G' is unique and r' extends to an involution h on S2.

If h were conjugate to the antipodal map or a half rotation, then an antipodal
or rotative embedding of (G, r) would be obtained by adding multiple edges to
G', contrary to (G, r) not being spherical. (In this case, if an edge e of G'
is invariant under r' and contains a fixed point x of h, then e corresponds to
multiple edges of G which form an invariant cycle, and x has to be an isolated
point at the middle of e. Put multiple edges around x symmetrically.)

Therefore, h is the reflexion and fixes the equator of S2 pointwise. Since r'
has no fixed vertex, the eqnator crosses only edges of G', which form an edge
cut arnd which correspond to invariant cycles of length 2 in G. Since G' is 3-
connected, the edge cut has to contain at least three edges. Let xr1 y, x2)y2 and

X313 be such three edges and suppose that x, and y, belong separately to the
upper and lower halves of G'. The three vertices x1 , x2 and x3 are joined to one
another by paths in the upper half. The union of those paths can be assumed
to be either a trident Y or a cycle A. Then we have an invariant subdivision of
either M, or AM2 in G which consists of three pairs of multiple edges .r,y,'s and
Y U T(Y) or A U Ir(A), respectively. M

TH.FCK ,M 1. A connected involutive pair (G, T) is antipodal if and onty if the
fllowing thrce conditions hold:

1. G contain.s no two disjoint Invariant cycles.

2. G contains neither a subdivision K of K, nor of 13.y with K 0
T(A) = ¢



374 SEIYA NEGAMi

S. None of the ivolutive pairs given in Figure -/ is an equztariant
ri,,or of (G. r).

Figure 4. Forbidden minors for antipodal pairs

The involution of each involutive pair in Figure 4 is given as the rotation
around the center of each graph through ir. The fourth can be excluded from
the list since it contains two disjoint invariant cycles.

Proof. By Lemma 13, if G contains two disjoint invariant cycles, then (G, r) is
not antipodal. Since all of the graphs in Figure 4 are not planar, (G, r) cannot
be spherical if it has one of them as a minor. Thus, the necessity follows.

To show the sufficiency, suppose that (G, r) is not antipodal and is minimal

among those with respect to the equivariant minor relation. If G is not 3-
connected, there is an equivariant cut S with an equivariant fragment F by
[,emma 5. Let H = G - F U r(F) and B = (S U F).

If B is not invariant, then we have an antipodal minor obtained by shrinking
B and 7(B) to edges and B + uv (or B if S is a singleton) has to be nonplanar
by Lemmas 8 and 9. In this case, B + uv contains a subdivision K of K,5 or
1(3,3 and either K C B and K n r(K) = 0 or (G, r) has one of the first three in

Figure 4 as a minor. If B is invariant and if we cannot reduce this case to the
previous, then each of B and H contains an invariant cycle. These two cycles
are disjoint from S by Lemma 6 and hence from each other.

Now suppose that G is 3-connected and let G" be the simple graph obtained
from G by replacing each pair or set of multiple edges with a single edge. Then
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G" also is 3-connected and has an edge mv E E(G") such that G"/lul is 3-
connected. as is well-known (see [7]). If uzt corresponds to an invariant cycle
uv U ,u of multiple edges, then G - {u, v} is invariant under r and is connected
since G is 3-connected, and hence it contains an invariant cycle by Lemma 6,
which is disjnint fromn uv U vu. Thus, we may assume that Uzv and T(uv) arý
,Lsjoint from uach other and can be contracted, keeping our assumption on
involutive pairs.

Let (G', r') be the involutive pair obtained from (G, r) by contracting uv
and r(uv) and let w be the vertex of G' to which uv shrinks. Then (G', r') is
antipodal by the minimality of (G,r). If G' is not 3-connected, then there is
an equivariant cut S' with an equivariant fragment F' and S' has to contain w
since G is 3-connected. If S' fl r'(S') = 0, then r'(S') could be regarded as a
cut of G/uv which cuts off r'(F'), contrary to G/uv being 3-connected. Thus,

q' ) = s' = {W, 7-(1)}.

If F' is invariant, then F' and G - F' contain invariant cycles, which are
disjoint from each other. If F' is not invariant and if G' - F' U r(F') u S' has
an invariant component R, then each of (F' U r(F') U S') and R contains an
invariant cycle and those cycles are disjoint from each other. These cases •re
however contrary to (G', r') being antipodal. Thus, all the fragments of .'ý are
equivariant but not invariant. Then S = {u, v, r(u), r(v)} is a 4-vertex cut of G
and has the same fragments as has S'.

If S has only two fragments, that is, if G = (F' u r(F') u S), then we
consider the equivariant minor (G - {uv, r(uv)}, a-IG.,uv,(v•) of (G, r). By
the minimality of (G, r), this minor is antipodal and G - {uv, r(uv)} can be
embedded on the sphere S2 so that its involution extends to the antipodal map
h : S2.-. S2 . Since F' and r(F') are connected, there is a simple closed curve
r on S2 with h(F) = r which contains S and separates F' and r(F'). Then u,
v, r(u) and r(v) have to lie along F in this order, so we can add uat and r('Iv)
to this embedding and get an antipodal embedding of (G, r) on S', contrary to
the hypothesis of (G, r). Thus, S has at least four fragments.

Shrink each fragment of S to a vertex. The resulting graph H admits a free
involution ca induced by r and consists of S and several independent vertices
with only edges between S and them. Let (x,a(x)) and (y,a(y)) be any two
pairs of vertices of H not belonging to S. They are Kijacent to at least three
vertices in S since G is 3-connected. If x is adjacent to u and r(u) and if y is
adjacent to v and T(v), then xuo,(x)r(u) and yvor(y)'r(v) are disjoint invariant
cycles, which are pulled back to those in G. If we cannot find suich invariant
cycles in H, then both x and y have degree 3 and are adjacent to only u, v and
-(ua). In this case, {u, r(u)} would be a 2-vertex cut of G, contrary to G being

3-connected.
Therefore, we can assume that G' is 3-connected and can be embedded on

the sphere S' so that r' extends to the antipodal map h. Let St(w) be the union
of the closures of faces incident to w. Since G' is 3-connected, S.(w) is a closed
2-cell on S2 and is bounded by a cycle C. If r'(w) were in C, then w and r'(w)
could be joined by a simple curve F passing through a face, and r U h(F) would
be a simple closed curve on S2 which separates G' at {w,r'(w)}, contrary to G'



376 SE!YA NEGAMI

being 3-connected. Thus, St(w) n h(St(w)) C C nf '(C).
Sii;larly to Thoniassen in [6, we can find a subdivision K of either K.5 or

AI1, 3 whose vertex set is V(C) U {u, v} and which contracts to a "wheel" with w

at the center. The center w is adjacent to three (or four) vertices on C when K

is a subdivision of K5' (or I3,3, respectively). We call these neighbors of w on C

feet of w here. By the above arguments, K n r(K) C C nr(C). We shall deform

K U r(-K) up to equivariant minors, keeping this condition, so thbit C" = r(C)
afterward, as follows.

Contract or delete all the edges inside the annular region between C and

(C) 1on S 2 . Then C and r(C) meet in several vertices w, ... , wk. which cut C
and 7(C) into several arcs. If the arc A between wi and w,+, on C contains no

foot of w inside, then K U r-(K) - A U r(A) contains a subgraph with the same

structure as K U r(K). If A contains a foot of w and if w, is not a foot of w,

then the graph obtained from K U r(K) by contracting the path between the

foot and u', contains another K U r(K).
Wl

W2

W r'(w)

Figuit 5. Forbidden minors with uv and r(uv) contracted

After these deformations are carried out as far as possible, we have either

C = r(C) as we want or C n7 r(C) = {w 1 , w2}. In the latter case, K U r(K) is

isomorphic to the first one in Figure 4, where K and r(K) correspond to the left

and right halves which meet in (wl,w2} and contain C and r(C), respectively.

So we can suppose that G can be deformed into K U r(K) with C = r(C)
by deleting and contracting edges equivariantly. Moreover. KL U 7(K) can be

contracted to the second or the tourth in Figure 4, according to which K is,

K5 or K3,3. Compare those with ones in the same position of Figure 5, which

are K U r(K)/{uv,r(uv)} and whose peripheral cycles are C = T(C). For each
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graph in Figure 5, w and r'(w) split to be horizontal edges u,, and T(01v) in
Figure 4, respectively. U

4. Proof of Theorems

Let G' be a 2-fold covering of a graph G with projection p : G - G. Then it

admits a free involution T G -- - such that -r(u) = v for each pair of distinct
vertices u and v. with p(u) = p(v). Such a covering G,; is said to be antipodal if
the involutive pair (6, T) is antipodal.

LEMMA 17. A connected graph G has an even dual on. the pro)ective plane if

and only if there is a bipartite antipodal covering of G.

Proof. Let q : S2 _ p 2 be the 2-fold covering of the projective plane p 2 by the
sphere S-. Then its covering transformation h : S2 _ S2 is just the antipodal
map. If G is embedded in P2 with an even dual, then G = q-'(G) is a 2-fold
planar covering of G with a free involution r = hI and the involutive pair (G', r)

is antipodal. Since each face of G is lifted homeomorphically to a face of d, all
the faces of 6 are even and hence d is bipartite.

Conversely suppose that (d, T) is an antipodal pair with 6 planar bipartite
graph which covers G doubly. Then its antipodal embedding has only even faces,
which are equivariant but not invariant under h; if a face were invariant, then it
would contain a fixed point of h. Thus, the quotient of this antipodal embedding,

GIr = q(G), is an embedding of G in p 2 with an even dual. •

Combining this criterion in the above lemma with our results in the previous
section, we can prove easily Theorems 2 and 3 as follows.

Proof of Theorem 2. When G is embedded in the projective plane P 2 with
an even dual, any odd cycle of G, if any, has to be essential, that is, does not
bound any 2-cell region; if it did, the 2-cell region would contain an odd face.
Since the projective plane cannot contain two disjoint essential closed curves, G

does not have two disjoint odd cycles. Thus, with Lemma 17, the conditions in
Theorem 2 are necessary for G to have an even dual on the projective plane.

Now suppose that G has a 2-fold planar bipartite covering 6 with projection

p : 0 - G and contains no two disjoint odd cycles. Negami has already shown
in t2, 4] that a connected graph can be embedded in the projective plane if and
only if it has a 2-fold planar covering. So G can be embeddable in the projective
plane and has an even dual if G is bipartite.

Hence assume that G is not bipartite and let r : - G be the free involution
on (G' with G/r = G. By the properties of B(G) shown in [3], G is equivalent to
B(G) in this case and a cycle C in G can be lifted isomorphically to a cycle in
G if and only if the length of C is even. In other words, an equivariant cycle C
in G is invariant under T if and only if p(C) is an odd cycle.

If the involutive pair (6, r) is not spherical, then G contains three invariant
cycles C1, (C2, C.3, which shrink to invariant cycles of multiple edges in M1 or
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A1, by Theorem 15. Then p(Ci), p(C,2 ) and p(C 3) have to be odd cycles in G
and they are disjoint from one another. Thus, (G,r) is spherical and is either
antipodal or rotative. If it were not antipodal, G would contain two disjoint
invariant cycles CQ and C, by Lemma 13, and henice p(C 1 ) and p(C2) would be
two disjoint, odd cycles in G. Therefore, (G, T) is antipodal. •

Proof of Theorem 3. Let G be a connected graph which is not bipartite. Then
B(G) t G and every 2-fold bipartite covering of G is equivalntt to B(G), as is
shown in [3]. Thus, G has an even dual on the projective plane if and only if
B(G) is antipodal.

By Theorem 16, we have already had a characterization for non-antipodal
B(G) in terms of forbidden equivariant minors. Split several vertices of those
minors so that the results contain no two invariant cycles and classify forbidden
invariant subgraphs for antipodal pairs. Then we have six forbidden subgraphs
obtained as 2-fold coverings of ones in Figure 1 in the following way. Make two
copies of each of the first four in Figure 1 and join them at x's so that they
admit free involutions and that two x's form a cut in each. For each of the last
two in Figure 1, make two copies of that with the edge e deleted and join them
with two edges so that these edges form a 2-edge cut.

Therefore, B(G) is not antipodal if and only if one of the followings holds:

1. B(G) contains two disjoint invariant cycles.

2. B(G) contains a subdivision K of either K5 or K3, 3 with K n
r(K) = 0.

3. B(G) contains an invariant subdivision of one of the six as men-
tioned above.

In the first case, those invariant cycles project to two disjoint odd cycles in G. In
the second case, G contains a subdivision p(K) of K5 or K 3 ,3 which is isomorphic
to K and is bipartite. This can be regarded as one of the last two in Figure 1
with no odd cycle through the edge e. In the third case, G contains one of the
six in Figure 1.

If twvo distinct vertices x and y in B(G) project to the same vertex in G,
then there is a path of odd length which joins x and y since they belong to the
two partite sets separately. Thus, the six in Figure 1 should be sitbdivided as
mentioned before Theorem 3. Conversely, if G contains one of such forbidden
subgraphs, then B(G) contains a forbidden invariant subgraphs which covers it
since any odd cycle cannot be lifted to a cycle in B(G), and hence B(G) is not
antipodal. U

By the general observation in [5], a connected graph G, not bipartite, has
anl even dual on a closed surface F2 if and only if B(G) can be embedded on a
2-fold covering of FP so that the free involution on B(G) extends to the covering
transformation. For example, any 2-fold covering of the torus is homeomorphic
to a torus. So we conjecture that a nonplanar graph G has an even dual on the
torus if and only if either G is bipartite or B(G) is toroidal. Note that a toroidal
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graph may have three or more odd cycles which are disjoint from one another
even if it has an even dual on t4.1e torus.
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ABSTRACT. One of the most celebrated theorems of Tutte states that every
4-connected planar graph is hamiltonian and, as a corollary, has a 2-factor.
We extend this latter result by showing that (i) every 4-connected graph
embeddable in the torus or the Klein bottle has a 2-factor and (ii) every
edge of a 4-connected planar or projective planar graph is contained in
a 2-factor. We also consider a best possible function t of any surface E
such that every t(E)-connected graph G embeddable in E has a 2-factor.
Our approach does not rely on the usual topological methods, but is more
combinatorial.

1. Introduction

One of the most celebrated theorems of Tutte states that everY 4-,onnected
planar graph is hamiltonian. Although every known proof of this result is tedious
and topological, the corollary that such graphs have a 2-factor can be proved by
methods which are more combinatorial. In fact, we show that every 4-connected
graph embeddable in the torus or the Klein bottle has a 2-factor. This result and
an even stronger result for projective planar graphs will be proved with the aide
of a somewhat technical result (Lemma 2.1) on the number of edges in certain
members of minor closed families. Our approach demonstrates that methods
other than (and perhaps more elegant than) the topological approach can be
used to attack problems of this type (for example, see Tutte[10], Thomassen[8],
and Thomas and Yu[9]).

The graphs considered here are finite and contain no loops or multiple edges.
Let G be a graph, and let f be an integer-valued function defined on V(G). An
f-factor is a spanning subgraph H of G such that du (v) = f(v) for each vertex
v. Let S and T be disjoint subsets of V(G). A component C of G - S - T is
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called odd if ',zev(c) f(z) + IE(V(C), T)I is odd. Otherwise, C is even. Let
h(f, S, T) denote the number of odd components of G - S - T, and define

(1) b(f, S, T) = "(d(t) - f(t)) + E f(s) - lE(S, T)I - h(f, S, T).
tET 2E$

When f is a constant k over V(G) we use the notation 6(k,S,T) instead of
6(f,S, T) and h(k, S, T) instead of h(f,S, T), and an f-factor is then called a
k-factor. This paper concentrates on 2-factors (that is, a collection of disjoint
cycles that cover every vertex of the graph).

The following theorem of Tutte is fundamental to this paper as it is to almost
every discussion of factors in graphs. It is used in Section 2 after proving a
technical lemma (i.e., the Bipartite Minors Lemma) to conclude that every 4-
connected toroidal or Klein bottle graph contains a 2-factor.

THEOREM A (TUTTE[10]). Let G be a graph and f : V(G) - Z. Then G has
an f-factor if and only if 6(f, S, T) > 0 for all disjoint subsets S, T of V(G).

Stronger results for the plane and the projective plane can be proved using
a more recent Tutte-like theorem of Liu[6]. By combining Liu's theorem with
the Bipartite Minors Lemma we find that every edge of a 4-connected planar or
projective planar graph is contained in a 2-factor.

THEOREM B (Liu[6]). Let G be a graph and ft V(G) - 2. If 6(f,S,T) >_ 2
for all disjoint subsets S,T of V(G) with S UT • i, then every edge of G is
contained in an f-factor.

In Section 3 we consider a best possible function t of any surface E such that
every t(E)-connected graph 6 embeddable in E has a 2-factor. We refer the
reader to Beineke and Whi .e [1] for a quick introduction to topological graph
theory. With a few excepti,,ns, most of our notation and terminology is the same
as for Bondy and Murty t2].

2. The Bipartite Minors Lemma

The section presents a basic lemma which will be used together with the the-
orems of Tutte and Liu to quickly establish some results on the existence of
2-factors in certain minor closed families of graphs (for example, graphs embed-
dable in a surface of non-negative Euler characteristic). The lemma is proved by
contradiction using a series of claims, and it depends very strongly on the edge
density of the bipartite members of the family.

A graph H is said to be a minor of a graph G if H can be obtained from a
subgraph of G by contractinr edges. Since we are only concerned with simple
graphs, loops and multiple edges are deleted after the contraction. For each
integer r let 8, denote the largest family of graphs with the following properties:

(i) If G E Br and H is a minor of G, then H E Br.



2-FACTORS, CONNECTIVITY, AND GRAPH MINORS 383

(ii) Every bipartite mrnemher B of Br with IV(D)j > 4 satisfies IE(B)I <
21V(B)I - r.

Notice that 13 ;? B,+,. Further, Bo contains all toroidal and Klein bottle graphs,
,62 contains all projective planar graphs, and 34 contains all planar graphs. We
use the following definition to express a bound on 6(2, S, T).

r ifr<1
2 otherwise

LEMMA 2.1 (BIPARTITE MINORS LEMMA). Let G be a 4-connected member
of Br. Then 6(2, S, T) > p(r) for every pair of disjoint subsets S, T of V(G) with
SuT9 0.

Assume there is a 4-connected member G of Br containing two disjoint subsets
S,T of V(G) such that S u.T 6 0 and 6(2, S,T) < p(r). Since f equals 2 at
every vertex, Equation 1 can be written as

(2) 6(2, S, T) = 21SI + 1 d(t) - IE(S, T)1 - 21TI - h(2, S, T)

where a component C of G - S - T is called odd if IE(V(C), T)I is odd. Let Go
be the graph obtained from G by removing all edges in S and T, removing all
even components, and contracting each odd component to a single vertex. Then
Go E Br. We define the following subsets of V(Go):

U = V(Go) - S - T
HY = {u E U: INGo(u) nSI _ 3}

H2 = {u E U: INGD(u) nSIj 2 = INGo(u)fnTI)

H3 = {u E U: INc(u) nSI •< 2 and INGo(u)r)T > 31

Clearly h(2,S,T) = IUI.

Claim 1. IS U TI > 4.

PROOF. If not, then IS U TI < 3 and G - S - T has only one component
(even or odd). Hence, h(2, S,T) < 1 and so 2 > p(r) > 6(2, S,T) _> 21S1+41T1-
IE(S,T)I-21TI-1 = 21SUTI-IE(S,T)I-1 > ISuTI > 1. Hence, ISuTI = 1 =
6(2, S, T). If T = 0, then 6(2, S, T) = 21SI = 2, a contradiction. If S = 0, then
6(2, S, T) = d(T) - 2 - h(2, S, T) > 5 - 2 - 1 = 2 (contradiction) if d(T) > 5. If
d(T) = 4, then h(2, S,T) = 0 and so 6(2,S,T) = 2 (contradiction). ED

It follows that h(2, S,T) = IH 11+IH2+1 IH31. For each vertex u E U, let C(u)
denote the corresponding odd component.

Claim 2. For every u E H2 there is a vcrtex t(u) E Tsuch that IE(C(u), t(u))I
>2.

PROOF. Since C(u) is an odd component and IE(u,T)I = 2, IE(C(u),T)I >
3. 0
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For each vertex u E H 2 , let NG.(u) n S = {sl,82}. If sIt(u) • E(Go) or
s2 t(u) V E(Go), say sit(u) V E(Go), we construct a graph G1 from Go by
deleting u and adding the edge sit(u). In general, for j > 1, if there is a vertex
u E H2 such that st(u) V E(Gj) or sAO(u) i E(Gj) where NG,(u) nS = {s1,s2)
(equivalently, NGo(U) n S = {s,, s2 )), then we perform the above operations to
produce the graph Gj+ 1 . After finitely many steps we cannot proceed and we
are left with the graph Gin.

Claim 3. Gm E Lr.

PROOF. The graph Gm can be obtained by edge contractions and edge dele-
tions. f]

Let H' be the remaining vertices of H2 , and let H' = H2 - H". Then for
each vertex u E H2" with NG-,(u)lS = {SI,S21, we have both sit(u) E E(C,,)
and S2u(u) E E(Gf,).

For each x E T we define b(x) = I{u E H' : t(u) = x)I. The next claim
follows from the definitions.

Claim 4. IH'I = ErT b(z).

Claim 5. For every vertex x E T, dG(x) > 4 + b(x).

PROOF. When b(z) = 0, the claim is trivial. If b(z) > 2, then dG(x) > 2 +
2b(x) ? 4+b(x). Thus, we may assume that b(x) = 1 and, hence, there is a vertex
uE •' such that t(u) = x. Let {s1, s8} = NG,_(u)nS and {x, yj} = A.. (u) nT.
Since both six E E(Gm) and s2z E E(Gr,), if six V E(Go) or s.x V E(Go),
there must be a vertex u' E H' such that t(u') =- x. Let these vertices be denoted
by u ..... ,u.. Of course, d'(x) >_ IE(C(u), x)I + IE(C(u'), x)I + 1 > 5 ifk = k
and dG(z) ? IE(C(u), x)I + IE(C(u'), x)1 + IE(C(u'), x)I > 6 if k > 2. Hence,
we may assume that six E E(Go) and s2 x E E(Go). Since G is 4-connected.
if G- {x,y, sl,s 2} contains a component other than C(u), then dG(X) >_ 5. If
C(u) is the only component, then S = {sf, s2} and T = {x, y}, and hence

6(2, S, T) = 21St + 1 dG(X) - JE(S, Y)I - 21T] - h(2, S. T)
XET

>2.2+2.4-4-2-2-1

>3,

a contradiction. E)

Claim 6. jE(S,T)i < 21SI +21TJ - IHII - IH'I - IH31 - r.

PROOF. Consider the bipartite subgraph B of G,, with partite sets S U 113
and T U H1. Because of Claim 1 and the definition of Br, we have IE(B)I <
21V(B)l - r. On the other hand, IE(B)[ _ IE(S, T)l + 31HII + 31H31 + IH'1 and
IV(B)I = IHI I + IH31 + ISI + ITI. Hence, IE(S,T)I + 31HII + 31H 31 + lH1 <
21H 1 I + 21H 3 1 + 21SI + 21TI - r. Thus, the claim follows. E3
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By Claims 4, 5 and 6,

6(2,S, T) = 21SI + E dG(x) - IE(S, T)1 - 21TI - h(2, S, T)
ZET

_ 21SJ + +•> b(x)) - (21SI + 21TI - IH11 - IH'I - IH31 - r)
XET

- 21T - (IH1l + IH21 + 1H31)

= 21SI + 41T1 + IH"J - 21SI - 21TI + lH, I + 1H 1 + 1H31 + r

21T1-H11[-IH2 1 - IH31

the final contradiction.

THEOREM 2.1. Every 4-connected graph embeddable in the torus or the Klein

bottle has a 2-factor.

PROOF. Every toroidal or Mlein bottle graph is a member of B0 . Combine
Tutte's f-factor theorem with the lemma, D

THEOREM 2.2. Every edge of a 4-connected planar or projective planar graph
is contai,; ? In a 2-factor.

PROOF. Every planar and projective planar graph is a member of 5.,. Com-
bine Liu's theorem with the lemma. D

We expect that further results along these lines can be proved using other
extensions of Tutte's f-factor theorem.

3. Other Surfaces and Higher Connectivity

The results of the previous section have not yet been extended to graphs of
higher connectivity nor to smaller values of the parameter r (and thus to more

complicated surfaces). This section only serves to provide some directions for a
generalization of the ideas presented thus far. We use X(E) to denote the Euler
characteristic of a surface E. Hence, y(E) = 2 - 2h if E is homeonmorphic to
the orientable suiface Sh (i.e., a sphere with h handles) and X(E) = 2 - k if S is
homeomorphic to the nonorientable surface /V (i.e., a sphere with k crosscaps).

Let t(E) denote the smallest integer k such that every k-connected graph
embeddable in E has a 2-factor. We may also define a similar function c(S)
where now we insist that the graph be hamiltonian. The existence of I follows
from the existence of c which was proved by Duke[4], but. we state it in a slightly
more general form than what. appears in [4].

THEOREM C (DuKE[4]). c(E) < 3+ VW i'3, zfEr So.

This inequality implies that I(N 1 ) < 5 and t(S ), T(N2 ) < 6. However, from

Theorem 2.1 we see that t(NI) = t(S 1 ) = 1(N 2) = 4.



386 NATHANIEL DEAN AND KATSUHIRO OTA

OPEN PROBLEM 3.1. Determine the function t(E).

4. Further Remarks

It should be pointed out that Theorem 2.1 follows from an old and still unset-
tled conjecture of Grunbaum[5] and Nash-Williams[71 which states that every
4-connected toroidal graph is ham:ltonian. The first author of this paper has
made a conjecture that implies Theorem 2.2.

CONJECTURE 4.1 (DEAN[3]). Every 4-connected graph embeddable in the
projective plane is hamiltonian-connected.

The planar case of Theorem 2.2 follows from the result of Thomassen[8] that
every 4-connected planar graph is hamiltonian-connected.
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A Conjecture in Topological Graph Theory

JOHN PHILIP HUNEKE

The purpose of these comments is not to present new results but rather to
publicize a conjecture which, if valid, would be a beautiful characterization of
projective planar graphs, and if invalid should yield a large planar graph coun-
terexample.

One rationale for characterizing pro jcctive planar eraph5ý is that "".c graph
genus probiem in iV P-complete 19]. But for a graph embedded on the projective
plane, its representativity can be computed in polynomial time [81 and hence
also its genus by the following:

THEOREM 1[3]. The genus of a graph embedded in the projecti:e plane is the
integer part of half its representativity.

Kuratowski [5] characterized planar graphs as those which do not contain a
subdivision of K5 or K 3,3 . Analogously, Archdeacon [1) characterized projective
planar graphs as those which do not contain a subdivision of one of the 103
graphs of Glover, Huneke and Wang f4]. Although this list of 103 contains only
35 which are minor-minimal and the list can be inductively generated from five
graphs by splitting a vertex and deleting edges, this characterization is unwieldy.
Negami's "1-2-oc Conjecture" [6[ states that any connected graph which has a
finite n-fold topological cover by a planar graph has a 2-fold (topological) cover
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by a planar graph. A connected graph emlbeds on the projec(tive plane if and

only if it has a 2-fold planar cover. Hence we have:

CONJECTURE (NEGAMI). A graph embeds on the prvjectuve planc- if and only

if it has an n-fold cover by a planar graph.

Since the sphere is a 2-fold cover of the projective plane, one direction of the
conjecture is immediate. To see the converse it would suffice to show that the
100 connected graphs in [4] do not have an n-fold planar cover. Archdeacon
and Richter [2] as well as Negamii [7] describe a reduction from 100 graphs to
considering only two specific graphs, K4,4 - K 2 . named E 2 in [4], and KI,2.2,2 -

K 7 -3K 2, named A2 in [4], where 3K 2 denotes three disjoint edges, a 3-matching.
The following Theorem is given here as an example to be mimicked.

THEOREM 2. The graph K 3,5 has no n-fold planar cover.

As a sketch of a proof, observe that a graph which n-fold covers K3 ,5 must be

bipaltitc, a"id fl: a pl:iar embedding of the graph each valence 5 vertex is in a
region boundary with more than 4 edges. To see this is not possible. subdivide
each of these larger regions, R, with a new vertex, VR, and new edges [,7R. u]

for u a vertex with valence 5 on the boundary of R. This yields a new planar
bipartite graph with all vertices in one bipartition having valence at least 6, and
the others having valence at least 3. Such a graph would extend to a planar
graph with every valence at least 6, which would contradict the Euler formula
for a graph embedded in the plane. I

Attempts to prove that there is no planar cover for the two graphs above might
be analogous to this sketch of a proof. On the other hand, attempts to find a
planar graph counter-example to Negami's conjecture might also be pursued by
carefully analyzing local constraints of planar graphs which cover either of the
two. Settling this conjecture either way, whether it is valid or not, would be a
pretty result.
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On The Closed 2-Cell Embedding Conjecture

XIAOYA ZIIA

ABSTRACT. We introduce a vertex version of the face chain method which
can be used to obtain some closed 2-cell embeddings from old ones. We
also introduce two new operations following the face chain method. After
giving some general discussion of face chains in surfaces, especially the
non-orientable surfaces, we outline a proof of the theorem which shows
that all 2-connected graphs embeddable ir. N, (the sphere with 5 cros-
caps), including double toroidal graphs, have closed 2-cell embeddings in
some surfaces. As a corollary, such graphs have cycle double covers,

1. Introduction

In this paper, all graphs are finite, looplcss and 2-connected. A circuit is a
nontrivial simple closed walk and a cycle is a nontrivial closed trail. A surface,
denoted by E, is a compact 2-manifold without boundary. The definitions of
graph embeddings in surfaces and their rotation schemes (rotation projections)
follow those used in [2] (see Section 3.2). We will identify the graph and the
point-set of its embedded image as a harmless convenience when discussing graph
embeddings. In an embedding the subgraph induced by a circuit is a simple
closed curve, and the subgraph induced by a cycle is expressible as an edge-
disjoint union of such simple closed curves.

A closed 2-cell embedding (called a strong embedding in [5], [6] and a circular
embedding in [8]) of a graph G in some surface E is an embedding such that
the closure of every face is homeornorphic to a closed disk. In a closed 2-cell
embedding the boundary of every face is a circuit in the graph. The closed 2-
cell embedding conjecture states that every 2-connected graph G has a closed
2-cell embedding in some surface. It is well-known that a plane embedding of
any 2-connected planar graph is a closed 2-cell embedding. Negami ([7], Lemma
2.1), and independently Robertson and Vitray ([9], page 303) showed that every
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2-connected projective planar graph has a closed 2-cell embedding either in the
sphere or in the projective plane. Richter, Seymour and Siran [8] proved that
every 3-connected planar graph has a closed 2-cell embedding in some surface
other than the sphere; also they characterize those planar graphs which have
this property.

A cycle double cover of a graph G is a family of cycles C = (cl, ..., c",) such
that every edge in E(G) is contained in exactly two of the C, 's. The cycle double
cover conjecture states that any 2-edge-cont-ected graph has a cycle double cover.
Clearly, the existence of a closed 2-cell embedding implies the existence of a cycle
double cover (where all the cycles are circuits) of a graph simply by taking all face
boundaries as a set of cycles. Since closed 2-cell embeddings of the 2-connected
components of a graph generate a cycle double cover of that graph, the closed
2-cell embedding conjecture implies the cycle double cover conjecture and so
provides a topological approach to that problem.

An edge-strong embedding (called an unitary embedding in [4)) is an embedding
such that every edge is on the boundary of two different faces. Note that the
boundary of a face in an edge-strong embedding may be not a circuit in the
graph. An edge-strong embedding is weaker than a closed 2-cell embedding but
still implies the cycle double cover of that graph. A graph G is Nk embeddable if
G can be embedded in the surface Nk, the non-orientable surface of k cross-caps.
Huneke, Richter and Younger [4] proved that any 2-edge connected graph which
is N3 embeddable has an edge-strong embedding in some surface.

In this paper, we will give a general discussion of the face chain method and
outline a proof of the theorem which shows that all 2-connected N5 embeddable
graphs (including double toroidal graphs) have closed 2-cell embeddings in some
surface. In Section 2, we will generalize the edge version of some operations in
the face chain method to their vertex versions. In Section 3, we will introduce
two new operations involving face chains with which we may derive new closed 2-
cell embeddings. In Section 4 we will study these operations in general surfaces.
In Section 5 we will outline the proof of the existence of closed 2-cell embeddings
of all 2-connected N5 embeddable graphs. The detailed proof of this part is quite
long and will appear in separate papers. As a corollary, such graphs have cycle
double covers.

2. Vertex versions of some operations

In the previous approaches to the cycle double cover conjecture the circuit
chain method is widely used (see [1], [10]). Suppose G is a graph which has a
cycle double cover. The circuit chain method shows that for two non-adjacent
vertices z, y in G joined by a certain type of sequence of circuits, one can obtain
a cycle double cover of the graph G U {xy} from the original cycle double cover
of G, where zy is a new edge added to G. There is a surface embedding version
of this metbod which can be found in [4], [6]. The surface embedding version of
the circuit chain method is to find a face chain joining two non-adjacent vertices
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x,y and to use this to construct an embedding of GU {Ixy). Suppose 1P is a
closed 2-cell embedding in some surface. Since the sequence of face boundaries
in a face chain form a circuit chain, a face chain is a special kind of circuit chain.
But on the other hand, a face chain involves the surface embedding and hence
one can hope to apply some topological arguments.

The face chains used in [41 and [61 require that any two consecultive faces must
have at least one edge in common. Therefore in the resulting embedding one
may avoid repeated edges, but repeated vertices are harder to avoid since non-
adjacent faces in the sequence may have common vertices on their ''oundaries.
Hence embeddings formed by using such face chains are edge-strong embedd;ngs.
To improve the face chains used in [4], [6] and elsewhere, consecutive faces in a
face chain used here have common vertices but not necessarily common edges.
We introduce some notation first.

Let %k be an embedding of a 2-connected graph G in E. When the faces of %P are
2-cells the embedding is called an open 2-cell embedding. Open 2-cell embeddirgs
exist for any connected graph; for example any embedding of minimum orientable
genus. Denote by i3f the boundary of a face and by f(= f U Of) the closure
of f. Let * be an open 2-cell embedding of G and f be a face of 'i. The
boundary Of is a subgraph of G. Following the circular order of the open disk
f this subgraph is traced out by a closed walk in G, unique up to rotations
and reversal of direction, called the facial walk of f. An edge e is said to be a
monofacial edge of * if it appears in a facial walk twice. A monofacial edge e
is consistent if the edge e is traversed twice in the same direction in the facial
walk, otherwise, it is inconsistent (all the monofacial edges in an orientable

embedding are inconsistent). Similarly, a vertex v is said to be a multiple vertex
of a face f if it traversed more than once in the facial walk of f. As usual,
the two appearaiices of the endvertex of a facial walk are counted as one. If a
multiple vertex appears in a facial walk only twice, we call it a double vertex.
Define consistent and inconsistent double vertices in the same way. Consistent
and inconsistent double vertices are well-defined because each vertex has a small
closed disk neighborhood which meets the incident edges in initial segments
only. These segments are given a circular order by their intersections with the
disk neighborhood boundary. Each time a facial walk traverses a vertex it uses
consecutive segments in the order. Two traversals cannot cross in the order and
therefore will be either consistent or inconsistent. Call monofacial edges and
double vertices of a face f the double-attachments of f.

Let f, g be two faces. If Of n .9g # 0, we say f and g are attached. Clearly,
if * is a closed 2-cell embedding, then Of nl Og is the union of connected compo-
nents, where each component is either a common edge, possibly subdivided, or
a common vertex. Denote by 110f n 0g11 the number of connected components
of Of n Og. If I118 n agII = k, we say the faces f and g have k attachments.

Let f and g be two attached faces of V1. Assign local orientations to the
facial walks of f and g. The directions of the two sides of each attachment of
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f and g will be either the same or opposite. For a chosen local orientation, call
the attachment consistent if the directions are the same and inconsistent if the

directions are opposite. Let a and b be two attachments of f and g. We say these
two attachments are of the same type if they are both consistent or inconsistent,
and otherwise they are of different types.

Let x and y be two vertices. A face chain C = (fl, f2, ..., f,,) which joins X
and y is a sequence of faces of * such that OfinOfi+1 $ 0 for i = 1,2,...,n- I
and : E Ofi, y E af,. A face chain is simple if Ofi n Of1 00 implies Ji - J =-1.
Clearly any face chain joining z and y contains a simple sub-face chain which
also joins z and y.

We now introduce the vertex versions of three operations which generalize
their edge versions. The edge version of the first operation can be found in [3].
The edge versions of the second and third operations can be found in [4] and [6].

OPERATION 2.1. Let %k be an open 2-cell embedding of G in E. and e = xy
be a consistent monofacial edge with facial walk xeyPjxeyP2 . By viewing the
local embedding as a rotation projection and putting an 'x' on e, we obtain an
embedding It' in a rurface E'. In Figure 2.1, the 'x' on an edge means this
edge is twisted, that is, the facial walk will cross the edge from one side to the
other side. If an edge has an 'x' on it originally, after adding another 'x', it
becomes an ordinary edge. The facial walk zeyPxzeyP 2 in %F is divided into two
facial walks xeyP1 and zeyP 2 in V', with all other facial walks unchanged. The
edge e is no longer a monofacial edge in V'. Similarly, if v is a consistent double
vertex of face f (so that v appears in this facial walk twice), and ab...cd.. .a is the
rotation of all edges at v with a, b, c, d E 0f, we change the rotation projection
as shown in Figure 2.1(b). Again the original facial walk of f is broken into two
facial walks with all other facial walks unchanged. We obtain a new embedding
of G with fewer double vertices.

Figure 2.1 :

Remark: Suppose a face f of I has two or more consistent double-attachments.
If we apply Operation 2.1 on one of these consistent double-attachments, all other
consistent double-attachments are either no longer double-attachments or remain
consistent double-attachments of the new embedding. Therefore, if an open 2-

cell embedding % of G has no inconsistent double-attachment, by repeatedly
applying Operation 2.1, we will end up with a closed 2-cell embedding. Thus
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if an embedding has no inconsistent double-attachment and no other multiple
vertices, then this embedding can be trnnsformed using Operation 2.1 into a
closed 2-cell embedding.

The next operation is similar to the one above except that the edge (or vertex)
is not a monofacial edge (or a double vertex).

OPERATION 2.2. Let % be an open 2-cell embedding of a graph G and fl, f2
be two faces of * such that 8f, nafl 0 o. Choose an attachment from Of, naf2 .
If this attachment is an edge, put an 'x' on this edge. If this attachment is a
vertex v, and ab...cd...a is the rotation of all edges at v with a, b E ofi and
c,d E 8f2, change the rotation projection as indicated in Figure 2.1(b). Call
such an attachment a passing attachment from f, to f2.

OPERATION 2.3. Let * be a closed 2-cell embedding of G in E and z, y be
two non-adjacent vertices of G. Let C = (fi,f2,...,f,,) be a simple face chain
joining r and y. For i = 1, ..., n- 1, choose a passing attachment from fi to fi+I,
and apply Operation 2.2 on these attachments. Change the rotation projection
by adding a new edge Ty as shown in Figure 2.2(a) to obtain an embedding V'
of G+ = G U {zy} in V'. The faces fl, ..., f,, of %F have turned into two faces
gi and 92 of V', while the other faces of * are unchanged. The 'O' on the edge
zy means an 'x' if the number of edges with 'x"s on the facial walk of g, (or
of g2, whose number of 'x"s has the same parity as for g9) is odd, or nothing
otherwise.

xX .............

fl ft

V RV~
C~b d .. ......

C. ,

(8) (b)

Figure 2.2:

Remark: Note that Operation 2.3 may create double-attachments in the new
facial walks as shown in Figure 2.2(b). In this example fi and fi+1 have three
attachments a, b and c. If we use a as the passing attachment, then b is part of
the common boundary of two new faces, but c becomes an inconsistent double-
attachment of the dotted face. In general, if * is a closed 2-cell embedding and
Operation 2.3 does not create inconsistent double-attachments, then either V' is
a closed 2-cell embedding already, or it can be transformed using Operation 2.1
into a closed 2-cell embedding. Moreover, if r and y are not on the boundary of
the same face in %P, then the embedding obtained by contracting the edge zy in
V' is also a closed 2-cell embedding.
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3. Two siew operations

We introduce two new operations in this section which can be used to con-
struct new closed 2-cell embeddings based on given closed 2-cell embeddings.

x

( -44

U V U

Figure 3.1 :

OPERATION 3.1. Let * be a closed 2-cell embedding with z,y,u,v E V(G)
and zy, uv V E(G). Let G+ = G U (ry, uv), where zy andti uv are two new
edges. Suppose C, is a simple face chain joining z and u, C2 is a simple face
chain joining y and v, and no face of C, is attached to a face of C2. For every
two consecutive faces in C, and C2 , choose a passing attachment and apply
Operation 2.2. Change the rotation projection by adding two edges zy and uv
as shown in Figure 3.1. The '0' on the edge zy is placed by the same rule as in
Operation 2.3. Similar remarks to those for Operation 2.3 hold here.

x x__-<a---->

f z

CCi

C2 C2

Figure 3.2

OPERATION 3.2. Let * be a closed 2-cell embedding of G in a surface E and
z, y, z E V(G). Without loss of generality, we may assume no two of z, y, z are
on the boundary of the same face. Let C, be a simple face chain joining z and y,
and C2 be a simple face chain joining z and a vertex of Cl and such that only the
last face of C2 is attached to any face of C, (if z is on the boundary of a face in
Cl then C2 is degenerate). Let u be a new vertex, uz, vy, uz be three new edges,
and G+ = G U {u, Uiz, uy, uz}. Let fl, f'2 be faces of Cl, C2 , respectively, such
that Of, n Of2 !A 0, and let e be an attachment edge or vertex) between f' and
f2. For every two consecutive faces in Cl and C2 , choose a passing attachment
and apply Operation 2.2. Change tile rotation projection by adding the new
vertex u and three new edges ur, uy, uz, as shown in Figure 3.2. The '0' on the
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edge ur means a 'x' if the number of the edges with 'x' in the segment of the
new facial walk between z and f is odd, or nothing otherwise. The VO"s on the
edges uy and uz are defined similarly.

4. Good face chains and new enibeddings

In this section we give a general discussion of the face chain method. As
mentioned in the remark after Operation 2.3, applying Operation 2.3 may create
inconsistent monofacial edges or multiple vertices in the resulting embedding.
Our purpose is to find so-called good face chains and apply some of the operations
in Section 2 and Section 3 to derive new closed 2-cell embeddings.

Let E be a surface and * be a closed 2-cell embedding of G in E. Let
C = (fl,..., f,,) be a simple face chain joining z and y, with z, y E V(G) and
xy V E(G). The face chain C is good if the resulting embedding obtained by
applying Operation 2.3 on C has no inconsistent double-attachment; otherwise
it is bad. Let C be a face chain joining z and y. In general the attachments of
ft--I and fi and the attachments of fi a'nd fi+i may be in no particular order
on the face boundary of fi. If Ofi is a .isjoint union of two paths pi and pi+1
such that fi- In afi Cg pi and aOf n ffi+1 !g P,+1, then we say 0Ofi_. nO!f. and
8fi n 8fi+1 are separated on Ofi, otherwise they are alternated on Ofi.

Let C be a simple face chain in a closed 2-cell embedding. Suppose there
exist three consecutive faces fi-1, fi, and fj+i in C such that lI0fi- 1 0 afill =
Ilfi 0 O9fi+1+ = 2, of_1- n afi and Ohf n (J'•+1 are alternated on Ofi, with
the attachments of fi-2 and f.+2 placed as in Figure 4.1, and such that two
attachments of Of-. I n Of, (as well as O9f, n Of,+1 ) are of different types. Then
there does not exist a suitable choice of passing attachments from af,--I n Of;
and Of, n 49ff+m for us to apply Operation 2.3 and obtain an embedding without
an inconsistent double-attachment. Hence such a face chain is bad.

fi+2

fj

fi-I

Figure 4.1

In a given face chain, two consecutive faces can be attached in a very com-
plicated way which often creates inconsistent double-attachment when applying
Operation 2.3. However, the attachments of two faces in an embedding by an
orientable face chain is not so important. We have the following theorem.



398 XIAOYA ZHA

THEOREM 4.1. Let '9 bt a closed 2-cell embedding and C be a simple face
chain in *a. Denote by U(C) the union of the closures of all faces in C. If

U(C) C E2 doe.i not contain orientation reversing simple curves, then C is good.

Proof: After applying Operation 2.3, all the faces in C, together with the new

edge zy, have turned into two faces gt and g2 of a new embedding, while all the

other faces remain unchanged. Our only concern is whether the face boundaries
of gj and g2 are circuits or not. If not, suppose that gj has double attachments.

Since the face chain is simple, these double-attachments must be components
of the common boundaries of two consecutive faces, say fi and fi+1. By the

construction, the part of the facial walk of g, from fi to fi+1 contains one 'x'.

Since U(C) is orientable, all the attachments of fi and fi+t are inconsistent.
Therefore after adding an 'x' to its facial walk, these double-attachments in g,

are consistent, Hence C is good. o

The next two corollaries follow immediately.

COROLLARY 4.2. Let %P be a closed 2-cell embedding in an orientable surface,

Then any simple fIce ciain C in I joining non-adjacent vertices z and y is good.

COROLLARY 4.3. Let G be a k-connecied graph with z,y E V(G) and zy ý
E(G). Let G+ = GU{xy} be a new graph obtained by adding a new edge zy to G.
If there exists a closed 2-cell embedding IP of G in some orientable surface, then

there exists a closed 2-cell embedding VP' of G+ in some non-orientable surface.

Remark: If z and y are not on the boundary of the same face in *, then

the embedding obtained by contracting the edge xy in VP is also a closed 2-cell

embedding.
The behavior of a simple face chain in a nnn-orientable embedding is much

different. Generally, it is hard for a simple face chain in a non-orientable em-

bedding to be good. However, under certain circumstances, we are still able

to find good simple face chains. In a non-orientable surface, two faces can be

attached in e very complicated way; now we introduce a model to describe the

arrangement of all attachments between two faces.

c4~f2

fl _J

(e) (b)

Figure 4.2:

Let fi an'i f2 be two faces with n attachments. Choose an attachment as

the first attachment, at.] give a local orientat'on to the facial walks of fl and

f2 so that this first attachment is inconsistent ('. is not necessary that a first

attachment be inconsistent). Draw two circuits representing the facial walks
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of f, and f1, mark n points on each circulit to represent the n attachments
(again, these attachments may be either edges or vertices). For each attachment,
draw a segment if it is inconsistent or a segment with an 'x' if it is consistent,
connecting the corresponding points on these two circuits. Figure 4.2 gives an
example following these instructions. Figure 4.2(a) is a local embedding of two
faces given by rotation projection, while Figure 4.2(b) is the model to show in a
more clear way how these two faces are attached.

Let C = (fl,-.., I.) be a simple face chain of an embedding * which joins
two vertices x and y,. We use the above attachment instructions to discuss how
to implement Operation 2.3. Let J'-1, fi, fj+I be three consecutive faces in the
face chain C. Assume we have already chosen all the passing attachments from
f, to fi-I. For the face pair fi-I and fi, call the passing attachment between
fi-2 and fi-I the entry and the passing attachment between f, and fi+l the
exit. The question is how to find a suitable passing attachment between f,_-
and fi to avoid inconsistent double-attachment in new facial walks. We state
the following facts for better understanding.

(4.1) We know that Operation 2.2 will add an 'x' in the facial walk. Under
the attachment description, if the passing attachment is inconsistent, then after
Operation 2.2 it becomes a segment with an 'x', and therefore the new facial
walks should cross the passing attachment. If the passing attachment is consis-
tent, namely, with an 'x' on it, then after Operation 2.2, the two 'x's will cancel
out, and so the passing attachment is a segment without an 'x', and therefore
the new facial walks will not cross the attachment.

entry

Figure 4.3

(4.2) We may choose two passing attachments between two consecutive faces.
Simply by observation, these two passing attachments must be of the same type;
both are segments with 'x"s or segments without 'x"s. The four possible two
passing attachments are shown in Figure 4.3. The dashed and two dotted curves
represent new facial walks.

(4.3) The resulting facial walks may be not simple; i.e., they may have double-
attachments. If they are consistent, we can reduce them easily by Operation 2.1.
If they are inconsistent, then the double-attachments are caused by consistent
attachments if the passing attachment is inconsistent, or by inconsistent attach-
ments if the passing attachment is consistent.

Now we are ready to prove the following lemma.

LEMMA 4.4. Let *' be a closed 2-cell embedding of G in some surface. Let
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X, 1 E V(G), ay ý btAG) and C = (f,,.., f,) be a simple face chain joining
z and y. For a given i, if 11Dbf n dfi+1,1 < 4 then, ercept for one case, by

choosing suitable passing attachments, Operation 2.3 wtll not create inconsistent

double-attachments in the resulting embedding.

Proof: Assume we have located the entry and all the points representing these
attachments. Each attachment segment I has two ends in the facial walk of f, and
fi+i, respectively. Call these the bottom end and top end. By our convention.
we may assume the first attachment segment is the one without an 'x.

11+1l Ul 1

.1

........ .....~.. *LIII entry

Figure 4.4

Case 1: The exit w is on the right of the top end ul of the first segment 1I.
Use l1 as the passing attachment. It is clear that the resulting facial walks

are simple at this point. The local rotation projection is shown in Figure 4.4.
Two new facial walks are represented by the dotted curve and dashed curve.

(,) (b) (c)

Figure 4.5 :

Case 2: The exit w is on the left of the top end ul of the first segment it.
If we use 11 as the passing attachment and the resulting facial walk has an

inconsistent double-attachment, then by the remarks in (4.3), there must be an
attachment segment 12 with an'x' on it whose top end U2 is on the left of w and
bottom end v2 is on the left of vi. Now we use 12 as the passing attachment.
If the resulting facia! walks have an inconsistent double-attachment, there must
be an ordinary attachment segment 13 in one of the three cases shown in Figure
4.5. We have now three attachment segments, and one of them is an attachment
segment with an 'x'. In the cases of Figure 4.5(a) and 4.5(b) use two ordinary
attachment. segments as two passing attachments; in the case of Figure 4.5(c) use
the third segment. , as the passing attachment. By the same argument, if the
result fails to be a closed 2-cell embedding, then there must be an attachment
segment with an 'x' appearing as in one of the thirteen sub-cases shown in Figure
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4.6. Among these sub-cases, the first four are illustrated in Figure 4.5(a), the
second four in Figure 4.5(b) and the last five in Figure 4.5(c). The choices of the
passing attachments in some cases are not unique, however, except for the last

one, we can find a single (or a pair of) attachment segment(s) with an 'x' (or
'×)s) as the passing attachment(s) to apply Operations 2.2 and 2.3. In Figure
4.6, we put a ' o ' to identify tihe passing attachment. It is easy to check that

the resulting embedding is simple at this portion. Thus the lemma is true. o

(e) (M) (W) (h)

0) 0) (k) (1) Wm)

Figure 4.6 :

In a face chain C = (fI,...,f,), if the attachments between faces fi-1 , fi
and f., fi+I are separated on Of,, for i = 2,..., n - 1, then it is easy to prove
inductively the following theorem.

THEOREM 4.5. Let C = (fI,...,f,,) be a simple face chain joining x and y

with IlOf, n <i+ 11 _< 4 and not satisfying the the case of Figure 4.6(m). If for

each i, Ofi-I n Of, and Ofi n Ofi+l are separated on Ofi, then there exists a

closed 2-cell embedding of G U {zy) in some non-orientable surface.

The significance of Theorem 4.5 is that for an embedding of a 3-connected

graph, if the surface has small otientable or non-orientable genus, then two faces

cannot have a large number of attachments.

5. Outline of the proof that N5 embeddable
graphs have closed 2-cell emnbeddings

By the techniques developed in earlier sections, we are able to prove that
all 2-connected N5 embeddable graphs have closed 2-cell embeddings in some
surfaces. Since the proof is quite long, we only outline the proof here. The
detailed proof is in (11l and (12].
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We first make some reductions. We know that in order to show the existence
of a cycle double cover for a 2-connected graph, one may always assume the
graph is cyclically 4-connected (see [5]). We will show now that this is also true
for the existence of a closed 2-cell embedding of any 2-connected graph. Let G
be a 2-connected graph. Suppose G has a non-trivial 2-vertex separation, say
G = G1 UG 2 , GirfG 2 = {x, y} C V(G). Separate G at r and y, and add a virtual
edge e joining z and y to G1 and G2 , respectively, to form G' and G'. If we have
closed 2-cell embeddings for G' and G' in surfaces E, and E2, respectively, then
remove the edge e from El and E2 by deleting the interior of small disks around
e, and identifying the two boundaries (the disk-sum of El and E2 at e). The
resulting embedding is also a closed 2-cell embedding. Therefore we may assume
the graph G is topologically 3-connected (it may contain some divalent vertices,
which have no effect on finding the closed 2-cell embedding). Now suppose G has
a 3-vertex separation, say G = G, U G2 , G nl G2 = {J, y, z4 C V(G), where G,
and G2 each contain circuits. Separate G at x, y, z and add a new vertex u and
three new edges ux, uy, uz to G, and G2 to form G' and G', respectively. If we
have closed 2-cell embeddings of G' and G' in surfaces El and E2, respectively,
we can obtain an embedding of G by removing the interior of small closed disks
about the new vertex and edges in El, E;2 and taking the disk-sum of El and E2
over these disks. When taking the disk-sum, the order of z, y, z on the boundary
of the disk in E, must match the order of z, y, z on the boundary of the disk
in E2. If the orders are not same, we can easily make them same by taking
the 'mirror' embedding in E2. The resulting embedding is also a closed 2-cell
embedding of G. Therefore we may always assume the graph G is topologically
cyclically 4-connected.

Remark: Since we are only able to deal with N5 embeddable graphs, we have
to be careful in intermediate steps not to increase the genera of the resulting
graphs. Clearly, the 2-separation reduction will not increase the genera of the
resulting graphs. But the 3-separation reduction may increase the genera of the
resulting graphs when G1 or G2 is a triangle. Therefore when we perform the
3-separation reduction we should avoid those which will increase the genera of
the resulting graphs.

Now let * be an embedding of G in E2. If it is not a closed 2-cell embedding,
by a result of Robertson and Vitray ([9], page 297), there exists an essential
simple curve r in E which meets the graph only at a vertex. If the embedding is
of highest Euler characteristic, by Operation 2.1, we know r must be orientation
preserving. Cut E2 along r, delete the pendant edge (if any), then cap off the
boundaries with two disks. We obtain a new embedding V' of a new graph G'
embedded in a new surface V' with its Euler characteristic increased by 2. Call
this cut and paste surgery. If the embedding V' is a closed 2-cell embedding, then
we construct a closed 2-cell embedding of G by applying Operation 2.3, which

replaces the deleted edge (if there is no deleted edge, the operation will add a
new edge and we can contract this new edge later to obtain the original graph),
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based on a face chain in V. If 4' is not a closed 2-cell embedding, we perform
the cut and paste surgery and obtain an embedding V" of a graph G" in a new
surface E" with the Euler characteristic increased by 4. Then we construct a
closed 2-cell embedding of G based on Vi" by using two face chains and adding
two edges (we may contract them later if necessary to obtain the original graph).
This can be done by applying Operations 2.3, 3.1 and 3.2.

We start from toroidal graphs. Theorem 3.1 and the condition that G is
topologically 3-connected will easily give closed 2-cell embeddings for all toroidal
graphs.

If E is the double torus, we perform cut and paste surgery. If the resulting
embedding is a closed 2-cell embedding, then Theorem 3.1 will give a closed 2-cell
embedding of G. If the resulting embedding is not a closed 2-cell embedding, we
perform the cut and paste surgery again. The resulting surface V" is the sphere.
We then construct a closed 2-cell embedding of G by Operations 2.3, 3.1 and
3.2.

If the surface is N2 (the Klein bottle), after the cut and paste surgery we see
that G is a toroidal graph and we are back to the previous case.

If the surface is N 3 , after the cut and paste surgery V' is the projective plane,
and it is not hard to obtain a closed 2-cell embedding of G from the projective
embedding of G' by some properties of the embedding V'.

If the surface is N4 and N5 , then we need some topological properties of the
simple curves in N2 and N3. In [121 we classify all non-homotopic simple curves
in N2 and N3 . By discussing the dual circuit through any pair of attachments
between two attached faces, we can bound the attachment number of two faces
in any given embedding. Therefore we can find a face chain with a bounded
number of attachments between any two consecutive faces. If the case shown in
Figure 4.1 happens, we try to find another face chain to replace the previous face
chain. A careful argument will show the existence of closed 2-cell embeddings
for all 2-connected N5 embeddable graphs.
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ABSTRAc'r In this paper, we survey cycle cover theorems and their
applications: a compatible cycle decompositism theorem, an even
cycle decomposition theorem and a strong cmledding theorem for
graphs with no K5 -minor. Some related problc.i:, such as the cycle
double cover conjecture, the equivalence of the Chinese postman
problem and the shortest cycle cover problem, and the 4-flow
conjecture, are also surveyed. A complete proof of the strong
embedding theorem is also included in this paper.

We follow the terminology and notation of [3]. Note that 'cycles' in this
paper are 2-regular connected subgraphs. Since the cycle cover problem is discussed
in this paper, all graphs considered here are 2-edge-connected.

1. Cycle Cover Theorems
A weight w: E(G)- - {0...nl is called eulerian if the total weight of each

edge-cut is even. A (1,2)-eulerian weight of G is an eulerian weight w:
E(G)-4 {1,2). A graph G together with a weight w is denoted by (G,w). If (G,w)
has a family F of cycles such that each edge e of G is contained in precisely w(e)
cycles of F, then the family F is called a cycle w-cover and G is cycle w-coverable.
An eulerian weight w is admissible if for every cut T and every edge e of T, w(e) <_
w(T) The weight w being admissible is a necessary condition for (G,w) to be cycJe

2"

w-coverable, but it is not sufficient. For example, that the Petersen graph with a
(1,2)-eulerian weight w (fig. 1) has no cycle w-cover can be found in many papers
(see [111, [17], [2], etc).

The following theorem was first proved by Seymour and recently generalized
by Alspach, Goddyn and Zhang (note, Theorem 3 is proved in a submitted paper).
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Theorem 1 (Seymour [17])
Every planar graph is cycle w-coverable for any admissible eulerian weight

W.

Theorem 2 (Alspach and Zhang 12])
Every cubic graph containing no Petersen-minor is cycle w-coverable for

any (12)-eulerian weight w.

Theorem 3 (Alspach, Goddyn and Zhang [1])
Every graph containing no Petersen-minor is cycle w-coverable for any

admissible eulerian weight iv.

Theorem 4 (Zhang 123])
Every graph admitting a nowhere-zero 4-flow is cycle w-coverable for any

(1,2)-eulerian weight w.

fig.1

Refer to [221 or [141 for the definition of integer flow. Note that a graph
admitting a nowhere-zero 4-flow may not be cycle w-coverable for some admissible
eulerian weight w because of the following example (fig. 2). The graph is a cubic
bipartite graph and, by Jaeger's 3-flow Theorem (See [15] or [141), therefore admits a
nowhere-zero 3-flow. However, it does not have a cycle w-cover for the following
eulerian weight w.
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,-o"
-weight of edge

SN2

fig. 2

In the following sections, we are going to discuss some applications of

these cycle cover theorems.

2. The Cycle Double Cover Conjecture

The following conjecture is a well-known conjecture. its motivation and
relation to other problems can be found in the surveys U131 and [141.

Cycle double cover conjecture (Szekeres [201, Seymour [171, etc.)
Every 2-edge-connected graph G has afamily F of cycles such that each edge

of G is contained in two cycles of F.

Let w2 be an eulerian weight of G with w2(e) = 2 for every edge e of G.
Being cycle w2-coverable is equivalent to being cycle double coverable. Thus the
following result is an immediate corollary of Theorem 3.

Corollary 5
A 2-connected graph G is cycle double coverable ifG contains no Petersen-

minor.

3. The Chinese Postman Problem and The Shortest Cycle Cover
Problem

A closed trail covering all edges of G is called a postman tour of G. The
Chinese postman problem (abbreviated to CPP) is to find a shortest postman tour of
G (see (51).
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The shortest cycle cover problem (abbreviated to SCC) is to find a family F
of cycles covering every edge of G such that the total length of F is as small as
possible.

CPP and SCC look like very similar to each other. But CPP is solvable by
a polynomial algorithm (Edmonds & Johnson [51), while SCC might be an NP-
complete problem (conjectured by Itai, Lipto, Papadimitriou and Rodeh [10]). For
the Petersen graph, the solution of CPP is of length 20, while the solution of SCC
is of length 21. If the length of the solution of CPP of a graph G equals the length
of the solution of SCC, we say CPP and SCC are equivalent for G (denoted byICPPI
= ISCCI).

A solution T of CPP in a graph G is called a Chinese postman tour of G.
Define an eulerian weight WT such that if the postman passes through an edge A
times then wT(e) = p. It is obvious that WT is a (1,2)-eulerian weight of G with the
least total weight. Actually, T is a Chinese postman tour if and only if WT is a
smallest (1,2)-eulerian weight of G. Let F be a shortest cycle cover of G. Define an
eulerian weight wF such that if an edge e is contained in p cycles of F then wF(e)=M.
Note that WF is an admissible eulerian weight of G, but it may not be smallest. And
a smallest (1,2)-eulerian weight WT of G may not have a cycle wT-cover because a
single edge is NOT considered as a cycle in the SCC problem. Consequently, ICPPI
•_ ISCCI for any 2-edge-connected graph, and ICPPI = ISCCI if and only if G is cycle
w-coverable for some smallest (1,2)-eulerian weight w. That motivated the
following.

Theorem 6 (Guan and Fleischner [9])
The Chinese postman problem and the shortest cycle cover problem are

equivalent for every 2-connected planar graph G.

By Theorem 3 and 4, we have the following generalization of Theorem 6.

Corollary 7 (Alspach, Goddyn, Zhang [2], [1] and Jackson, Zhang [12], [23])
The Chinese postman problem and the shortest cycle cover problem are

equivalent for a graph G if either G contains no Petersen-minor or G admits a
nowhere-zero 4-flow.

4. Compatible Cycle Decompositions of Eulerian Graphs

Let G=(V,E) be a graph. Let v be a vertex of G and let P(v) be a partition
of the set of all edges incident with v. An element of P(v) is called a forbidden part
at v. Let

P= U P(v)
ve- V(G)

which is called a set of forbidden parts of G. A graph G together with a set of
forbidden parts P is denoted by (GP).
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A cycle decomposition C of E(G) is compatible with a set P of forbidden

parts iflE(C) n P15 _1 for every Ce C and every PE P.

A cut T of G is called a bad cut of (GP) if there is a forbidden part P of P

such that 21Pn1 > int. It is obvious that a necessary condition for (GP) to have a

compatible cycle decomposition is that (G,P) has no bad cut.

Let G be a 2-connected graph. Construct an eulerian graph G" by replacing
each edge e of G by a pair of parallel edges {e', e"}. For a vertex v. let P(v) be the
set of all pairs of parallel edges {e', e") incident with v. It is obvious that G has a
CDC (cycle double cover) if and only if G" has a cycle decomposition compatible

with P = U P(v). The following theorem was proved by Fleischner and Frank
VE V(G)

(it is a generalization of a prior result in 16]).

Theorem 8 (Fleischner and Frank, [8])
Let G be a planar eulerian graph and P be a set offorbidden parts of G with

no bad cut. Then (GP) has a compatible cycle decomposition.

As we mentioned above, having no bad cut is a necessary condition for
(GP) to have a compatible cycle decomposition. However it is not a sufficient
condition because of the example (K5, P*), where K5 is the complete graph with 5
vertices (vo, vI .... v4) and

P* = {2-path vivjvk: either k=j+l and i=j-l, or k=j+2 and i=j-2, mod 5).
By Kuratowski's Theorem (see [31), K5 and K3 ,3 are the only two forbidden minors
for planar graphs. However the graph K3,3 is not an exception for the problem of
compatible cycle decomposition. A natural question is whether a graph containing
no Ks-minor has a compatible cycle decomposition for any set of forbidden parts
with no bad cut. By applying Theorem 3, we answered the question in the following
theorem (note, Theorem 9 is proved in a submitted paper)

Theorem 9 (Zhang [241)
Let G be an eulerian graph containing no K5-minor and let P be a set of

forbidden parts of G with no bad cut. Then (G.P) has a compatible cycle
decomposition.

Let L=eoe,...er., be an eulerian tour of an eulerian graph G. The following
set

PL ={eie1+,: i=O,...,r-1, modr}
is called a set of forbidden parts induced by L. The following well-known conjecture
was due to Sabidussi.

Conjecture 10 (Sabidussi, see [7])
Let G be an eulerian graph with minimum degree at least 4 and L be an

eulerian tour of G. Then (GPL) has a compatible cycle decomposition.
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By Theorem 9, this conjecture holds for all graphs containing no K5-minor.

S. Even Cycle Decompositions of Eulerian Graphs

Let G be an culerian graph. A cycle decomposition F of G is called even if
each cycle of F is of even length. A necessary condition for an eulerian graph to
have an even cycle decomposition is that each block of G must have an even number
of edges. However this necessary condition is not sufficient. For the complete graph
K5, every even cycle is of length four and IE(K 5 )1 = 10 is not a multiple of four.
The following theorem was proved by Seymour.

Theorem 11 (Seymour [ 18], or see [81)

Let G be a planar eulerian graph containing no odd block. Then G has an
even cycle decomposition.

Some ideas introduced in [8] and Theorem 9 are applied in the proof of the
following generalization of Theorem I I (note, Theorem 12 is proved in a submitted
paper).

Theorem 12 (Zhang [25])
Let G be an eulerian graph containing no Ks-minor and containing no odd

block. Then G has an even cycle decomposition.

The even cycle decomposition problem seems more flexible than the
problems about cycle w-covers and compatible cycle decompositions. The author
believes that K5 is the only counterexample to the even cycle decomposition
problem if the connectivity of an eulerian graph is sufficiently high.

Conjecture 13
Let G (G;Ks) be a 3-connected eulerian graph containing an even number of

edges. Then G has an even cycle decomposition.

Note, the connectivity cannot be reduced. Some eulerian graphs, which are
2-edge-connected or 2-connected and have no even cycle decomposition, are illustrated
in the following figures. (fig. 3)
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fig. 3

6. Strong Embedding

Let G be a graph and S be a compact connected 2-manifold without
boundary. The graph G is said to be embedded in the surface S if it can be drawn in
S so that edges intersect only at their common vertices. If G is embedded in a surface
S. then we regard G as a topological subspace of S and each component of S\G is
called a face of the embedding. An embedding of G in S is a strong-embedding if
every face is homeomorphic to the open disk and the boundary of eacl face is a cycle
of G. It is obvious that if G has a strong embedding in some surface, then the set of
boundaries of faces is a cycle double cover of G. Conversely, if F is a cycle double
cover of a graph G, then consider each cycle of F as the boundary of a disk; then
joining of these disks at their edges yields a surface S. Therefore the graph G is
strongly embedded on the surface S. But the surface S may not be a 2-manifold,
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because a neighborhood at some vertex of G may not be homeomorphic to a open
disk.

However, for a cubic graph G. the cycle doutle cover problem anti the
strong embedding problem are equivalent. The following result is a direct corollary
of Theorem 2.

Corollary 14 (AlspachandZhang {21)
Every 2-conne-,ed cubic graph containing no Petersen-minor has a strong

embedding on some 2-manifold surface.

With the aid of some previous results, Corollary 14 can be generalized for
graphs with no Ks-minor.

Theorem 151
Every 2-connected graph containing no K5-minor has a stror q embedding on

some 2-manifold surface.

Let G=(VE) be a 2-connected graph containing no Ks-minor. Since a graph
with a Pctersen-minor also has a K5 -minor, by Theorem 3 G has a cycle double
cover F . Let v *V,, a vertex of G. Let E(v) be the set of all edges incident with v.
Construct a simple graph F, for each vertex v of G as follows. The vertex set of Fv
is E(v) and two vertices e' and e" of Fv are adjacent in F, if and only if the edges e'
and e" of G are contained in some cycle C of F. Obviously, each component of Fv
is either a cycle or a single edge. (Note that if two edges e and e" incident with v are
contained in two cycles of F , the degrees of e' and e" are both one). Lek c(Fv) be the
number of components of the graph Fv. The following proposition is obvious.

Proposition
A graph G has a strong embedding if and only if C has a cycle double cover

F such that c(FJ)=lfor each vertex v of G.

Proof of Theorem 15

Let F be a cycle double cover of G such that Z c(FJ) is as small as
Vc V(G)

possible. Assume that c(r',) > I for some vertex z of G. Let EI, E2 ,....Er be the
components of the graph F., and Fj be the set of cycles ofF containing some edges

of Eu for p=l .. ,r. Construct a graph H such that V(II)=F and C', C"c F are

The proof of this theorem was completed in "The Graph Minor" - AMS
summer research workshop, Seattle, 1991. The author wishes to thank the co-chairs of
thu workshop for their invitation and financial support. The complete proof of the
theorem is included in this paper.
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adjacent in 11 if and only if IV(C') r' V(C")]\(z) * 0. Since G\(z} is connected, so
is /1. Let Q be a shortest path of i/ joining a pair from distinct Fu, and Fu,,. Let

Q = C'I...Cs and CIE Fu,. CsE Fg,. By the choice of Q,

( V(Cidj) () = 0 and i E(Ccj) n E(z) = 0.
1-2 z-2

Let G' be the subgraph of G induced by the set of all edges in U E(Ci).
i'l

Obviously, the degree of each vertex of G' is 2, 3 or 4, and G' is 2-connected.

Construct G" from G' by replacing every edge of G' contained in two
cycles of Q by two parallel edges. G" is therefore eulerian with dG,,(v) = 2 or 4 for
each vertex v of G". Define a set P of forbidden parts on G" as follows:

i) if dG"(v) = 2, let each forbidden part incident with v consist of
only one edge;

ii) if at, -(v) 4 and dG,(v) = 2, let a pair of parallel edges in G" be e'
and e", and another pair of parallel edges be e* and e**. Let {e', e"), (e*, e**) be the
forbidden parts incident with v;

iii) if dG',(v) = 4 and d,(v) = 3, let the two parallel edges in G" be e'
and e", and another two edges incident with v be e* and e**. Let (e', e"), fe* I and
(e**) be the forbidden parts incident with v;

iv) if dG-(v) = dG'(v) = 4, let el and eý be two edges incident with v
and contained in a cycle Ci of Q and e'7 and ej be two edges incident with v and
contained in a cycle Ci+l of Q. Case 1, the edges e?, eý, ey and eý are in the same
component of F,. Let the component of Fv containing eý, e 'l e7 and e2 be a cycle
eue ...ejej ...... ej. Then let (e.,ej)} and (eý,e•) be the forbidden parts incident with
v. Case 2, the edges {ef.eb}, {el,ej) are in two distinct components of F,. Then
let (eý. eý) and (e7, ef) be the forbidden parts incident with v.

Since G" and G" are 2-connected and each forbidden part contains at most
two edges, (G", P) does not have any bad cut. Since G contains no Ks-minor, so
does G". By Theorem 9, G" has a compatible cycle decomposition F*. Thus G has

a cycle double cover F' = (F\Q) U F*. Obviously,

TEhV(G) v E v(G

This is a contradiction and completes the proof of the theorem.
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7. Conjectures

7.1 A weak 4-flow conjecture

The following conjecture proposed by Tutte is a well-known refinement of
the 4-color problem.

4-flow Conjecture (Tutte 1211, or see [ 141, [221)
Every 2-edge-connected graph containing no Petersen-minor admits a

nowhere-zero 4-flow.

Though the 4-color problem has been verified by computer searching, this
conjecture is still open. The best known result, due to Jaeger 1131, is that every 4-
edge-connected graph admits a nowhere-zero 4-flow. And it is also known that the 4-
flow conjecture is equivalent to the following problem.

4-flow Conjecture (the cven-subgraph-cover version)
Every 2-edge-connected graph containing no Petersen-minor has a double

cover F consisting of at most 4 even subgraphs.

An even graph !I is a graph in which the degree of every vertex is even.
Obviously, an even graph is a union of several edge-disjoint cycles.

The author would like to propose the following problem, which is similar
to the weak 3-flow conjecture (1141).

Conjecture 16 (Weak 4-flow conjecture)
There is an integer k such that every 2-edge-connected graph containing no

Petersen-minor has a cycle double cover consisting at most k even subgraphs.

Note that a similar conjecture (the 5-cycle double cover conjecture) proposed
by Celmins ([41) is closely related to the 5-flow conjecture and is much stronger than
the cycle double cover conjecture. But it is not related to the 4-flow conjecture which
concerns graphs with no Petersen-minor. One might hope that Theorem 3 would be
helpful in proving Conjecture 16.

7.2 Repeated edges in a shortest cycle cover

A cycle cover F of a 2-edge-connected graph G is a family of cycles such
that each edge of G is contained in some cycle of F. Let IF be the least integer such
that each edge of G is contained in at most tF cycles of F. Denote

tcC(G) = min (tF: for every cycle cover F of G)
and

tSCC(G) = min (tF: for every shortest cycle cover F of G).

The cycle double cover conjecture is equivalent to the problem that tCc(G)
< 2 for every 2-edge-connected graph. And the 6-flow theorem (Seymour, [191) and
the 8-flow theorem (Jaeger, [151) imply that tcc(G) <_3 for every 2-edge-connected
graph. By Theorem 3 and 4, every 2-edge-connected graph G containing no Petersen-
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minor or admitting a nowhere-zero 4-flow has the property that tscc(G) i5 2.
However, tSCC(P10) = 2 for the Petersen graph iLself. Thus, it seems that the
appearance of a Petersen-minor may not raise tSCC. The author wishes to propose
the following conjecture.

Conjecture 17
For any 3-connected graph G, t5cc(G) •_2.

Note that the connectivity in the conjecture cannot be reduced since the 2-connected
graph in fig. 4 has tSCC = 3.

fig. 4

Conjecture 18 (a weak version of Conjecture 17)
There is an integer k such that for every 3-connected graph G, tSCC(G) _ k.

REMARKS.
According to the Robertson-Seymour Theory, finding a given graph minor

is polynomially solvable. Recently, McGuinness and Kdzdy ([16]) found a practical
algorithm for finding a Ks-minor, which takes time 0(n2 ) for a graph of order n.

Recently, N. Robertson (personal communication) suggested an alternative
proof of Theorem 15. His proof is based on Wagner's Theorem.
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Cones, Lattices and Hilbert Bases of Circuits
and Perfect Matchings

LUIS A. GODDYN

ABSTRACT. There have been a number of results and conjectures regarding
the cone, the lattice and the integer cone generated by the (real-valued
characteristic functions of) circuits in a binary matroid. In all three cases,
one easily formulates necessary conditions for a weight vector to belong to
the set in question. Families of matroids for which such necessary~condi-
tions are sufficient have been determined by Seymour, Lovfiss and Seress;

Alspach, Fu, Goddyn and Zhang, respectively. However, circuits of ma-
troids are far from being well understood. Perhaps the most daunting (and
important) problem of this type is to determine whether the circuits of a
matroid form a Hilbert basis. That is, for which matroids does the integer
cone coincide with those vectors which belong to both the cone and the lat-
tice? Additionally, all of the above questions have been asked with regard
to perfect matchings in graphs.

We present a survey of this topic for circuits in matroids, and also for
perfect matchings in graphs. There are some striking similarities, especially
with regard to the role that Petersen's graph plays in both of these subjects.
A possible explanation is that much of the theory of perfect matchings is
captured by the circuits of certain 1-element extensions of graphic matroids
called grafts. For example, a possible extension to the class of grafts of the
following result would imply the Four-color theorem: The circuits of a
graph form a Hilbert basis if and only if Ike graph has no Petersen minor.

1. Introduction and Notations

A fruitful setting for studying a combinatorially defined collection of subsets
of a ground set E is to consider the corresponding collection of real-valued char-
acteristic functions. This observation underlies much of the theory of polyhedral
combinatorics and integer programming. Our aim is to compare the collection
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of circuits in a matroid with the collection of perfect matchings in a graph by
considering properties of their characteristic functions.

For S C E we denote by Xs the {O, 1}-characteristic vector of S in QE. For
any collection S of such subsets of E, we define the linear hull, cone, lattice and
integer cone of S as follows.

Lin.Hull (S) {-asXs as E Q}
SES

Cone(S) {E=sX cis EQ>o}
SES

Lat(S) E Z sxs asEZ)
SE S

Int.Cone (S) E asXsas E Z>0}
SES

We have the following four containments.

Int.Cone(S) C Cone(S) C Lin.Hul (S).
C Lat(S) C

Throughout this paper S shall be either the collection C = C(M) of circuits in a
matroid M = (E, C) on the ground set E, or the collection of perfect matchings
(1-factors) M = M(G) in a graph G = (V, E).

It can be argued that the integer cone is the most interesting of the four sets
defined above. A vector p belongs to Int.Cone (S) if and only if there is a list
of subsets in S such that each e E E belongs to precisely p(e) members of the
the list. Such a list is often called a cover of the weighted set (E, p). If p is the
constant unit vector 1, then a cover of (E, p) is a decomposition of E into subsets
from S. A cover of (E, 2) is often called a double cover of E.

When S = C, we are in the area of circuit covers and circuit decompositions,
where numerous papers [1, 2, 4, 5, 11, 12, 13, 15, 18, 20, 22, 25, 28, 29, 30,
43, 51, 52, 55, 57] have been written, especially for graphic matroids. Many of
these papers are concerned with circuit covers which have additional conditions
on parameters such as the number of circuits in the cover, or the total length of
the circuits. Here, we are concerned only with the existence of circuit covers of
fixed vectors p.

Where S = M, we are studying perfect matching covers of graphs. The case
p = 1 is concerned with 1-factorizations of graphs, where we have the classical
Four-color Theorem and the stronger 4-flow conjecture of Tutte [53]. For p = 2
we have perfect matching double covers with unsolved conjectures of Fulkerson
[16] and Seymour (47].

Although combinatorially less interesting, the cone and the lattice of S are
generally easier to determine than the integer cone. For example, the both the
cone and the lattice generated by (characteristic vectors of) perfect matchings in
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a graph have been well characterized [9, 34], whereas it is NP-hard to determine
whether 1 belongs to the integer cone of perfect matchings of a cubic graph [21].
The study of the cone and the lattice is further motivated by the formula

(1) Int.Cone (S) C Cone (s) n Lat (S)

which provides necessary conditions for a vector p to belong to the integer cone
of S.

Understandably, it is of special interest to know when equality holds in (1).

DEFINITION 1.1. A set of vectors S for which equality holds in (1) is called
a Hilbert basis.

This concept is closely related to total dual integrality, and has been studied
by various authors [17, 6, 37, 38]. In our setting, the Hilbert basis problem is
to determine classes of matroids and graphs for which C and M form Hilbert
bases. This problem will be addressed in Sections 3 and 6, respectively.

It must be emphasised that the cone and the lattice of S are worthy of inde-
pendent study. For example, the characterizations of both the cone [9] and the
lattice [34] of perfect matchings.are landmarks in graph theory. Both the cone
and the lattice of circuits in a graph have simpler descriptions [43] than those
of perfect matchings. However, they easily become intractable for more general
classes of matroids. For example, determining whether a vector belongs to the
cone of circuits in a cographic matroid is NP-complete [311.

Those who work with either circuits or perfect matchings agree that Petersen's
graph plays an anomalous role. (This is particularly evident when considering
the Hilbert basis problem.) This observation suggests that these two areas may
be related. In fact, connections between circuits and perfect matchings in graphs
are already well established. For example, the Chinese Postman problem [10]
is closely related to both matchings and Euler tours. As another example, the
Four-color theorem is equivalent to the statement that any bridgeless planar
graph is the union of two subgraphs, each of which is the edge-disjoint union of
circuits. One can not say, however, that such connections satisfactorily explain
the predominating role of Petersen's graph.

In Section 7, we describe another connection between circuits and perfect
matchings, which is expressed via certain 1-element extensions of graphic ma-
troids called grafts. It is through the integer cone of circuits in grafts that we
see a possible explanation of the role of Petersen's graph in the theory of circuits
and perfect matchings.

We shall assume basic familiarity with graphs and matroids as in [3] and [541.
Thus a bridge or coloop of a matroid M = (E, C) is any element contained in no
circuit. Two non-bridge elements are in series or coparallel if no circuit contains
exactly one of them. Recall that "coparallel" is an equivalence relation on E. A
bond or cocircuit is a minimal subset of E intersecting all bases of M. The dual,
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M* of M has ground set E and its circuits are the bonds of M. If G = (V, E) is a
graph then M(G) denotes the matroid on E(G) whose circuits are the polygons
in G. For binary matroids (including graphs) a cycle is any (element-) disjoint
union of circuits in M, including the empty cycle. Thus a cycle in a graph is
the edge set of any subgraph whose vertices all have even degree. A matroid is
binary if it is isomorphic to a set of vectors with linear dependence over GF(2)
or, equivalently, if it has no U4-minor (that is, no minor isomorphic to Ut,
the uniform matroid of rank 2 on 4 elements). The cycles of a binary matroid
under the eymmetric difference operator A form a vector space of dimension
IEI - rank(M) in GF(2)E called the cycle space of M. Dually, parallel elements,
loops and cocycles in M are are defined to be coparallel elements, coloops and
cycles in M*, respectably. A cocycle is sometimes called a cut.

Where convenient, we identify a subset of E with its characteristic vector,
a graph G with its matroid M(G), and a subset of edges of a graph with the
subgraph it induces.

2. The Cone and Lattice of Circuits

Although there is no known non-trivial characterization of Cone (C), Lat (C),
and Int.Cone (C) for general matroids, the linear hull of circuits has an easy
description. Any vector in Lin.Hull (C) must clearly be zero on bridges and
constant on coparallel classes. In fact, these two conditions characterize the
linear hull.

PROPOSITION 2.1. For any matroid M = (E, C), Lin.Hull (C) = {p E QE:

p(e) = 0 for any bridge e, and p(f) = p(g) for f, g coparallUl }.

PROOF. Let [e] denote the set of elements which are coparallel with e. It is
enough to show that, for any element e in a bridgeless matroid, X[e] E Lin.Hull (C).
We use the following observation of Seymour, [44, (3.2)].

OBSERVATION 2.2. If M is bridgeless then 1 E Cone (C).

(Here 1 = xE is the vector of ones.) As M is bridgeless, so is M\[e], hence
XE, XE\[Ie C Cone (C). Subtracting, we have X[e] E Lin.Hull (C). 0

We now examine the cone of circuits. Since no circuit in a matroid meets a
bond in exactly one element, any weight vector p E Cone (C) must be balanced.
That is, no element in M has more than half the total weight of any bond
containing it. Seymour [44] has characterized those matroids for which the cone
of circuits is precisely the set of non-negative balanced vectors.

THEOREM 2.3. For any matroid M = (E, C), Cone (C) C {p E Q>E : p(e) <
p(B\e) for all e E B, for all bonds B}, with equality if and only if M has no
minor isomorphic to any of U.4, M*(Ks), F., or Rio. 0



CONES, LATTICES, AND HILBERT BASES 423

(As usual, p(S) denotes 3eEsp(e) for any S C E.) A matroid for which
equality holds in Theorem 2.3 is said to have the Sums of Circuits Property. In
particular, all graphs have the Sums of Circuits Property [43]. It follows from
Theorem 2.3 (and is not difficult to show directly) that the Sums of Circuits
Property is preserved under taking minors. To see that each of the four ob-
structing minors (see [44] or [48] for their definitions) do not have this property
consider the following four weight vectors p E QE>O.

U2:: p(eo) = 2 for some fixed e0 E E and p(e) = 1 for the remaining 3
elements.

M*(Ks):: p(e) = 1 for all edges e in some fixed subgraph of K5 isomor-
phic to K 2,3 and p(e) = 2 for the remaining 4 edges.

F*:: p(e) = 1 for all elements e in some fixed 4-circuit and p(e) = 2 for
the remaining 3 elements.

R 10 :: p(e) = 3 for all elements e in some fixed 3-subset of elements not
contained in any 4-circuit, and p(e) = 1 for the remaining 7 elements.

One easily checks that each of these vectors is balanced. To show that they
are not in Cone (C) we use Farkas' Lemma. That is, we describe a weight vector
s E QE which has positive inner product with p, but for which each circuit in the
matroid has non-positive weight. For U4' we take s(eo) = 2 and s(e) = -1 for
the remaining 3 elements. In each of the other three examples we take s(e) = -1
if p(e) = 1 and s(e) = 1 otherwise.

It appears unlikely that there is a good description of Cone (C), even for
cographic matroids, as it is known [31] that the membership problem for the
cone of bonds in K,• is NP-hard. Some work [81 has been done toward finding
facets of this cone.

Likewise, the lattice of circuits appears to be difficult to characterize for gen-
eral matroids. Indeed it is not easy to imagine non-trivial necessary conditions
for a vector to belong to Lat (C). The situation is better, although not yet
settled, for binary matroids.

In a binary matroid M, any circuit intersects any bond in an even number of
elements. Thus for a weight vector to belong to Lat (C), it is necessary that p be
eulerian, that is, p must be integer-valued and each bond in M must have even
total weight. This condition turns out to be sufficient for an important class of
binary matroids.

PROPOSITION 2.4. For any binary matroid M = (E, C), Lat(C) ! Lin.Hull(C)
n{p E ZE- p(B) is even for all bonds B), with equality if M has no F -minor.

PROOF. Assume that M has no F.*-minor and that it contains neither bridges
nor two elements in series. Let p be an integer weight vector such that each bond
has even weight. The set F of edges having odd weight belongs to the cycle space
of M since F is orthogonal to every bond (over GF(2)). It suffices to show that
2X{el E Lat (C) for any e E E, since this would imply that the even-valued vector
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p+xF - and hence p - belongs to Lat (C). To this end, we need only find two
circuits C1, C2 such that C1 f C2 = {e}, whereby 2X{e} = Xc, + XC2 - XcIc2.

The existence of C 1, C 2 in bridgeless binary matroids with no F7* minors was
established by Cunningham [7]. This also follows from a theorem of Seymour
[45] which states that all binary matroids with no F.*-minor have the Integer
Max-Flow Min-Cut Property. n

A matroid for which equality holds in Proposition 2.4 is said to have the
Lattice of Circuits Property. In particular, all graphic and cographic matroids,
and indeed all regular matroids have the Lattice of Circuits Property, as do
all matroids with the Sums of Circuits Property. Unlike the Sums of Circuits
Property, the class of matroids with the Lattice of Circuits Property is not is
not closed under taking minors (although it is closed under element-contraction).
For example, although F.• does not have the Lattice of Circuits Property, exactly
one of the two 1-element extensions of F.* does.

Recently, Lovisz and Seress [351 have characterized the class of binary ma-
troids with the Lattice of Circuits Property. We shall state their result without
proof. We need a definition. In [44] Seymour defines, for k = 1,2, 3, the k-sum of
two binary matroids M1 , M2 to be the matroid on E(M1 )AE(M2) whose circuits
are all subsets of the form C1AC 2 where C, E C(Mi), i = 1,2. In particular,
k = 1 if E(M 1 ) n E(M 2) = 0; k = 2 if E(MI) n E(M2 ) consists of a single
element which is not a loop in each Mi; and k = 3 if E(M 1 ) nE(M2 ) is a circuit
of cardinality 3 in each Mi.

DEFINITION 2.5. Any matroid which can be obtained from copies of the Fano
plane F7 via 1-, 2- and 3-sums shall be called a Fano-cycle.

THEOREM 2.6. [35] A binary matroid M has the Lattice of Circuits Property
if and only if the dual matroid M* contains no Fano-cycle as a submatroid. 0

EXAMPLE 2.7. The affine geometry AG(2, 3) is a Fano-cycle of cardinality 8,
since it is the 3-sum of two Fano planes. As AG(2, 3) is self dual, Theorem 2.6
asserts that AG(2, 3)* 5- AG(2,3) does not have the Lattice of Circuits Property.
Indeed this follows directly from the fact all circuits in AG(2, 3) have cardinality
four.

In general, the lattice of circuits in a binary matroid can be arbitrarily "sparse".

EXAMPLE 2.8. The binary projective geometry of dimension m, PG(2, m),
is the binary matroid represented by the 2m+l - 1 non-zero binary (m + 1)-
tuples. For example, PG(2,2) c F*. For 0 < k < m, a k-flat is any subma-
troid of PG(2, rn) which is isomorphic to PG(2, k). The cocircuits of PG(2,m)
are precisely the complements of its (m - 1)-flats, and thus have cardinality
2'. It follows that any vector in lattice of cocircuits of PG(2, m) (that is,
Lat(C(PG(2, m)*))has total weight divisible by 2'. In fact, p E Lat (C( PG(2,m)*)
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if and only if p(S) is divisible by 2 k, for every k-fiat S of PG(2, m), 0 < k < m
(35].

3. Hilbert Bases of Circuits

The circuit cover problem is to determine whether a given weight vector be-
longs to the integer cone of circuits of a given matroid. We are interested in
finding classes of matroids for which this the circuit cover problem can be solved.
Having seen that the cone and the lattice of circuits are often characterizable,
we are naturally led to the Hilbert basis problem for circuits (recall Definition
1.1). That is, we would like to determine those matroids M for which (M,p) has
a circuit cover for all p e Cone (C) n Lat (C).

The circuits of a matroid do not always form a Hilbert basis.

EXAMPLE 3.1. Let Pio denote Petersen's graph and let plo denote the weight
vector which takes the value 2 on some fixed 1-factor of Plo, and 1 on the
complementary 2-factor. One easily checks that plo is balanced and eulerian,
and hence belongs to Cone (C) n Lat (C), by Theorems 2.3 and 2.4. However,
plo V Int.Cone (C) since plo - xC V Cone (C), for all C E C.

Every matroid for which we know that C does not form a Hilbert basis contains
Petersen's graph as a minor. On this flimsy evidence one might propose the
following.

CONJECTURE 3.2. If a matroid contains no P10-minor then C forms a Hilbert
basis.

As we shall see, progress has been made toward this conjecture, but mostly
for graphs and other binary matroids. We direct the reader's attention to the
strikingly similar Conjecture 6.6 regarding perfect matchings in graphs.

A basic problem with dealing with Conjecture 3.2 is that we do not know
Cone (C) for general matroids. Thus it makes sense restrict our attention to
matroids for which this cone has a nice description, namely, the matroids with
the Sums of Circuits Property. Recall from Theorems 2.3 and 2.4 that, for such
matroids, the cone (lattice) of circuits is precisely the set of balanced (eulerian)
weight vectors. In 1979, Seymour verified Conjecture 3.2 for planar graphs by
showing that every balanced, eulerian edge-weighted planar graph has a circuit
cover. In 1981, Seymour [44] characterized the matroids with the Sums of Cir-
cuits Property and, in the same paper, proposed that Conjecture 3.2 holds for
such matroids. Recently, Alspach, Goddyn and Zhang [1], shed Seymour's pla-
narity restriction, and verified Conjecture 3.2 for the class of graphic matroids.
Using this result, and Seymour's matroid decomposition theorems, Fu and God-
dyn [15] have since shown that the conjecture holds for all matroids with the
Sums of Circuits Property. We state this result in an alternate form.

We say that a matroid has the Circuit Cover Property if the integer cone
of circuits is precisely the set of balanced and eulerian weight vectors. Thus,
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any matroid with the Sums of Circui' , Property has the Circuit Cover Property
exactly when its circuits form a Hilbert basis.

THEOREM 3.3. A matroid has the Circu;f "?over Property if and only if it has
no minor isomorphic to any of U4, M*(Ks), F.', Rio, M(P1 o). EJ

Perhaps the most relevant aspect of Theorem 3.3 is that planarity restrictions
on graphs have been dropped. The literature abounds with graph properties
which are known to hold for planar graphs, and which are conjectured to hold
for wider classes of graphs. Such problems include classical "nuts" such as the
circuit double cover conjecture and Tutte's Nowhere-zero flow conjectures. Thus
it is of interest whenever a planarity restriction can be dropped (or relaxed)
from the hypothesis of a known theorem. For example, Theorem 3.3 has already
been used to extend results involving Even Circuit Decompositions [57] and
Compatible Circuit Decompositions of Eulerian graphs [56] from the class of
planar graphs to the class of graphs with no K5-minor. We refer the interested
reader to [1] for more applications Theorem 3.3.

Little is known about the integer cone of circuits in non-binary matroids. As
observed by Seb6 [38], the circuits of uniform matroids U,, do indeed form a
Hilbert basis. This follows from the fact that the circuits of Uk are precisely the
bases of U,,+' (when k < n), and from the following consequence of Edmonds'
matroid intersection theorem.

THEOREM 3.4. The bases of any matroid form -.. bert basis. 0

4. Range-Restricted Circuit Covers

Perhaps we are asking too much of matroids when we require their circuits
to form Hilbert bases. One way to weaken the Hilbert-basis property is to
ask whether some restricted subset of Cone (C) n Lat (C) is contained within
Int.Cone (C). Our intention is to determine the point at which non-Hilbert
matroids such a M(Plo) cease to behave anomalously. In this way we obtain a
more sensitive test of "how bad" such anomalous matroids really are.

A notorious problem of this type is the circuit double cover conjecture.

CONJECTURE 4.1. [50, 43] For any bridgeless graph, 2 E Int.Cone (C).

Of course, the "bridgeless" condition is only there to assure the membership
of 2 in the cone of circuits. We refer the interested reader to [25, 18, 19, 52,
30, 4, 5]. The circuit double cover conjecture is perhaps the most interesting of
the uniform circuit cover problems, where the weight vector p is required to be
constant on E. For integers greater than 2, the uniform c:reiit cover problem is
has been completely solved for a large cla-. of binary matroids, which includes
all graphs.

PROPOSITION 4.2. For any binary matroid with no F.*-minor and for any
integer r 7 2, r E Int.Cone (C) if and only if r E Cone (C) n Lat (C).
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PROOF. The "only if" direction is trivial.
Conveisely, suppose that r is odd. For r to be in the lattice of circuits of M, it

is necessdry that all cocircuits in M have even cardinality. That is, M is eulerian,
and tht-s E(M) is the disjoihL union of circuits. That is, 1 E Int.Cone (C) and
so r E Int.Cone (C). Note that, for odd r, the statement of the theorem holds
for all binary matroids.

For even r, we note that r E Cone (C) if and only if the matroid Al is
bridgeless. Using matroid decompositions, Jamshy and Tarsi [28] showed that
r E Int.Cone (C) for any bridgeless binary matroid with no F7*-minor if and
only if the same holds for any bridgeless graph. It suffices to prove that 4, 6 E
Int.Cone (C) for any bridgeless graph, since every larger even integer is in the
integer cone generated by {4,6}. Indeed, Jaeger [24] proved the case r = 4
and Fan [12] proved the case r = 6. Both of these results are consequences cr
Seymour's 6-flow theorem for bridgeless graphs [46]. 0

Incidently, Jamshy and Tarsi [28] also show that if the circuit double cover
conjecture is true, then 2 E Int.Cone (C) for any bridgeless binary matroid with
no F•-minor.

Little is knovn about uniform circuit covers of general matroids. The obvious
necessary conditions are that the matroid be bridgeless and that the vector in
question belong to 'he lattice oi ,ircuits. The following example of M. Laurent
[33] shows that these conditions do not suffice.

EXAMPLE 4.3. Let M denote the matroid whose circuits are the even edge
cuts of K12 (Using the terminology of Section 7, M is 4he matroid obtained
by d, leting the element r from the dual of the graft (J(12)v). We have fhat
2 E Lat (C), but 2 V Int.Cone (C).

It would be interesting to characterize those matroids for which membership
in Lat (C) suffices for the uniform circuit cover problem.

We generalize to non-uniform circuit covers by allowing the range of the weight
vector to take two or more tixed values. Our general aim is to classify those ranges
(subsets of positi-,e integers) for which we have a nice characterization such as
in Proposition 4.2. For sake of brevity, we shall confine most of our discussion
to graphic matroids.

DEFINITION 4.4. Let i- be a set of positive integers. We say that R is a good
range (for the class of graphs) if for any graph G = (V, E) and any weight vector
p E RE, p E Int.Cone (C) if and only if p E Cone (C) n Lat (C). A range that
is not good is said to be bad.

In view of Theorems 2.3 and 2.4, a range R is good for the class of graphs if
every balanced, eulerian weighted graph (G,p) with p E RE has a circuit cover.
If R is good thei so is any subset of R. Example 3.1 shows thatf {1,2} is a bad
range for graphs. More bad ranges can be obtained by modifying this example.
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PROPOSITION 4.5. If {1,k} C R, for some k > 2, then R is bad for the class
of graphs.

PROOF. I thank P. Seymour for the following construction. Let/ F denote a
fixed 1-factor in Petersen's graph P10. For any k > 2, let P10(k denote the graph
obtained from P10 by replaring each edge in F with k - 1 parallel edges. We
consider the weight vector p,, E {1,k}E which takes the value k on exactly
one of the k - 1 edges in each of the five parallel classes defined above, and
which takes the value 1 elsewhere. One easily checks that p( k0 ) is balanced.
As any circuit, cover of (P('),p()) would have to use k - 2 digons from each
parallel class, it follows from Example 3.1 (which is the case k = 2) that plj0 €
Int.Cone (C( P0e).[

If some range containing 2 is good, then in particular, the circuit double cover
conjecture is true. This gives us a way of strengthening the circuit double cover
conjecture. For example, Seymour [44, (16.6)] proposed the following.

CONJECTURE 4.6. The set of positive even integers is good for the class of
;raphs.

On the other hand, extending a range does not always affect it goodness.

PROPOSITION 4.7. Let R be a range of even integers and let r E R be such
that r > maxR/2. Then for any odd integerk > r, RtU{k} is good (for the class
of graphs) if and only if R is good.

PROOF. The "only if" part is trivial. Conversely, suppose that R is good and
let p' E RME n Cone (C) fl Lat (C), where R' := R U {k}. As p' is eulerian, the
set F of elements having weight k form a cycle. Clearly, p := p' - (k - r)XF

belongs to RE and is eulerian. We claim that p is balanced. Suppose not.
Then for some cocircuit B and some e E B we have p(e) > p(B\{e}) whereas
p'(e) < p'(B\{e}). As IF n Bj is even, this implies IF n B\{e)I > 2 and e V F.
From this we have maxR > p(e) > p(B\{e}) > 2r, contradicting the hypothesis
and proving the claim. Thus, p E Int.Cone (C). Since XF E Int.Cone (C), we
have p' E Int.Cone (C). 0

In particular, {2, 3} is good if and only if the circuit double conjecture is true.
We recall that the range {1,2} is bad. For larger consecutive pairs we have the
following.

PROPOSITION 4.8. For the class of graphs, the range {k, k + 1} is good for all
k >3.

PROOF. When k is even, this follows from Propositions 4.2 and 4.7. It suffices
to prove the cases k = 3 and k = 5, since 4 E Int.Cone (C) for any bridgeless
graph. For these two cases we use refined versions of the results of Jaeger and Fan
mentioned in the proof of Proposition 4.2. Jaeger [24] actually proved that any
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bridgeless graph contains 7 cycles C1 ,... , C7 such that every edge is contained in
exactly 4 of them. Ifp C {3,44}EnCone (C(G))nLat (C(G)) then G is bridgeless
and the set F of edges having weight 3 form a cycle. We consider the 7 cycles of
the form FACi. Since 7 = 3 + 4 one easily sees that any edge in P is contained
in exactly 3 of these cycles and that any edge in E\F is contained in exactly 4
of them. As each cycle decomposes into circuits, we have p E lnt.Cone (C).

The proof for k = 5 is exactly analogous, using the fact 11 = 5 + 6 and Fan's
observation [12] that any bridgeless graph contains 11 cycles such thet ever)
edge is contained in exactly 6 of them (actually, Fan shows that only 10 cycles
are needed, but we may take the empty cycle to be the eleventh). 5

We remark that the this proof works equally well for any regular matroid
which has a nowhere-zero 6-flow.

Little more is known about good and bad ranges. Indeed, it is frightfully easy
to pose difficult conjectures. One which is most likely to be true, but for which
I know of no proof is the following.

CONJECTURE 4.9. 'or some k > 2, the range {k, k + 2} is good for the class
of graphs.

This conjecture has a very different flavor between odd and even values of k.
At the other extreme, the boldest conjecture of this type that one can possibly
make is the converse of Proposition 4.5.

CONJECTURE 4.10. A range R is good (for the class of graphs) if and only if
{1, k} 9 R, for all k > 2.

The following table summarizes results regarding good and bad ranges for the
class of graphic matroids.

Range Status Comments
{2} Good? Conjecture 4.1

{k}, k - 2 Good Proposition 4.2
{1, k}, k > 2 Bad Proposition 4.5

{2, 3} Good? Equivalent to Conjecture 4.1
{k, k + 1}, k > 3 Good Proposition 4.8
{k, k + 2}, k > 2 Good? Conjecture 4.9
{2k: k G Z2>0} Good?? Conjecture 4.6

Z7>o\{1} Good???? Conjecture 4.10
Perhaps some study into good and bad ranges of cographic matroids is war-

ranted. Here we suspect that all ranges are good for this class of matroids.

CONJECTURE 4.11. The bonds of any graph form a Hilbert basis.

As M(P1 0 ) is not cographic, this conjecture would follow immediately from
Conjecture 3.2. However, this has only yet been verified for the class of cographic
matroids with no M*(Ks)-minor [15]. Again, the major problem is our lack of
knowledge about the cone of cuts in graphs (8]. In contrast to the graphic
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matroids, it is easy to show that any range of cardinality 1 is good for the class
of cographic matroids (see [281). On the other hand, one cannot use flow theory
to prove statements such as Proposition 4.8 for the class of cographic matroids,
since the chromatic number (which is the dual flow riti.nicr) of graphs is not
bounded.

We conclude this section by pointing out that I know of no reason why Conjec-
ture 4.10 cannot be extended to the class of all matroids. Further, it is possible
to formulate a common generalization to the bold Conjectures 3.2 and 4.10, al-
though it is probably imprudent to speculate further on the matter. Still, it
would be very interesting to find any example of a matroid with a weight vector
in Cone (C) n Lat (C)\Int.Cone (C) which is not based on Petersen's graph (as
in Proposition 4.5).

5. Cone and Lattice of Perfect Matchings

Let M denote the set of perfect matchings (as subsets of edges) in a graph G =
(V, E). As with circuits in graphs, each of Lin.Hull (M), Cone (M) and Lat (M)
has been well characterized, and there exist polynomial-time membership tests
for these three subsets of RE. These results are more complicated than the
corresponding ones for circuits, and we shall only state them roughly. We refer
the reader to [9, 34] for further details.

One begins by "preprocessing" the fixed graph G. First, those edges of G
which are contained in no perfect matchings are deleted. Then we perform a
brick decomposition on the resulting graph as follows. A tight cut is a edge cut
which intersects each perfect matching in exactly one edge. For example, any
trivial edge cut (that is, an edge cut in which one of its two shores contains a
single vertex) is tight. Any non-trivial tight cut yields two proper minors of G
obtained by contracting each of the shores of the cut. In a brick decomposition,
non-trivial tight cuts are recursively found in each of these minors. A similar
reduction is performed whenever one of the minors has a vertex-cut of cardinality
less than three. Any multiple edge occurring in a minor is replaced with a single
edge. (If G is edge-weighted then this new edge is assigned the total weight of
the parallel class it replaces.) The result of a brick decomposition of G is a list of
simple 3-connected non-bipartite minors which contain no non-trivial tight cuts.
Each member of this list is called a brick of G. It turns out that this list of bricks
is independent (up to re-ordering and isomorphism) of the particular tight-cut
decomposition chosen for G. Lovisz [34] points out that a list of bricks for G
can be obtained in polynomial time.

THEOREM 5.1. For any graph G containing an even number of vertices,
Lin.Hull (M) = {p E QE : 3r E Q, p(B) = r, for all trivial cuts and tight cuts
B encountered during a brick decomposition of G}. 0l

The cone of perfect matchings follows from Edmonds' well known character-
ization [9] of the convex hull. An odd cut is an edge cut such that both of its
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shores contain an odd number of vertices.

THEOREM 5.2. For any graph G containing an even number of vertices,
Cone (M) = {p E Q• 0 : 3r E Q, p(PA) = r., for all trivial cut., B, and p(B') >_ r
for all odd cuts B'}. E

The lattice of perfect matchings was characterized by Lov~sz [34]. Here,
bricks of G which are isomorphic to Petersen's graph P10 play a central role. We
recall that any brick resulting from a brick decomposition of a weighted graph
(G,p) naturally inherits a weight function, which we shall also denote by p.

THEOREM 5.3. For any graph G containing an even number of vertices,
Lat (M) = Lin.Hull (M)fl {p E ZE : p(C 5 ) is even, for every circuit C5 of length
five contained in any brick of G isomorphic to P10}. 0

In particular, the lattice of perfect matchings is just the set of integer vectors
contained in the linear hull, provided that G has no P10-minors. This fact was
observed for cubic graphs by Seymour [47]. The necessity of the condition on
p(Cs) in Theorem 5.3 follows from the observation that each of the 6 'perfect
matchings of P 10 intersect C5 in an even number of edges.

In summary, given any weighted graph (G, p), one can determine in polynomial
time whether p belongs to the cone, the lattice or the linear hull of perfect
matchings in G.

6. Perfect Matching Covers

Some well-known results and conjectures address the Perfect Matching Cover
Problem, the problem of determining whether a particular integer vector belongs
to Int.Cone (M). We recall the necessary condition that the vector in question
belongs to Cone (M) n Lat (M), and that M(G) is said to form a Hilbert basis
if this condition is also sufficient.

For uniform vectors k with k > 0, k E Cone (M) if and only if, for some r> 1,
G is an r-regular graph with an even number of vertices such that all odd cuts
have size at least r. Following Seymour [47], we call such graphs r-graphs. For
example, a cubic graph is a 3-graph if and only if it is bridgeless. We note that,
for any r-graph, 2 E Lat (M). Furthermore, if an r-graph has no P10-brick then
1 E Lat (M). We also note that 1 E Int.Cone (M) if and only if the graph has
a 1-factorization.

Unlike circuit covers, Perfect Matching Cover Problems can often be reduced
to problems regarding uniform weight vectors by adding parallel edges to graphs.
For example, we have the following.

OBSERVATION 6.1. Let 1 be any family of graphs containing no Pio-minors,
and which closed under duplicating edges. Then M(G) forms a Hilbert basis for
every G E g if and only if 1 E Int.Cone (M(H)) for every r-graph H E G.
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PROOF. The "only if" direction follows immediately from the fact that I E
Cone (M(1H)) n Lat (M(H)) for any r-graph H E g. For the converse, let p E
Cone(M(G)) nl Lat(M(G)) where G E g. In (G,p), every trivial bond has
weight r for some r E 2>0. Let H be the r-regular graph obtained from G
by replacing each edge e by p(e) parallel edges. As G E 9, so is H. Since

p E Cone (M(G)), I E Cone (M(H)) so H is an r-graph. By hypothesis, 1 E
Int.Cone(M(H')). As any perfect matching in H corresponds to one in G, we
have p E Int.Cone(M(G)). 0

Much of the work that has been done regarding perfect matching covers of
r-graphs deals with the case r = 3. Indeed, Seymour [47, (3.5)1 has proposed
that this is really the only interesting case.

CONJECTURE 6.2. If r > 4 then any r-graph has a perfect matching whose
deletion yields an (r - 1)-graph.

This conjecture is not yet known to be true for any r > 4.
Using the above terminology, we list some known results and conjectures

regarding perfect matchings

THEOREM 6.3. (Four-color theorem) For any planar 3-graph, 1 E Int.Cone (M).
o

I do not know the origin of the following natural generalization, though it is
implied by Conjecture (7.3) in [49].

CONJECTURE 6.4. For any planar r-graph with r > 0, 1 E Int.Cone (M).

The case r = 4 of this conjecture has been has been investigated by J aeger
and others (see [26, 271), and is known to imply the Four-color Theorem. By
Observation 6.1, Conjecture 6.4 is equivalent to the assertion that the perfect
matchings of any planar graph form a Hilbert basis.

Another well-known strengthening of the Four-color Theorem is still open
[53].

CONJECTURE 6.5. (Tutte's 4-flow conjecture for cubic graphs) For any 3-
graph which has no Pio-minor, I E Int.Cone (M).

By replacing "3-graph" by "r-graph" in Tutte's conjecture, Lovisz [35] pro-
posed a very strong conjecture which would imply Conjectures 6.4 and 6.5 and
the Four-color Theorem.

CONJECTURE 6.6. If a graph contains no P10-minor then its perfect matchings
form a Hilbert basis.
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We note that this conjecture would hold true provided both Conjecture 6.5
and Conjecture 6.2 were true.

Little is known about whether M(G) forms a Hilbert basis when G contains
a P10-minor. It is perhaps surprising that the perfect matchings of PIG form a
Hilbert basis; this fact follows from the observation that the six perfect matchings
in PI0 are linearly independent in QE. However, M is not always a Hilbert basis.

EXAMPLE 6.7. Let P10 + e denote the (unique) graph obtained from PI0 by
joining any two non-adjacent vertices with a new edge e. Let p be the weight
function which takes the value 0 on e and takes the value I elsewhere. As PIo + e
is a brick different from PIo, it follows that p E Cone (M) n Lat (M). However,
p V Int.Cone (M), since this would imply that PI0 has a 1-factorization. Thus
M(P1 o + e) is not a Hilbert basis.

Clearly, M is not a Hilbert basis for any graph containing Pia+e as a subgraph.

Seymour [47] proposed the following analog of the Circuit Double Cover Con-
jecture.

CONJECTURE 6.8. (Perfect Matching Double Cover Conjecture) For any r-
graph, 2 E Int.Cone (M).

The special case r = 3 of Conjecture 6.8 was first proposed by Fulkerson [16]
and is still open. Incidently, Fulkerson's conjecture is equivalent to a strength-
ening of Jaeger's observation as referred to in the proof of Theorem 4.8.

CONJECTURE 6.9. Any bridgeless graph contains exactly 6 cycles such that
any edge is contained in 4 of them.

The equivalence of these two conjectures becomes evident for cubic graphs
when one considers that the complement of a perfect matching is a cycle. By
"blowing up" vertices, one can see that Conjecture 6.9 holds for all graphs pro-
vided it holds for cubic graphs.

Unlike the case with circuit covers, the Perfect Matching Cover Problem has
not been solved for larger uniform vectors k, k > 2. By the fact 1 E Cone (M)
for any r-graph we have that, for any r-graph G, there exists k > 1 such that k E
Int.Cone (M). However, it is not known whether k can be picked independently
of G. This gives the following weak Fulkerson-type conjedture.

CONJECTURE 6.10. There exists k > 2 such that, for any r-graph G, k E
Int.Cone (M(G)).

An even weaker conjecture was proposed by B. Jackson [23].

CONJECTURE 6.11. There exists k > 2 such that any r-graph contains k + 1
perfect matchings with empty intersection.
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A form of Jaeger's 8-flow theorem states that any bridgeless cubic graph G is
the union of 3 of its cycles. In fact, one can modify Jaeger's proof to ensure that
at least one of the three cycles is a 2-factor of G. If one can show that all three
cycles can be chosen to be 2-factors then, by taking complements, Conjecture
6.11 will have been proven for r = 3 and k = 2. Jackson [23] asked the following
question. Can one show that at least two of the three cycles are 2-factors of G?
Surely, this very special consequence of Fulkerson's conjecture must be true.

7. Circuits, Perfect Matchings and Grafts

The vague similarities between circuits and perfect matchings might be ex-
plained by considering certain 1-element extensions of graphic matroids.

DEFINITION 7.1. Let A = A(G) denotc the vertex-edge {0, 1}-valued incidence
matrix of a connected graph G. Thus the columns of A represent the graphic bi-
nary matroid M(G) of rank IV(G)I - 1 with linear independence over GF(2).
Let T C V and let r denote the {0, 1}-valued column vector which is the charac-
teristic vector of T. Then [Ar] represents a binary matroid of rank IV(G)I - 1
on the ground set B!U {r}, which we denote by GT. Following Seymour [48], we
call the matroid GT a graft.

Grafts are precisely the binary 1-element extensions of graphic matroids. A
graft GT is interesting only when ITI is even, since r is otherwise a coloop in
GT. If ITI = 0 then r is a loop in GT. If ITI = 2 then GT "• G + e where
e is a new edge joining the vertices in T. For larger subsets T, grafts can
be non-graphic and even non-regular. Seymour [48, p. 339] shows how the
matroids F7 , F;, M*(K5), M*(K3, 3) and R10 are all grafts GT, where G has
at most 7 vertices. For T C V, a T-join is any subset S C E(G) such that
T = {v E V: v is incident with an odd number of non-loop edges in S} (in
some papers, T-joins are also required to be acyclic). A T-cut is an edge-cut in
G which contains an odd number of vertices of T on each shore. T-joins and
T-cuts are closely related to matchings and have been studied by various authors
[32, 14, 36, 37, 39, 40, 41, 42, 47, 10]. One easily checks that, when ITI is
even, the cycles of a graft GT are precisely the cycles of G, together with sets of
the form {r} U J where J is any T-join in G. The cocycles of GT are precisely
the cuts of G which are not T-cuts, together with the sets of the form {T} U B
where B is any T-cut in G.

If T = V and G has a perfect matching, then then the circuits of GT which
contain r and which have minimum cardinality are precisely the subsets of the
form {r} U F where F E M(G). In this way, we obtain a connection between
C(GT) and M(G). In particular, the Uniform Perfect Matching Cover Problem
for graphs may be posed as a Circuit Cover Problem for grafts.

EXAMPLE 7.2. Let k > 1 and r > 3. Let G be any r-regular graph, and set
T = V. Consider the weight function p on the graft GT where p(r) = rk, and
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p(e) = k for all e E E(G). If p is a non-negative linear combination of circuits

in C(GT) then all circuits having positive coefficients must be of the form rU F.

F E M(G). This gives us the following facts.

(i) p E Int.Cone (C(GT)) if and only if k E Int.Cone (M(G)).
(ii) p E Cone (C(GT)) if and only if k E Cone (M(G)).

(iii) p E Lat (C(GT)) if k E Lat (M(G)).
In particular, p E Cone (C(GT)) if and only if G is an r-graph, and p E
Lat (C(GT)) if either k is even or G has no P10-brick.

As it is NP-hard to decide whether 1 E Int.Cone (M) for 3-graphs [21],
Example 7.2 implies that determining whether a vector is in the integer cone of
circuits is NP-hard for the class of grafts. However, the complexity of the latter
problem remains unknown when "grafts" is replaced by "graphs".

Example 7.2 also serves to connect two of the main conjectures presented
earlier in this paper. We have seen that Conjecture 3.2 holds for the class of
graphs. We shall see that if this conjecture were to hold true for the class of
grafts, then the Four-color Theorem would follow, as well as many of the open
problems discussed in Section 6. We begin with a curious property of Petersen's
graph. In general, if a graft GT contains a graphic matroid M(H) as a minor,
then one cannot deduce that G contains M(H\e) as a minor, for some e E E(H).
For example, let G be the polygon of length four, and let T be a pair of non-
adjacent vertices in G. Then GT/7 H where H is the graph consisting of two
digons joined at a vertex. However, one easily sees that H\e is not a minor of
G for any e E V(H).

If H is Petersen's graph, however we have a different story. Note that P10\e
is independent of e up to isomorphism.

LEMMA 7.3. If a graft GT contains M(P1 o) as a minor, then G contains Pjo\e
as a minor.

PROOF. Suppose that GT/S\R • P1o where S, R are disjoint subsets of E(G) U
{r}. If T € S U R then, as in [46, (10.2)], GT\R/S 5- (G\R/S)T, for some

T' C V(G\R/S). Deleting any element from (G\R/S)T, = P1o yields Plo\e
so, in particular, Pjo\e ! (G\R/S)T,\r = G\R/S and we are done. If -r E R
then Pt1o '- GT\R/S = G\(R - {r})/S is a minor of G, and again we are done.
Thus we a"sume that r E S. Here we have GT\RI(S - {r}) - G' , where

G' = G\R/(S - {r}) and T' is some subset of V(G').
It remains to show that G' contains P10\e as a minor given that GC,/r 2- Plo.

Suppose that G' contains a bridge f E E(G). Then, in GT,, either f is a bridge
or f is coparallel with r. In the first case, f is also a bridge of G'T/r 2 Plo, a
contradiction. In the second case we have Plo 2 GCT,/1 5- GT0,/f • (G'/f)T,, for
some T" C V(G'/f). Deleting any element from (G'/f)T" yields PiO\e so, in

particular, Plo\e "• (G'/f)r,,\r = G'/f. Thus Plo\e is a minor of G', provided
G' contains a bridge.
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Thus we assume that GC is a 2-edge-connected graph with 15 edges. We claim
that GC = P 10 and hence that G has a P10-minor. It is well known that Petersen's
graph is the only 2-edge connected graph on at most 15 edges which is not the
union of two of its cycles (this property is equivalent to having a 4-nowhere-zero
flow). Suppose that G' t Plo. Then G' is the the union of two of its cycles, say
E(G') = C1 U C2 . Since both the extension and contraction operations preserve
cycles in a matroid, both C, and C2 are cycles in G'T,/r, and their union is all of
G'T,/r ý P10. This contradiction establishes our claim and completes the proof.
rJ

THEOREM 7.4. If Conjecture 3.2 holds for grafts then Conjecture 6.6 holds
for graphs which have no minor isomorphic to P10\e.

PROOF. Suppose that C(GT) forms a Hilbert basis for any graft GT having no
P1 0-minor. By Observation 6.1, it suffices to show that I E Int.Cone (M(G))
for any r-graph G which has no minor isomorphic to Pzo\e. Let (GT,p) be
the weighted graft obtained from G as in Example 7.2 with k = 1. By 1.
of the example, we need to show that p E Int.Cone (C(GT)). By 2. and 3.,
p E Cone (C(GT)) n Lat (C(GT)), so it suffices to show that C(GT) forms a
Hilbert basis. This follows from the hypothesis since, by Lemma 7.3, GT does
not contain a P10-minor. 0

Theorem 7.4 demonstrates both the relevance and the ominous difficulty of
Conjecture 3.2. Were it to hold for grafts, the Four-color Theorem and the
stronger Conjecture 6.4 would be immediate corollaries. It would be nice if
the forbidden-minor restriction in the conclusion of Theorem 7.4 could be be
dropped. This would make Tutte's 4-flow Conjecture (6.5) a consequence of
Conjecture 3.2. To drop this restriction only requires an argument for those
graphs G which have a Pio\e-minor, but no P10-minor. Although we are tan-
talizingly close to such a result, a new idea may be needed, since there exists a
3-graph which contains no P10-minor although the graft GT (with T = V(G))
does.

It remains to address the problem of characterizing the cone, the lattice and
the integer cone of circuits in grafts. It seems unlikely that the lattice and the
cone have simple descriptions, as grafts have neither the Lattice of Circuits nor
the Sums of Circuits property (recall Theorems 2.3, 2.4). Indeed, F., 2- GT where
G = K3,2, T = V(G) - v, and v is a vertex of degree 3. The smallest 3-graph G
for which GT contains a F•-minor (where T = V(G)) is the triangular prism (the
complement of a circuit of length 6). It is interesting that this graph arizes as
an anomaly in matching theory, particularly with regard to ear-decompositions
(see, for example [34, (3.2), (3.3)]). The complexity of the cone and the lattice
of circuits in grafts is also attested by the effort that was required to characterize
the special cases Cone (M(G)) and Lat (M(G)) (Theorems 5.2 and 5.3).
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On the other hand this success in matching theory, and our increasing un-
derstanding of T-joins [39, 401 is encouraging. The circuits of grafts are not
impossibly complicated. For example, the lattice is fairly tame in that grafts
cannot contain the dual of the projective geometry PG(2,m) as a minor, for any
m > 2 (see Example 2.8). The cone of circuits is especially worthy of further
investigation. Indeed, it is far more important to know the cone than the lattice
when investigating whether circuits form a Hilbert basis. It is reasonable to
guess that this class of matroids will predominate much of the future research
on circuits in matroids.

Acknowledgement. I wish to thank Bill Jackson, Andris Seb6, and Paul
Seymour for their valuable suggestions and stimulating discussions.

Added in Proof. Conjecture 3.2 is false. Let f be an element of the co-
graphic matroid M*(K 6) and let p(f) = 4 and p(e) = 2, e E E - {f}. Then
p E Cone (C) n Lat (C), but p V Int.Cone (C). This matroid is not a graft. I
thank M. Laurent for these counterexamples.
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Regular Maps From Voltage Assignments
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ABSTRACT. The theory of voltage graphs enable, to lift a given map to new,
so-called derived maps which cover the original one. This paper introduces a

method of lifting map automorphisms of a map to automorphisms of the derived
map. As an application, constructions of infinite classes of orientable as well as

nonorientable regular maps are presented.

1. Introduction

The theory of (ordinary) voltage graphs introduced by Gross 17] provides a
powerful means for constructing maps, i.e., graph embeddings. There is an ex-
tensive literature dealing with voltage graphs; for an excellent survey the reader
is referred to the book by Gross and Tucker [8]. The existing papers concentrate
mostly on lifting graphs (and maps) to obtain new and interesting embeddings.
The aim of this paper is to study the lifting of map automorphisms (rather than
liftiim maps) by means of (ordinary) voltage assignments in both Abelian as w,!!
as n, i-Abelian groups.

In a more general framework, the problem of lifting map automorphisms can
be viewed as a specification of the question of lifting a continuous mapping to
a covering space. As regards covering spaces without branch points, a complete
answer to the latter, in terms of fundamental groups, is well known in algebraic
topology (see e.g. Massey [121, or DQjokovic [41 for graphs only). A similar, but
homology-type criterion for lifting map automorphisms in unbranched coverings
can be found in Surowski [15]. However, voltage graph constructions often lead

to branched coverings of surfaces, where the above results are not applicable.
This case was considered by S.Wilqon [19] who studied lifts of automorphisms

in branched coverings of maps derived from special current (=dual voltage) as-
signments in cyclic groups.
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The main result of our paper is a simple necessary and sufficient condition for
lifting map automorphisms in branched coverings of maps arising from ordinary
voltage assignments in an arbitrary group. As an appl] ation of our technique
of lifting map automorphisms, introduced in Section 4, we present constructions
of new regular maps (i.e., maps with the largest possible number of symmetries)
from the known ones.

In order to make the paper self-contained, in Section 2 and 3 we briefly review
a combinatorial approach to maps which consists in representing them by means
of three involutory permutations acting on the set of doubly directed edges of
the underlying graph (cf. [11] for a similar approach). This has the additional
advantage of a unified treatment of both orientable as well as nonorientable maps.
As regards voltage graphs and lifting techniques, a preliminary acquaintance v , th
them is assumed, e.g. in the extent of the book [8].

2. Maps and their algebraic description

A* graph is a finite 1-dimensional cell complex. Thus, in graphs we allow
bowi multiple- and self-adjacencies. Let G be a graph and F a closed surface
(orientable or not). An embedding of G in E is a continuous injection j : -G- E.
The embedding j is said to be cellular if every component of the set E - j(G) is
homeomorphic to an open disc; such components are faces. A cellular embedding
j induces a cell decomposition of E; this decomposition will be called a map (on
E). We do not distinguish between the graphs G and j(G) and we refer to G as
the underlying graph of the map. Note that the underlying graph of a map is
necessarily connected.

There are several ways that maps can be described combinatorially ( e.g.
[10,14,181). Here we adopt the approach which originated in [li]. It has the
advantage that it is suitable for both orientable as well as nonorientable maps.

Let M be a map on a surface E, with underlying graph G. Loosely speaking
we can imagine M as a "drawing" of G on E. Bearing this in mind, we first
endow each edge of G by two kinds of orientation.s: longitudinal orientation
(which results in a directed edge, or arc, in ,he usual sense) and a transversal
orientation (indicated by an arrow on E crossing perpendicularly the )riginal
edge). An edge with a longitudinal and a transversal orientation is called a
flag; this terminology complies with that uspd in combinatorial geometry [5].
It follows that each edge of G gives rise to four possible flags; one of them is
depicted in Fig.l.

Fig. 1. A flag arising from an edge.
Let F(G) be the set of all flags of G. It is clear that IF(G)I = 41E(G)I where

iE(G)I denotes the edge set of G. Our next step is to introduce three involutory
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permutations L,T and R? on F'(G) which are determined by the map Al in a V,.•ry
natural way.

Let L and 7' be permutations on F((;) which reverse tile longitudinal and
transversal orientations of flags, respectively. More precisely, if z is a flag then
L.r is the flag obtained from z by reversing its longitudinal orientation and letting
the transversal orientation unchanged; 7' is defined analogously. Observe that
the group < L,7' > generated by L and T is isomorphic to the group Z2 x Z2 .
Moreover, every orbit of < L, T > consists of exactly four flags (namely the four
flags x, Lx, Tx, L7'x arising from one edge).

In order to define the third involutory permutation R of F(G) associated with
the map M, consider two consecutive edges o and f appearing on the boundary
of a face .J of M. Let x and y be flags obtained from e and f, respectively ill
the way indicated in Fig.2:

30 \

Fig. 2.
Then we put R(x) = y and R(y) = ;. It is easy to see that by means of

this rule the permutation R is well defined (just observe that a flag z uniquely
determines a "corner" onr E at the initial vertex of z, as depicted in Fig.2).

It can be shown that the permutations L,7' and R of F(G) characterize the
map M. To see this let us first list some more properties of L, 7' and R. Obviously
R, L and T are fixed-point free involutions. For each vertex u of G there are two
disjoint orbits of the permutation RT, consisting of flags with initial vertex u.
Similarly, to every face of M there corresponds a pair of orbits of the permutation
RL. Finally, note that the group < L, T, R > acts transitively on F(G).

Now let X be a nonempty set such that JXI = 4"1. Let L,T and R be fixed-
point free permutations on X satisfying the following four conditions:

(i) R= L2 = 72 = (L7) 2 = id;

(2) the group < L, T, H > acts transitively on X;

(3) every orbit of the group < L, T > has cardinality 4;

(4) for every x E X the orbits ORT(X) and ORT(Tx) of the permutation RT
are disjoint; the similar holds for ORL(X) and ORL(Lx)

Then the rnap M = MA(L, T, R) determined by L, T and R can be recon-
structed as follows. The vertex set of the underlying graph G is V(G) =



444 PAVOL GVOZDJAK AND JOZEF SIRAN

{ORT(W) U ORT(Tx); X E X). The edge set E(G) is simply the set of or-

bits of the group < LT >. The faces of M are determined by the unions

ORL(X) UORL(Lx), X E X. The incidence among vertices, edges and faces thus

described is given by a nonempty intersection of the corresponding orbits (or

pairs of orbits).
A more detailed analysis shows that the orbits Oar(x) and Owr(Tx) have not

only the same length but can be written in the form

Oirr(x) = (x, RTx,((RT) 2X, ... ,(RT)k-Ix,(RT)kx = x), and

O-rr(Tx) = (Tx, T(RT) -x, T(RT)- 2x, ..., T(RT)-kX = Tx).

This can be interpreted as assigning two possible local orientations to the

vertex ORT(z) U ORT(Tx) on the surface determined by M. The similar canl

be done with faces: the orbits ORL(x) and ORL(LZ) represent the two possible

orientations of the face ORL(x) U ORL(Lx). Using these facts we can easily

determine whether the map M is orientable or not: It is sufficient to consider

the action of the group < RL, RT > on X. A r-utine calculation shows that this

group has at most two orbits on X. If < RL, RT > acts transitively on X then

the surface determined by M is nonorientable. In the case when < RL, RT > has

two orbits on X then the surface of M admits two opposite global orient;. ,11s,

i.e., M is orientable.
Note also that the permutations L*, T, Rs on the same set X defined by

L* = T,T* = L and R* = R determine the dual map M* to the original map

M.
Let us conclude with a remark concerning orientable maps M = M(L, T, R).

Since < RL, RT >=< RT, LT >, as a consequence of the above analysis we

obtain the'fact that M is fully characterized by means of the permutations

P = RT and Q = LT. Moreover, since a global orientation of the supporting

surface can be chosen it is not necessary to consider transversal orientations

of edges of the underlying graph G. Thus, the permutations P and Q can be

interpreted as acting on the set of arcs (=longitudinally directed edges) of G.

The permutation P (often called rotation) cyclically permutes, for each vertex u,

the arcs emanating from u consistently with the chosen global orientation. The

permutation Q is simply the arc reversing involution. The pair (P, Q) is known

as the Heffter-Edmonds embedding scheme for orientable maps.

3. Voltage assignments and derived maps

In this section we briefly describe one of the main tools for constructing new

maps from old ones. It is the technique of lifting maps by means of voltage

assignments. An extensive exposition of this method (in a somewhat different

language) can b,• found in [8].
Let M(L, T, R,) be a map and let G be its underlying graph. Consider a finite

group r . A mapping a : F(G) --. r assigning group elements to flags is called

a voltage assignment if aTx = ax and viLx = (ax)-' for every flag z E F(G).

Thus, the only nontrivial condition imposed on a voltage assignment is that

longitudinally opposite flags receive mutually inverse elements of the group. The

pair (G, a) is said to be a voltage graph.
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The voltage assignment a can be naturally extended to oriented walks in G,
As expected, by an oriented walk in G we understand a sequence W = X I x 2 ... xn

of flags of G such that, for each i < n - 1, the terminal vertex of the flag xi
coincides with the initial vertex of xi+1 (i.e., only longitudinal orientations of
edges have to be consistent). For an oriented walk W = x xI2... x we now set
aW = f'Ii~l axi,. Observe that if LW = LxLxn~ ... Lx I is the opposite walk
to W then aLW = (aW)-1. The walk W is closed if the initial vertex of x, and
terminal vertex of x, are identical. We also admit a degenerated closed walk W0
of zero length (consisting just of a single vertex) and put aWo = lr, the unit
element of F. Closed walks are of special importance in the theory of voltage
graphs. It is easy to see that, for a given vertex u E V(G), the set { aW; W a
closed walk emanating from and terminating at u} constitutes a subgroup of F.
This subgroup, denoted by [u, is known as the local group. It is easy to see that
any two local groups lu and Fr are conjugate subgroups of F.

To explain the way how a new map can be obtained from M = M(L,T, R)
using the voltage assignment a let us first assume that the local group Fu (and
hence each local group r,) is isomorphic to F. The new map, called the derived
map, will be denoted by M*. Its underlying derived graph G* has vertex set
V(G') = V(G) x F = {jg;u E V(G),g E Fi and flag set F(Ga) = {xg;x E
F(G),g E F). The incidence in G' is defined by the following rule: if a flag x
in G has initial vertex u and terminal vertex v then, for each g E r, the flag
xg in G' emanates from the vertex u. and terminates at the vertex v,,,. The
derived map M' can now be conveniently described by means of three derived
permutations L', Ta and R' acting on F(GC): For each flag x E F(GO) put

Lax, = (Lx)ga:,

Tax, = (Tx)g, and

Raxs = (Rx),.

It is a matter of routine to check that L", T" and R' satisfy the conditions
(1)-(4) listed in the preceding section (note that (2) follows from the fact that
ru * F). Thus, the map M' = Ma(L',T*, R') with the underlying graph G*
is well defined.

It is well known (see e.g. [8]) that the projection p : F(G') - F(G) which
erases subscripts extends to a regular branched covering M' -- M which has
at most one branch point inside an arbitrary face of M. Conversely, any regular
branched covering of two maps can be obtained by means of the just described
lifting technique, i.e., using a suitable voltage assignment on the underlying graph
of the target map.

As already indicated, if Fu is a proper subgroup of F then the group
< L", T', Ra > does not act transitively on F(G"). In fact, there are [r : Fu]
orbits of < L', T', R' > on F(G') (and hence G' has [F : ru] connected com-
ponents). Each of the orbits defines a map; moreover, these maps are mutually
isomorphic. In this case M' will denote any uf the [F : FrJ maps thus obtained.

Similarly as in Section 2, the last remark will concern orientable maps M =
M(P, Q) where P and Q are the rotation and the arc-reversing involution, acting
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on the set D(G) of arcs of the underlying graph G. For a voltage assignment
a : D(G) --+ r we then have aQx = (ax)-',x E D(G). The derived graph
G' is defined analogously as before; in particular, D(G') = D(G) x F. The
derived map MO = MG(Pa, Q') is determined by means of the derived rotation
P' and involution Q' where, for each arc xg E D(G-), P-(x,) = (Px)g and

QCrg) = (Qx)901..

4. Lifting map automorphisms

Let M = M(L, T, R) be a map on a surface E, with underlying graph G.
A map automorphisin of M is a graph automorphism of G which, in addi-
tion, preserves the cell structure of the map M. Map automorphisms can be
equally well viewed as self-homeomorphisms of E which assign vertices to ver-
tices, edges to edges, faces to faces, and preserve incidence of these elements.
Combinatorially, a map automorphism of M can be identified with a bijection
A : F(G) -* F(G) which commutes with the three permutations associated with
M, i.e., AL = LA, AT = TA and AR = RA. Observe that the latter approach
enables to reduce questions about automorphisms to algebraic operations. In
what follows we shall take advantage of this fact and prefer the combinatorial
way of introducing map automorphisms.

Let A be a map automorphism of an orientable map M = M(L,T, R). If A
fixes the two orbits of the group < RL, RT > setwise then A is called orientation-
preserving; otherwise A is a reflection. Using the Heffter-Edmonds scheme for
M, i.e., representing M as M(P, Q) where P and Q are the rotation and the arc-
reversing involution acting on D(G), respectively, then a bijection B : D(G)
D(G) is an orientation-preserving automorphism of M if BP = PB and BT
TB, and a reflection if BP = P-'B and BT = TB.

In the previous section we saw how to lift a given map M by means of a voltage
assignment to obtain the derived map M'. Now we are interested in the question
of lifting map automorphisms of M to map automorphisms of M'. To be able
to formulate the question precisely, let M = M(L, T, R) be an arbitrary map
and G its underlying graph. Consider a voltage assignment a : F(G) ---* r in an
arbitrary finite group r. Let p : M' --+ M be the natural covering projection of
M by the derived map M'. Further let A and A be map automorphisms of the
maps M and Ma, respectively. Then A is said to be a lift of A if Ap = pA. In
other words, A is a lift of A if the following diagram is commutative:

A

M - M

A

Our basic question can now be stated in the following way: Under what con-
ditions there exists a lift of an automorphism of M to an automorphism of MI?

We first present a simple necessary condition in terms of closed walks. Be-
fore doing it observe that the action of a map automorphism A of M can be
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extended to walks W = XIX2...Xn of the underlying graph by setting AW -

Ax 1Ax 2 ... Ax,,.

PROPOSITION 1. Let p : M, -- M be the natural covering projection of a map
M by the derived graph M'. Let A and A be map automorphisms of M and
M', respectively such that A is a lift of A. Then for every closed walk S in M
it holds that

(*) aS = lr if and only if aAS = Ir

PROOF: Let S be a closed walk in M such that aS = Ir. This is equivalent to
the fact that S lifts to 1FI edge-disjoint closed walks Si, 1 < i < 1f1 in M' (i.e.,
pSi = S for each i < [Fl, cf. [81). Since A is an automorphism of M", there
are 1F1 edge-disjoint images ASI, 1 < i •< II'. Moreover, the relation Ap = pA
implies that

pAS = ApS, = AS.

Thus, the closed walk AS also lifts to IFi closed walks ASj. However, the latter
is possible if and only if aAS = Ir. I

Surprisingly enough, this obvious necessary condition is also sufficient for the
.existence of a lift of an arbitrary map automorphism. We state the corresponding
result for the case when local groups are isomorphic to the whole voltage group.

TtiOiRM 2. Let M be a map with underlying graph G and let A be a map
automorphism of M. Let there exist a voltage assignment a : F(G) -. F in a
finite group F such that, for every closed walk S containing a fixed vertex u,

(*) aS = Ir if and only if aAS = Ir.

Assume further that the local group r,, is isomorphic to r. Then A lifts to
[rl map automorphisms Ag(g E I) of the derived map M'. Explicitly, these
automorphisms can be described by the formula

(**) Ag(xaw) = (Ax)gGAW

where X E F(G) and W runs through all walks of G emanating from the vertex
u and terminating at the initial vertex of the flag x.

PROOF: Let M = M(L, T, R) and M' = M'(Lo, T', R') be the maps in ques-
tion. We have to prove that, for each g E r, A. is a well-defined bijection on
F(GG) which commutes with L', T' and R'.

First we show that the mapping A9 is well defined by the formula (**). To see
this let W and W' be two walks in G, both emanating from u and terminating
at the initial vertex of a flag x E F(G). Suppose that aW = aW'; our aim is
to show that Ag(x~w) = Ag(xzw,). Now, S = W'LW is a closed walk starting
and terminating at u. Moreover,

a(S) = a(W'LW) = a(W')c((LW) = aW(aW)-' = lr.
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By (*), EkAS = l1'. However,

aAS = aA(W'LW) = a(AW')a(ALW) = a(AW')(aAW)-',

which implies that aAW = aAW'. Thus, by (**),

Ag(xw) = (Ax)gcAW = (Ax)g,,AW' = Ag(xaw,)

The fact that Ag is a bijection can be proved similarly. Indeed, suppose that
Ag(xaw) = Ag(yw,), i.e., (AX)g, AW = (AY)g,,AW'. Then obviously Ax = Ay
and, since A is an automorphism of M,x = y. But then both W and W'
emanate from u and terminate at the same vertex. From gaAW = gcoAW' we
have aAW = aAW'. Considering again the closed walk S = W'LW at u, the
equality aAW = aAW' is equivalent to aAS = Ir. Applying (*) we have also
aS = Ir, which implies aW = aW'. This shows that A, is a bijection on the
(finite) set of flags F(Ga).

It remains to prove that the commutation relations are satisfied. Since A is
a map automorphism of M we have AL = LA,AIR = RA and AT = TA. By
virtue of the fact that the flags x, Rx and Tx have the same initial vertex we
successively obtain:

AgR"(xow) = Ag(Rx)aw = (ARx)9,Aw =

= (RAX)gaAw = R(Ax),,,AW = R'AY(xw);

the relation ATQ = T'A. can be proved analogously. Finally, employing the
definition of L' we have

AgL'(xzw) = Ag(Lx)oW.. = A,(Lx),w. = (ALx)goa(Wz) =

= (LAx)ga(Aw)a(,•,) = L'(Ax)goAw LW Ag(xw);

here we used the fact that the walk Wx terminates at the initial vertex of the
flag Lx. We see that A. commutes with all three derived permutations L', T'
and RI and hence is a map automorphism of M*. The proof is complete. I

It is clear that results analogous to those presented in Proposition I and Theo-
rem 2 can be stated and proved for lifts of orientation-preserving automorphisms
and reflections of orientable maps. The details are left to the reader.

Note also that the assumption r, -! r in Theorem 2 was not essential. A care-
ful analysis of the above proof shows that, in the general case, an automorphism
of M satisfying (*) lifts to IFI map automorphisms of an arbitrary orbit M' of
the group < L', T', R' > acting on F(Ga).

5. The lifted regular maps and their automorphism groups

Intuitively, a map is regular if it admits the largest possible number of sym-
metries (=map automorphisms). In this section we apply the method of lifting
automorphisms to obtain new regular maps from old.
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Let M be a map with underlying graph G. The set of all map automorphisms
of M constitutes a group called the map automorphism group of M and denoted
by AutM. It is readily proved (e.g., from Lemma 5.2.5 of [2]) that for each two
flags x, y E F(G) there exists at most one map automorphism A E AutM such
that Ax = y. Thus, JAutMi < IF(G)I. The map M is said to be regular if
JAutMi = IF(G)I. This is equivalent to saying that M is regular if the group
AutM acts transitively on the set of flags F(G).

It should be pointed out that the just introduced concept of regularity of a
map complies with the one in [20]. For orientable maps M, also a weaker form
of regularity is often defined by considering the group Aut+M of orientation-
preserving map automorphisms and regarding its transitive action on the set of
arcs of the underlying graph (see e.g. [9]). To avoid confusion we shall call such
maps orientably regular.

The literature on regular maps is extensive. The results range from classifica-
tion of regular maps on a given surface ([3,6] and others) through classification
of regular maps with a given underlying graph (e.g. [9,131) to constructions of
infinite classes of regular maps ([1,2,16,17] etc.). Our method of lifting map au-
tomorphisms, described in Section 4, provides a new tool for constructing new
classes of regular maps using voltage assignments in Abelian as well as non-
Abelian groups.

THEOREM 3. Let M be aregularnmapand let G beits underlying graph. Assume
that there is a voltage assignment a : F(G) --, 1 such that, for each closed walk
S containing a fixed vertex u and each A E AutM,

* aS = Ir if and only if aAS = Ir.

Further, let F, • r. Then the derived map M' is regular.

PROOF: Let x. and Yh be flags from F(G'). We have to show that there exists
a map automorphism A E AutM1 such that Axg = yh. Since M is regular there
is an automorphism A E AutM such that Ax = y. From the fact that ru - r it
follows that the derived graph G' is connected. This implies that there exists a
walk W in G emanating from u and terminating at the initial vertex of x, such
that aW = g. Now put b = h(aAW)-' and consider the automorphism Ab of
M' (as defined in Theorem 2). Then,

Ab(Xg) = Ab(ZaW) = (Ax)baAW = Yh.

Thus we can put = Ab. Theorem 3 follows. I

Of course, a similar result holds for the already mentioned orientably regular
maps. We leave the formulation and the proof to the reader and concentrate now
on the map automorphism group of the derived regular map. First we show that
the condition (***) is equivalent to the existence of a natural homomorphism
from the group AutM into the Automorphism group Autr of the voltage group
r.
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PROPOSITION 4. Let M be an arbitrary map, with underlying graph G. Let
a : F(G) -, r be a voltage assignment satisfying (***) for each A E AutM.
Again, assume that ru •- r. Then, for each A E AutM the mapping ,A :
r -- r, •A(aS) = aAS (S a closed walk containing u) is an automorphism
of the group F. Moreover, the assignment A '- OA defines a homomorphism
0 : AutM -- AutF. Conversely, the existence of 0 implies (***).

PROOF: To start with, observe that the condition (***) is equivalent to the
following one: For any two closed walks S and S' containing u, aS = ofS' if and
only if aAS = aAS'. This together with r[ = r readily implies that OA is a
well-defined bijection r -- F. The fact that OA is a group automorphism is clear
from the following:

A(aS-S.aS') = OA(a(SS')) = aA(SS') =

= a(AS)a(AS') = OA(aS)OA(aS').

It remains to show that 0 : A + OA is a group homomorphism AutM -- AutF:

OBA(OS) = aBA(S) = aB(AS) = OB(aAS) = OB(OA(aS)).

The fact that the existence of 0 implies (***) is obvious. Proposition 4 follows. I

Now we are able to state and prove how the map automorphism group of a
lifted regular map depends on the map automorphism group of the original map
and the voltage group.

THEOREM 5. Let M be a regular map satisfying all assumptions listed in The-
orem 3. Then the map automorphism group of the derived regular map M1 is a
semidirect product of the map automorphism group of M and the voltage group
r. Formally,

AutM* = r xo AutM

where ' : AutM --ý Autr is the homomorphism given by Proposition 4.

PROOF: Let A, B be automorphisms of M, and let g and h be elements of r.
To be able to determine the composition of the automorphisms Bh and Ag from
AutM' let us represent g in the form g = aAS where S is a suitable closed walk
contaiiiiiig the vertex ,t [tuis ýs possibleti due Lo tho .onnectedness of the derived
graph G'). Now, by Theorem 2 and Proposition 4,

BhAg(xow) = Bh(AZ)g.,AW = Bh(AZ).AS.aAW

= Bh(Ax).A(SW) = (BAx)hyBA(Sw) = (BAx)hcBA(S).tBA(W) =

= (BAx)hO.(.AS)..BAW = (BA)h0,(g)(Xw)•

Thus, putting Ag = (g, A) and Bh = (h, B) we obtain the following multiplica-
tion rule in AutM":

(h, B)(g, A) = (h'kB(g), BA).

But this is exactly the well known definition of the semidirect product in group
theory. Consequently, AutM' = r x0 AutM, as claimed. I
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6. Applications

By means of the lifting technique introduced in preceding sections we now
construct two infinite classes of regular maps. The first one will be a class
of orientable as well as nonorientable maps obtained from voltage assignment
in an Abelian group, while the second class will consist of orientable regular
maps arising from a non-Abelian voltage group. In both cases the basis of
the construction is the group homomorphism 4 introduced in Proposition 4.
Namely, as the reader may already have realized, combining this proposition
with Theorem 3 yields the following immediate consequence.

THEOREM 6. Let a be a voltage assignment on a regular map M in a group r.

Assume that there exists a group homomorphism € AutM -- Autr, A ý OA

such that

OA(aW) = aAW

for every closed walk W in M. Then the derived map M' is regular. 5

In our first construction we use a repeated product of cyclic groups as our
voltage group r. The advantage of this approach is that it applies to an arbitrary

regular map M and yields both nonorientable as well as orientable derived maps
M' in the case when M is nonorientable.

Let M = M(L, T, R) be an arbitrary regular map with r faces. Let G be the

underlying graph of M comprising p vertices and q edges. Consider the group
Zn x Zn x .". x Zn (q times) where n > 2. Take now one flag from each orbit of the
group < L,T > on F(G), obtaining thereby a sequence of q flags X1, x 2 , .. . , x 9 .
In order to define a voltage assignment a : F(G) -- r it is sufficient to define
the values a(xi), 1 < i < q. We set a(xi) to be the q-tuple of r in which all
but the i-th entry are zero while the i-th entry is 1. Obviously, Auti contains
the symmetric group on q letters as a subgroup and the group AutM can also
be viewed as a permutation group on q letters (= the q edges of G). Since a is
injective, each automorphism A E AutM can be interpreted as a permutation of
the Z' s in F, i.e., as an automorphism from AutF. In other words, there exists a
canonical homomorphism 4: AuIM --- AutF such that OA(aX) = aAx for every
flag x E F(G). Thus, the assumptions of Theorem 6 are satisfied automatically;
it follows that the derived map M' is regular.

A more detailed analysis shows that the derived graph G' is disconnected. In
fact, this time the local group F,, is isomorphic to Z,. x Zn x ... x Zn (q - p + I
times), which implies that G' consists of nP- 1 connected components, each
containing pnq-P+P vertices. It follows that the derived map M1 has qnq-P+l
edges and rnq-p faces. Moreover, observe that every cycle of length I in M lifts
to cycles of length nl in M'. Thus, if M is nonorientable and n is odd, then the

derived map M' is nonorientable, as well. This enables one to construct infinite
classes of nonorientable regular maps.

In our second construction we show how regular maps can also be obtained
by means of a voltage assignment in a non-Abelian group.

Denote by rn the group with generators a and b and defining relations

an = b' = h' = 1 ha =ah,hb= bh where h= aba-lb-1.
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Thus, r, is a group in which the commutator h = [a, 6] belongs to the centre
Z(JF,). One can easily see that r, is not Abelian, II,4j = n3 , and every element
of r• can be expressed in the form hPaqb', 0 < p, q, r < n - 1. Note also that
a~bq = hPg¢baP for all p and q. As regards group automorphisms of r,, we have
the following result.

LEMMA 7. The mappings Oi : Fr, -- r,(i < i < 4) given by

01 = id

0 2 (hPaqbr) hPa-qb-r

0 3 (hPaqbr) - hp+qlra-'bq

404 (hPa~bF) hP+q¢r rb-q

are automorphisms of the group r,.
PROOF: We prove Lemma 7 only for 03; the remaining cases are similar. Clearly,
03 is bijection. Moreover,

0•3[(hPaqbr)(hka'bm)] = 03 (hP+qaqbr albm) =

- h-3 (hP+a +6r hI)aq+tbr)

Shp+k -rl+(q+O(r+m)a-r-mbq+l hP+k+qr+qm+bm a-r-mbq+l -

= hP+-rhk+'mhqma-`a-mbqb hP+qrh'+ ma-rbqa--b=

= (hP +qra-rbq)(hk+lma-mb') - 0a(hPalb')0a(hkalbm). *

Let E be an orientable surface; fixing an orientation on E makes the surface
oriented. Let M be an orientably regular map on E. Assume that each face of
M is bounded by a 4m-gon and that the underlying graph G has each vertex
4-valent. Consider a voltage assignment ce on D(G), the set of arcs of G, in the
group r', defined by the following condition: At each vertex v, the fixed orienta-
tion of E induces on the arcs emanating from v the cyclic ordering (a, b, a- 1 , b-1)
of elements of r. (see Fig. 3):

-1

Fig. 3.
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It is a matter of routine to check that a is indeed uniquely determined by the
above local rule on M. Observe that, for a given vertex u, there is exactly one
closed (directed) walk S at u such that all arcs of S carry the voltage a. Let
k be the length of S; assume moreover that g.c.d.(k, n) = g.c.t.(n, m) = 1. An
orientably regular map M satisfying all assumptions listed here will be called a
(k, 4n, r[n)-map.

Our next result shows that the just introduced maps are suitable for recursive
constructions.

THEOREM 8. Let M be a (k, 4m, r,)-map with G as its underlying graph. Then

(1) the derived graph G' is connected,
(2) the derived map M' is orientably regular, and
(3) M' is a (k', 4m', ['n,)-map for suitable k' > k, m' > m and n' > n.

PROOF: (1) Since M is orientably regular there is an automorphism A of M
which rotates the arcs emanating from u by the "angle" 7r/2. The way M is
defined implies that applying A to the walk S introduced before yields the walk
AS at u such that every arc of AS carries voltage b. Thus, aS = ak and
aAS = bk. From the fact that k and n are coprime it follows that ak and bk

generate the whole group Fr. In other words, the local group (rFa)u is isomorphic
to F,, and hence the derived graph G" is connected.

(2) Let W = X1 x 2 .- ..Tt be an arbitrary closed walk (xj arcs of G) and let
A be an orientation-preserving map automorphism of M. It is easy to see that
there exists an i, I < i < 4 such that

aAW = rAx 1 aAX2 ... aAtx = 0i(otx 1 )0i(ox 2 ) ... Oi(t&,) = Oi(otW)

where Oi is given by Lemma 7 (it is sufficient to realize how M is constructed).
Consequently, aW = I if and only if aAW = 1. By Theorem 6 (and its straight-
forward modification for orientably regular maps) the derived map M* is ori-
entably regular.

(3) Clearly, the derived graph G' is 4-valent. Since m and n are coprime
and the net voltage on a boundary of a face of M is (aba-lb-l)m = h' (or
a conjugate of it), each face of M' has length 4mn. This enables to define a
voltage assignment f : D(G') -- , = r, (a', b') of the same type as described
in Fig. 3. (n' will be specified later). Again let k' be the length of a closed
walk in G' whose all arcs carry the voltage a' (note that k' > k). Now put
m = mn and take an n' > n which is coprime with both k' and m'. Obviously,
this endows M' with a structure of a (kV, 4m', FP)-map, as required. §3

A routine calculation involving the Euler formula shows that the genus of M'
is larger than the genus of M. Therefore Theorem 8 enables us to construct
infinite sequences M 1 , M 2,..., M, ... of orientably regular maps with growing
genera, starting from a suitable (k, 4m, F'n)-map M1 . For example, we can take
for M1 a toroidal 4-valent map with underlying graph G = CkACk, the product
of two cycles of length k; this is a (k, 4.1, rF)-map if g.c.d.(k, n) = 1.
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The infinite grid covers the infinite half-grid

BOGDAN OPOROWSKI

1. Introduction
The purpose of this paper is to outline the main ideas that arise in proving

the theorem stated in the title. The full details of the proof will appear else-
where [3]. The remainder of this section introduces the necessary definitions
and formally states the main results. Section 2 describes some preliminary
lemmas needed for the proofs of these results, while section 3 sketches these
proofs.

Graphs in this paper may be finite or infinite and may have loops and
multiple edges. We say that a graph H is a minor of a graph G, and write
H <m G, if H can be obtained from a subgraph of G by contracting some
of its (possibly infinite) connected subgraphs. If H is a minor of G but G is
not a minor of H, then we write H <m G. Two graphs G and H are minor
equivalent, written G •--m H, if G <m H and H <m G. If H is a subgraph of
G, then G - H denotes the subgraph of G induced by the edges of G that are
not in H.

It is clear that minor equivalence is indeed an equivalence relation. The
equivalence class that contains a graph G will be denoted by [G],n. It is clear
that if G is a finite graph, then [GCm is equal to the isomorphism class con-

taining G.
If G is infinite, then [G]m may contain graphs from more than one isomor-

phism class. For example, if G is an infinite clique and H consists of G and a
single isolated vertex, then G ý--m H, and thus [G]rn = [Him, even though G
and H are not isomorphic. On the other hand, if (7 is a two-wav-infinite path,

then [G],m is equal to the isomorphism class of r. Another interesting example

of a graph whose minor equivalence class coincides with its isomorphism class
is a graph that is not isomorphic to any of its proper minors. The existence of
such a graph has been shown in [2J.
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A graph G covers another graph H if H Km G and, for every graph K
such that H _<. K -<m G, either K m H or K -m G. It is immed ;;e that

(1.1) if G covers H, G -m G', and H H', then G' covers H'.

If G is a finite non-null graph, then G covers some graphs, namely those
that can be obt-Ained from G by deleting a single edge, contracting a single edge,
or deleting a single isolated vertex. Similarly, every finite graph is covered by
another graph. However, if G is infinite, then G may not cover, and may not
be covered by, another graph. It is easy to vcrify the following statemenits:

(1.2) A graph that has a countably infinite vertex set and no edges covers no
graphs.

(1.3) A two-way-infinite path covers the disjoint union cf two one-way-infinite
paths.

An example of a graph that is covered by no other graph is given in [3].
Let G be a graph and G x 2 be the disjoint union of two copies of G. The

graph G is clonable if G x 2 <nm G. It is also easy to show that

(1.4) h q and H' are graphs that are both covered by a clonable connected

graph G, then H -, H'

The countably infinite clique is a graph whose vertex set is N and such
that every pair of its vertices is joined by an edge. The following two infinite
graphs will play a crucial role in "his paper. The full grid, denoted by Gzxz,
has the set Z x Z as its verte-.. set, and two of its vertices (i,j), (i',j') are
joined by an edge if and only if Ii - i' + IJ - J'I = 1. The half-grid, denoted
by GZXN, is the graph obtained from Gzxz by deleting all the vertices whose
second coordinate is negative. The k x k-grid is the finite subgraph of Gz.z
induced by the subset {1, 2,. . .., k} x {1, 2,..., k} of its vertex set. The main
result of this paper it the following.

(1.5) Gzz covers Gz×,:.

Two of the many open problems that are related to (1.5) are as follows:

(1.6) Does the half-grid cover any graphs?

(1.7) Does the countably infinite clique cover any graphs?

As both the half-grid and the countably infinite clique are connected and clon-
able, (1.41 implies that any graph covered by the half-grid and any graph
covered by the countably infinite clique would be unique up o minor equiv-
alence. by replacing the minor relation by topological embedding above we
obtain several other interesting problems.

In order to outline the proof of (1.5), we need to introduce the concept
of an end of an infinite gr'pW. A ray is a one-way-infinite path. Two rays
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p, a, which are subgraphs of the same graph G, are equivalent if, for every
finite subgraph H of G. the infinite parts of p - H and a' - H lie in the same
connected component of G - H. Halin [1] proved that

(1.8) two rays are equivalent if and only if there is another ray that meets

both of them infinitely often.

It is easy to verify that the above relation is an equivalence relation on rays
which are subgraphs of a fixed infinite graph G. The equivalence classes of
this relation are called the ends of G. An end is thick if it contains infinitely
many disjoint rays. A graph is planar if it has no minor isomorphic to K!5 or
to K 3,3. We establish the following result which will be used to prove (1.5).

(1.9) Suppose that G is a planar locally finite graph having exactly one end
and that this end is thick. Then G "m Gz~z or G =m Gz.N.

In the next section we describe the results used to prove (1.5) and (1.9),

2. Auxiliary results
The following assumptions will hold throughout this section:

(2.1) G is a planar locally finite graph that has exactly one end and this end
is thick;

(2.2) F is the set of all subgraphs F of G such that F is the union of a finite
number of disjoint rays.

We remark that several results stated in this section can be proved with some
of the conditions in (2.1) relaxed. However, we shall not need the more general
statements here.

A path P (or a cycle C) of G is reduced with respect to a ray p if P (or
C) either intersects p along a path (perhaps consisting of one vertex only) or
does not intersect it at all. Path P (or cycle C) is reduced with respect to an
element of F if it is reduced with respect to all its components. We show that

(2.3) for every F in F and every finite subgraph H of G, if G - H contains a
path that joins two of the rays p and a in F, then G - H contains a path that
joins p and a and is reduced with respect to F.

We use (2.1), (2.2), and (2.3) to prove the following result.

(2.4) G contains a minor isomorphic to the infinite binary tree.

A path P or a cycle C of G is said to collate an element F of F if it meets
all rays in F and is reduced with respect to F. We use (2.1), (2.2), and (2.3)
again to show that
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(2.5) for every F in F and every finite subgraph H of G, there is a path P in
G- H that collates F.

Suppose F is an element of Y and P is an path of G that is reduced
with respect to F. Then P induces a linear undirected order on the (possibly
empty) subset Fp of F consisting of those rays in F that meet P. The F-trace
of P is Fp ordered as described. Similarly, if C is a cycle of G that is reduced
with respect to F, tl~en C induces a circular undirected order on the subset
Fc of F consisting of those rays in F that meet C. The F-trace of C is FC
ordered as described.

It follows from an easy application of the infinite version of the pigeon
hole principle and from (2.5) that

(2.6) for every F in Y, there is an infinite set R of disjoint paths in G such
that each path in R collates F and all the paths in R have the same F-trace.

We also consider the following property that G may or may not satisfy.

(2.7) For every element F of Y and every finite subgraph H of G, there is a
cycle C in G - H that collates F.

It takes another application of the infinite version of the pigeon hole principle
to show that

(2.8) if G satisfies (2.7), then, for every F in F, G contains an infinite set R
of disjoint cycles all of which collate F and have the same F-trace.

We use (2.4), (2.6), and (2.8) to show that

(2.9) GZ×N :_, G, and

(2.10) if G satisfies (2.7), then Gzz -<,m G.

Robertson, Seymour, and Thomas [4] proved that

(2.11) if K is a finite planar graph, then there is an integer k and an isomor-
phism f from K to a minor of the k x k-grid.

Two rather technical modifications of this result describe the isomorphism f
in (2.11) in more detail. Using these results, it can be shown that

(2.12) G <m Gzxz; and

(2.13) if G fails to satisfy (2.7), then G <m GZxN.

3. Proofs of the main results
Observe that (2.9), (2.10), (2.12), and (2.13) imply (1.9). To show (1.5),

we must establish that
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(3.1) Gz×N <m Gz~z,

and, for every graph K such that Gz×N _•m K <_n Gzxz,

(3.2) either K 'm GzxN or K Žm Gz~z.

It is clear that GZxN is a minor of Gzxz. To see that Gz>(z is not a minor
of GzxN, observe that if G equals Gzxz, then G satisfies (2.7), whereas if G
is a minor of GZxN, it does not. Hence (3.1) follows and we concentrate on
proving the other part of the claim.

First we show that

(3.3) ifK is a subgraph of Gzxz such that GZXN <.m K, then K %-, GZXN

or K _-m Gzxz.

We begin the proof of (3.3) by using (1.9) to show that

(3.4) if H is an infinite connected subgraph of Gzz and K = Gz)z - H,

then K _<. GZxN-

Next we consider a subgraph H of Gzxz all of whose components are finite
and such that, for any two distinct components L. M of H, component Al
is a subgraph of the infinite component of GzXz - L and no vertex of L is
adjacent in Gz.z to a vertex of M. Such a subgraph H of Gz z will be called
distributed. We again use (1.9) to show that

(3.5) if H la a distributed subgraph of Gzxz and K = Gzxz - H. then
K nm Gzxz.

Then (3.4) and (3.5) are used to conclude the proof of (3.3).
Result (3.3) states that a deletion minor K of Gzxz such that GzxN --m

K satisfies (3.2). It remains to show that a contraction minor K of Gzz such
that GzxN <m K also satisfies (3.2). To do this, we employ the concept of
planar duals. Observe that the full grid is self-dual, and while the half-grid is
not, it is minor equivalent to its dual. Using this observation, we prove that

(3.6) if H is an infinite subgraph of Gz~z and K is obtained from Gzz by
contracting H, then K <.m GZ×N; and

(3.7) if H is a distributed subgraph of Gzxz and K is obtained from Gzz
by contracting H, then K '-m Gzxz.

Finally, since any minor of Gzxz can be viewed as a contraction minor of
a subgraph of Gzxz, we conclude that (1.5) holds.
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Dominating functions
and topological graph minors

REINHARD DIESTEL

An infinite graph G is called dominating if its vertices can be labelled with
natural numbers in such a way that for every function f: w -+ w there is a
ray in G whose sequence of labels eventually exceeds f. Conversely, G is

called bounded if for every labelling of its vertices with natural numbers there
exists a function f: w --+ w which eventually exceeds the labelling along any ray
in G. This expository paper describes recent classifications of the dominating
and the bounded graphs by forbidden topological minors, and indicates some
connections of these results to infinite games.

Introduction

If f and g are functions from w to w, we say that f dominates g if f(n) > g(n)
for all but finitely many n E w. A family Y of w --+ w functions is called a
dominating family if every function g: w --+ w is dominated by some f e Y. The
least cardinality of a dominating family is denoted by 0.

Similarly, a family T of functions from w to w is said to be bounded by a
function g: w - w if g dominates every f E Y; if no such g exists, 7" is called
unbounded. The least cardinality of an unbounded family is denoted by b.

It is not difficult to see that any unbounded family of functions must be un-
countable. Indeed, if " = { f,, I n c - } is a countable family of w - w functions,
then g: w --+w defined by g(n) := max{ fo(n),..., f,(n)} is a bounding function
for )". Thus, b > w. Since any dominating family is clearly unbounded, we
further have b < 0. Finally, the set of all w --+ w functions clearly defines a
dominating family; since there are exactly continuum many w --+w functions, we
have

w < b < D < 2w.

Set theorists have traditionally been interested in the question of when the
above inequalities may be strict, and how b and 0 compare with other cardi-
nals between w and 2'. In other words, it has been asked just how much the
cardinality of a family of functions has to be constrained in order to force it to
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become bounded or to cease to be dominating. This question depends on the
axioms of set theory assumed, and we shall not pursue it further here. Instead,
we shall.ask how we can force a family of functions to becomc bounded (or to
cease to be dominating) by restricting the independence of its members.

This can be done naturally as follows. We shall label the vertices of an infinite
graph with integers, and consider as our family of functions the labellings along
one-way infinite paths, or rays, in this graph. Depending on how much different
rays in the graph intersect, it may turn out that their labellings can never form
a dominating or an unbounded family, even when the graph contains continuum
many distinct rays.

To be precise, let us say that a graph G is dominating if there exists a
labelling f: V(G) -- w of its vertices such that for every f: w --+ w there is a ray
vovl ... in G with £(vn) > f(n) for all but finitely many n. Similarly, G is called
bounded if for every labelling I: V(G) -*-w there exists a function f: w -- w such
that, whenever vovi ... is a ray in G, we have I(vn) <_ f(n) for all but finitely
many n. If G is a graph with a fixed labelling, we shall not always distinguish
between a ray in G and its sequence of labels, so that we may speak of functions
dominating rays and vice versa.

Not- that, by definition, supergraphs of dominating graphs are again domi-
nating, and subgraphs of bounded graphs are again bounded. We may therefore
hope to classify the bounded and the dominating graphs by identifying some
particular 'minimal' prototypes of unbounded or dominating graphs, and show-
ing that a graph is unbounded or dominating if and only if it contains one of the
respective prototypes. In fact, we shall see that a graph is bounded if and only if
it contains none of four specified graphs as a topological minor. The dominating
graphs will be characterized similarly.

The prototype unbounded or dominating graphs appearing in these charac-
terizations will be discussed in Section 1, together with some other examples. In
Section 2 we present the two classification theorems, and take a glance at how
they are proved. Section 3 introduces a framework for the definition of infinite
games related to the domination of functions arising from rays in labelled graphs;
two specific games, the dominating game and the bounding game, are analysed
and winning strategies given.

The notation used will be standard; see e.g. [ 1 ]. When a graph G contains
a subdivision of a graph H as a subgraph, we also say that H is a topological
minor of G. If P is a path containing vertices u and v, we write uP, Pv and
uPv for the obvious subpaths of P starting in u and/or ending in v.

1. Examples

In this section we collect together a few typical examples of graphs that are, or
fail to be, bounded or dominating. Note that any dominating graph is automat-
ically unbounded.
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We have already seen that any unbounded family of functions must be un-
countable. If a graph contains only countably many rays, it is therefore trivially
bounded.

For a more interesting example of bounded graphs, consider any connected
locally finite graph G, and pick a labelling. For each vertex v E G, we may define
a function f,: w -- w by setting f. (n) to be the maximum of all the labels of
vertices at distance at most n from v. Clearly, f, dominates (the labelling along)
every ray in G that starts at v. Since G has only countably many vertices, there
exists a function f which dominates every f, with v E V(G), and hence every
ray in G. Therefore G is bounded.

On the other hand, it is not difficult to find graphs that are unbounded or
even dominating. For example, the union of 0 disjoint rays is dominating, and
the union of b disjoint rays is unbounded: just label each ray by a different
member of some dominating or unbounded family of functions.

So how about countable unbounded graphs? The complete graph K" on
a countably infinite set of vertices is clearly dominating. Indeed, consider any
labelling f that uses arbitrarily large labels: then, for any f: w --*w, we may find
a ray v0vl ... with f(vn) > f(n) for every n. Similarly, the w-regular tree T, is
dominating, and hence unbounded: just label its vertices injectively, i.e. so that
any two labels are different.

In fact, any subdivision T of T, is unbounded. To see this, let again
1: V(T)---w be any injective labelling, and let f: w---w be any given function.
We may then choose a ray v0vl ... in T as follows. If n = 0 or vn_ 1 is a branch
vertex of T, choose vn so that e(vn) > f(n); this can be done, because t is
injective. Otherwise let vn be any hitherto unused neighbour of vn-,. (This
vertex is unique unless n = 1.) Since any ray in T contains infinitely many
branch vertices, we see that e(vn) > f(n) for infinitely many n, and hence that
T is unbounded.

It is an interesting fact that, by contrast, subdivisions of T" need not be
dominating. Indeed, consider any enumeration e: w -- E(T•) of the edges of T",
and let T be the tree obtained from T, by subdividing e(n) exactly n times for
each n.

Proposition 1.1. T is not dominating.

Proof. Let f: V(T) --* w be any labelling of the vertices of T. Let f: w - w be
an increasing function satisfying f(n) > max { 1(v) 1 v e e(n) } for all n E w. We
show that, for any ray R = vov 1 ... in T and any i E w, there exists a k > i withf~k) > vL_

Given such R and i, choose j,k E w with i < j < k so that vivk = e(n) for
some n. Then R traces out the subdivided edge e(n), so in particular we have
k > IviRvkI = n + 2. Since f is increasing and f(n) > e(vi) by definition of f,
this gives f(k) > f(n) > £(vk) as desired. 0

If, as we have seen, T, is dominating but subdivisions of it need not be,
can we say exactly which kinds of subdivision of T,, yield a dominating graph?
Indeed we can: as Theorem 2.3 of Section 2 will show, a subdivision of T7, is
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dominating if and only if it contains a particularly simple subdivision of T•, to
be called 'uniform', in which for every branch vertex there exists a bound on
how often the edges incident with this vertex in T, have been subdivided.

More precisely, let us call a subdivision T of T, uniform if it has a branch
vertex r, called its root, such that whenever v is a branch vertex, all the subdi-
vided edges at v that are not contained in the unique path from v to r have the
same length.

Proposition 1.2. Uniform subdivisions of T,, are dominating.

Proof. Let T be a uniform subdivision of T•, with root r say. Let t: V(T) --+ w
be any injective labelling; we show that for every function f: W - W there is a
ray R in T which dominates f.

Since any r in T is a concatenation of paths that are subdivided edges
of T,,, we may define R = vov 1 .. , inductively by choosing these subdivided
edges one at a time. Let vo = r. Suppose that vn has been defined for every
n < m, and that vm ib a branch vertex of T. Then all the (infinitely many)
subdivided edges at vm that are not contained in the portion of R defined so
far have the same length k, and so we can find one of them, say sO ... sk where
so = vm, such that f(si) > f(m +i) whenever 0 < i < k. Setting Vm+i = Si,
we obtain e(vm+i) > f(m + i) for all these i; moreover, Vm+k is again a branch
vertex ofT. This completes the induction step, and hence the construction of R.
Since 1(vn) >_ f(n) for every n > 0, it is clear that R dominates f. -

Surprisingly, there is yet another way to obtain a dominating graph from a
subdivision of T,: by taking b disjoint copies of it. Note that 0' disjoint copies
are trivially dominating, since each of them contains a ray; it can be shown,
however, that b subdivisions of T•, which need not be isomorphic, suffice:

Proposition 1.3. [51 E a graph is the union of b disjoint subdivisions of T•,
then it is dominating. 0

We have now seen all tii, amples of dominating graphs that will be needed
for our classification theorem in Section 2: Theorem 2.3 says that a graph is
dominating if and only if it contains a uniform subdivision of T,,, b disjoint
subdivisions of T,, or 0 disjoint rays.

For the classification of bounded graphs, however, there are two more proto-
typical unbounded graphs that may occur. One of these is the graph B obtained
from a ray vovl ... by adding, for each n E w, a countably infinite set of inde-
pendent v3,•+l-V3,+3 paths of length 2 (Fig. 1).

FIGURE 1. The prototype bundle graph B
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To show that B is unbounded, let t be any injective labelling of V(B), and
assume we are given a function f: w ,- w. Let us specify a ray R = u0uI...
as follows. Put u0 := v0 and ul := v1 . For u2 , we have an infinite choice of
neighbours of v1, all labelled differently. We may thus choose as u2 a neighbour
of v, whose label is greater than f(2). We continue with U3 := v3 and U4 := V4,

where again we have an infinite choice for u5. Proceeding in this manner, we
may choose R in such a way that t(un) exceeds f(n) for every third value of n,
and thus f fails to dominate R.

In a similar way one can show that every subdivision of B is unbounded; any
subdivision of B will be called a bundle graph.

Our last example is similar to B. Let F be the graph obtained from a ray
V = vovl ... by adding disjoint rays P2, P4, P6,... with Pk n V = { vk }, and
joining v2n+1 to all the new vertices of P2,,+2 for every n E w (Fig. 2).

0a

FIGURE 2. The prototype fan graph F

F is again unbounded, the proof being essentially the same as for B. Indeed,
given any injective labelling and any function f: w --*w, we can easily find a
ray R through F whose labels exceed the corresponding values of f again and
again. All we have to ensure when defining R is that we start at vo, and never
use an edge of one of the paths Pk in its 'upward' direction. (This would force
us to trace out the entire tail of Pk, leaving us unable to return to a vertex of
type v2,,+1 with an infinite choice ahead.)

In a similar way one can show that every subdivision of F is unbounded; any
subdivision of F will be called a fan graph.

It is perhaps remarkable that F can be made bounded by what would seem
to be an inessential change. If the 'fans' in F are flipped horizontally, i.e. if
the vertices v2,l+1 are joined to all the vertices of P2 , rather than to those
of P2,,+2 (add a ray Po), the resulting graph is bounded. This example is due
to Halin [6]; the reader may find it amusing to prove its boundedness without
using Theorem 2.1 below.

2. The classification theorems

In this section we state the results from [3] and [5] which characterize the
bounded and the dominating graphs by forbidden configurations, and give some
indications of how these theorems are proved. The full proof of the bounded
graph theorem is too complex to be sketched in detail, but we shall give an
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outline of the main ideas involved. For the dominating graph theorem, we shall
be able to give a fairly accurate sketch of what may be the most typical case.

Let us begin with the bounded graph theorem, which was proved in [3]. The
result was conjectured by Halin almost 30 years ago, but only few partial results
used to be known. Recall that T,, B and F denote the w-regular tree, the
prototype bundle graph and the prototype fan graph, respectively, and let Ib
denote the union of b disjoint rays.

Theorem 2.1. (Bounded graph theorem)
A graph is bounded if and only if it contains none of the following graphs as a
topological minor: Ib; T,,; B; F.

The bounded graph theorem has some fundamental implications for the con-
cept of boundedness for graphs. Let us mention two of these. First, the theorem
implies that the boundedness or unboundedness of a graph depends only on its
countable subgraphs: unless the graph contains b disjoint rays-in which case it
is trivially unbounded-it is bounded if and only if all its countable subgraphs
are bounded.

Secondly, the translation of the original problem of bounding w ---lw functions
to a problem on graphs has been successful, in that the unboundedness of a
graph is shown to be a truly structural graph property, not one of the existence
of particularly intricate labellings: if a (countable) graph is unbounded then, by
the bounded graph theorem, this is witnessed by any injective labelling.

As for the proof of the bounded graph theorem, we have already seen the
forward implication: the graphs Ib, T•, B and F and their subdivisions are
unbounded, and so they cannot be subgraphs of a bounded graph. For the
converse implication, let us first get some intuition for why these four types of
subgraph might be natural ones to occur inside an arbitrary unbounded graph G.

If G has b or more components each containing a ray, we have G D lb. If not,
it suffices to show that every such component is bounded: by definition of b,
there will then be a bounding function for all of G.

We may thus assume that G is connected. As we saw earlier, locally finite
connected graphs are bounded, so G will have vertices of infinite degree. Let
v be such a vertex, and assume that G contains infinitely many rays starting
at v. (This is not an enormous assumption, given that G contains enough rays
to make it unbounded.) Could it be that these rays can be chosen independent,
i.e. so that any two of them meet only in v? If so, their union might be viewed as
the beginning of a subdivided T,: unless v is an atypical vertex of G (in which
case the unboundedness of G would not depend on it), there should be another
vertex of infinite degree on one of the rays and a similar set of independent rays
issuing from it. If this process continues for long enough, it is not unreasonable
to assume that the union of all thc rays involved contains a subdivision of a
graph in which every vertex has infinite degree-a graph which is easily shown
to contain a copy of T,.

Suppose now that there is no infinite set of independent rays starting at v.
Then, by Ramsey's theorem, there is an infinite set of rays from v such that every
two of them meet also in some other vertex. Now if v is the only vertex that
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lies on infinitely many of these rays, then it is easy to find a 'fan' in their union.
Indeed, let R be one of the rays, and notice that for every finite set of vertices we
may find another ray from v avoiding this set. We may thus inductively select
an infinite sequence of initial segments of further rays from v, which avoid R
except for their two endvertices, and which meet pairwise only in v.

We may therefore assume that there exists a vertex w which lies on infinitely
many rays from v. We thus have an infinite set of v-w paths in G whose second
vertices are distinct. Using K6nig's infinity lemma, it is not difficult to select
an infinite subset of these paths forming either a 'bundle' or a (backward) 'fan'
(Fig. 3).

1) l V U

FIGURE 3. Infinitely many v-w paths forming a
bundle or a fan

The main purpose of the above considerations was to see that fans and bun-
dles, as well as disjoint or infinitely branching rays, are indeed natural ingredients
of unbounded graphs. It must be said, however, that these considerations have
not taken us anywhere near a proof of the bounded graph theorem. Indeed, one
might well find various fans and bundles in an unbounded graph: the problem
is that, in general, they will be far from disjoint. The difficulty in proving the
theorem lies in the task of finding some structure in the graph that enables us
to construct an infinite sequence of disjoint bundles or fans, as tidily threaded
on a ray as in the graphs B and F.

To get to the heart of the proof, let us recall the proofs of the unboundedness
of bundle graphs, fan graphs and subdivisions of T,, and see what these proofs
have in common.

In the case of a subdivision T of T•, we just took any injective labelling of
T and observed that, for any given function f: w -- w, we could easily find a
ray R through T which was not dominated by f. Indeed, no matter how we had
chosen an initial segment of R, we would be able to get to another branch vertex
of T, where we would have an infinite choice of labels for the next vertex of R.
This label could thus be chosen larger than the corresponding term in f.

For a bundle graph or a fan graph, finding such a ray R was hardly more
difficult. All we had to make sure of was that the paths P we considered for
initial segments of R belonged to a certain family P: a family of paths which
could, again and again, be extended to reach unused vertices of infinite degree.
In the bundle graph B, P consisted of the paths from left to right; in the fan
graph F, of those towards the right and down the spines of the fans.
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The idea of finding such a family of paths in an unbounded graph G is central
to the proof of the bounded graph theorem, so let us give it a precise form. Let
us call a family P of finite paths in G a good family if

for every path P E P there exists an n E w such that P has infinitely
many extensions in P of length n.

Note that the existence of a good family of paths in G implies that G is
unbounded. Indeed, if in condition (*) we choose n minimal, then there exist
infinitely many extensions P, E P of P that agree up to their nth (= penulti-
mate) vertex and differ pairwise at their last vertex. Thus if P is viewed as the
beginning of a ray R being constructed to elude a given function f (as in our
discussion of B and F), then the (n + 1)th vertex of this ray can be selected
from an infinite choice, and therefore in such a way that its label exceeds the
corresponding term in f. In this manner we may construct R inductively as the
limit of a nested sequence of paths from P.

Moreover, if G contains a bundle graph, a fan graph or a subdivision of T",
then clearly G contains a good family of paths. Thus if the bounded graph
theorem is true, then any graph G not containing Ib satisfies the following im-
plications (which in turn imply the bounded graph theorem):

G is unbounded G contains a good G contains T,, B or F
family of paths as a topological minor

It is therefore reasonable to expect that the proof of the bounded graph
theorem could be carved up into two chunks, verifying these two implications
separately. This is indeed the basic structure of the proof as given in [3]. In
practice it turns out to be convenient for the proof of the second implication
to strengthen the definition of a good family considerably, but for simplicity we
shall here work with the definition given above. The only visible effect of this
simplification will be that the first implication will appear to be easier to prove
for graphs of cardinality < b than for arbitrary graphs. This is not actually
the case, i.e. the ideas outlined below for the 'case' of IGI >_ b would in fact be
essential ingredients even of a proof for countable graphs only.

In order to prove the first implication, let us try to find a good family of
paths in G by induction: starting with the family PO of all finite paths in G,
let us recursively discard any paths P from this family that violate the defining
condition (*) for a good family, and hope that eventually we will be left with a
family that is indeed good. More precisely, let us define subfamilies P', of PO,
for all ordinals a > 0, as follows.

Suppose first that a is a successor, say a = /3 + 1. If PO contains a path
P =: Pg which violates (*) (i.e., a path P such that, for each n E w, Pp contains
only finitely many extensions of P of length n), let P,, be obtained from Pp by
deleting Po and all its extensions P' E Pp. If Pp contains no such path P, let
P , : = Pp. If a is a lim it, let P ,,, : = n ,<•,,P p -

Clearly, there exists an at of cardinality at most IPOJ such that P,,+ = P,-
let ao* be the least such a, and set P,. =: P. Clearly P satisfies condition (*),
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and is therefore a good family if and only if it is non-empty. To completk the
proof of the first implication, we thus have to show that P $ 0.

We now prove that P $ 0, vuder the additional assumption that a* < b. The
problem of how P0, and hence a*, might be reduced to cardinality < b without
the risk of ending up with P = 0, will be addressed afterwards.

Suppose P = 0; we show that G is bounded, contrary to our assumption. Let
t: V(G) -- w be an arbitrary labelling of G. We shall define functions f8,: w - w,
one for each a < a*, so that any function f* that dominates every f", will
bound G; such a function f* exists by our assumption that a* < b.

For each a < a*, let the kth term of ff,, be defined as

fv if k < IPcI
max{t(t(P)) I P E P,\P8 + and IPj = k} ifk > IP0 J,

where vk is the kth vertex of P,, and t(P) is the last vertex of P. Recall that, by
definition, P,8 has only finitely many extensions P E Pc, of any given length; since
P8 \P,+i is precisely the set of P8 and all its extensions in P,, the maximum
used above is therefore just the maximum of a finite set.

To show that f* bounds G, let R C G be any ray. Since every initial segment
of R is in P0, but P = 0 by assumption, each initial segment of R is discarded
at some (non-limit) step in the recursive definition of P; let a < a* be minimal
such that P,\P,+, contains an initial segment of R. Then P, is itself an initial
segment of R. Moreover, all the extensions of P0, in R are also in P, (by the
minimality of a), and were hence discarded together with P8 . Thus, P8 \P,+ 1
contains every initial segment of R of length k > IP 1. Therefore f" dominates R,
by definition of f,, and so f* dominates R as claimed.

To complete the proof of our 'first implication' (i.e. that any unbounded
G 5 Ib contains a good family of paths), let us now see how we can replace P0
in the above recursion with a smaller starting family. This family should still
be large enough to contain a good family (provided that G is unbounded), but
small enough to allow the recursion to be completed in fewer than b steps.

To achieve this, we make use of a structure theorem for connected graphs
not containing a topological K& minor; note that we may assume this for G, as
otherwise G contains a subdivision of T,, (and, in particular, a good family of
paths). Let T C G be a tree, with root r say, and let us call a ray R C T normal
if it starts at r. The tree T will be called a skeleton of G if, for each normal ray
R, we can assign to every vertex of G a vertex in R, called its R-height, so that
the follow;ng conditions are satisfied:
(i) if t is a vertex on T, then the R-height of t is the vertex of R closest to t

in T;
(ii) if v is a vertex of G\T and v is joined to a vertex t E T\R by a path whose

interior avoids T, then the R-height of v equals the R-height of t;
(iii) if a vertex v has R-height x and a vertex w has R-height different from x,

then the path rTx separates v from w in G.
Thus, if T is a skeleton of G and R C T is a normal ray, and if C is a component
of G\R containing the branch B of T, say, then every vertex of C has the same
R-height, namely the unique vertex of R to which B is attached in T.
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Our structure theorem for graphs without a topological K& minor, which
builds on work of Jung and Halin and is proved using simplicial decompositions
of graphs (see [2]), can now be expressed as follows:

Theorem 2.2. If G is connected and contains neither Ib nor a subdivision of K&
as a subgraph, then G has a skeleton T of order < b such that every ray in G
meets some ray in T infinitely often.

Intuitively, Theorem 2.2 says that G contains a 'small' skeleton, and that
the re:t of G is 'wrapped around' this skeleton in a bounded sort of way. The
reason ,hy this will be useful to us is that, roughly speaking, it allows us to
distinguish two cases. Either G is wrapped around T tightly, in which case there
Le a good family of paths all staying close to the skeleton; since the skeleton
itself has order < b, these paths can be extracted recursively from a family P0
of order < b, as desired. Alternatively, the wrapping around T will be bulky in
many places of different R-height (for some nur-ial ray R). We may then extract
"a fan or a bundle at every such place, and combine them into a fan graph or
"a bundle graph: as the R-heights of different fans or bundles are distinct, they
will be pairwise disjoint. (Recall that keeping fans or bundles disjoint is one of
the main problems in the entire proof.)

Let us make these ideas more precise. When s and t are comparable vertices
of T, i.e. if (say) s lies on the unique r-t path in T, let us say that there is thick
padding around T at the pair (s, t) if G contains infinitely many (not necessarily
independent) s-t paths whose interiors avoid T; otherwise we shall speak of thin
padding at (s,t). Note that the s-t paths in the padding at (s,t) need not be
iin ked up with each other in G\T; in particular, their vertices may have different
heights with respect to a normal ray R.

Recall from our introductory discussion that any union of infinitely many s-t
patho. with distinct second vertices contains a bundle or a fan (Fig. 3). Using
similar arguments, it is not difficult to show that if T has thick padding around
it at (s,t), then somewhere 'inside this padding' (i.e., using no vertices of T
other than s and t), there must be a bundle; note that there cannot be a fan
there since, by Theorem 2.2, G\T contains no ray.

We now come to the distinction between the two cases of whether G is
'wrappeu around T tightly' or rot, Suppose first that, for every normal ray R,
the padding around R becomes thin eventually, i.e. there are only finitely many
non-overlapping pairs of vertices of R at which there is thick padding. We may
then restrict the starting family Po for our recursion to paths which leave T only
at palrs where the padding is thin; in other words, whenever P c P0 is such that
sPt is a path of length > 2 and sPt nT = {s,t}, the set of all such s-t paths
in G is finite. Each path in P 0 is then determined by its sequence of vertices on
T and the finite choices of connecting paths b.,ween these vertices, so we have

0Pol < ITI < b ,; desired.
We m-y th, efore assume that T contains a normal ray R with thick padding

at infinitely -!any non-overlappfng pairs of i, vertices. Let us select an infinite
sequence of such pairs and extract a bundle from the padding at each of these
pairs. Let us ca!l such a bundle wide if the set of R-heights of its vertices is finite;
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otherwise let it be tall. Then there is an infinite subsequence of our pairs such
that either each one of the associated bundles is wide, or each of these bundles
is tall.

If every bundle is wide, we may select a further subsequence of pairs such
that the R-heights of bundles associated with different pairs are disjoint; with a
bit of work, these bundles may then be combined into a bundle graph. Suppose
finally that every bundle in the sequence is tall. It is not difficult to show that
the endvertices of such a bundle (i.e. its two vertices of infinite degree) must be
on R. Thus, R has infinitely many vertices-two for each bundle-every one of
which has neighbours of arbitrarily large R-height. Choosing appropriate dis-
joint connecting paths betw ,n these neighbours and their respective R-heights
on R, we obtain a graph that is easily seen to contain a subdivision of K,.
This contradicts our assumptions about G, completing the proof of the 'first
implication'.

The proof of the second implication, the fact that if G contains a good family
of paths then it contains a bundle graph, a fan graph or a subdivision of T7,
makes up about two thirds of the proof of the bounded graph theorem. The
techniques used are largely similar to those outlined above. It is assumed that G
is connected and has no topological KI,, minor, and therefore contains a skeleton.
The skeleton may then be used to keep different fans and bundles separated by
their R-heights, for suitable normal rays R; thus, if sufficiently many fans or
bundles can be found, these may be combined to a bundle graph or a fan graph.

Let us then mention briefly how these fans or bundles are generated. Let P be
"a good family of paths in G. The essential structure of P can be represented by
"a graph T!, which looks very similar to a T7, and which acts as something like a
covering tree for the paths P E P in G. If G resembles T closely, it can be shown
to contain a subdivision of T., On the other hand, if the paths of P intersect a
lot more (in G) than do their lifts in T, they generate sufficiently many bundles
or fans to make a bundle graph or a fan graph in G. The distinction between
the latter two cases depends on the relationship between T and the skeleton T
of G.

To see how T is obtained, let us first select a simple subfamily of P, which
will still be a good family. We start with any path Po E P. By condition (*),
P0 has infinitely many extensions in P of some common length n. Among these,
select infinitely rmany that agree up to their penultimate vertices; this can be
done if n is first chosen minimal. In the same way, we then find an infinite
set of extensions for each of these new paths, again (in each case) of some
common length and agreeing up to their penultimate vertices. In w steps, we
have constructed a subfamily Q of P which is still good, and which clearly has
a structure similar to a subdivision of T,: let Q' be the closure of Q under
taking initial segments, set V(T) = Q', and join vertices P, P' E Q' by an edge
whenever P' is an extension of P by one vertex. The tree T obtained in this
way is a subdivision of T7, except for its 'long root' made up of vertices that are
proper initial segments of P0 .

Let r: V(T) -- V(G) be the map that assigns to each P E V(T) its last
vertex. Then if p is the first vertex of Po. and the trivial path { p } E V(T) is
taken to be the root f T, we see that 7r maps each path of the form { p }TP to
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the path P C G in a natural way. Conversely, each path P = vo ... v, E Q' lifts
uniquely to the path in T with vertices Pvi, i = 0,.. ,n.

Now let P be a branch vertex of T, with ?r(P) = v say, and consider the sub-
divided edges at P pointing away from the root { p }. If these subdivided edges
project under 7r to paths in G that are disjoint except for their common initial
vertex v, then these paths mnfight be used in the construction of a subdivided T,
in G.

On the other hand, it might be the case that G has a vertex w such that
every subdivided edge of 7- at P contains a vertex Q with 7r(Q) = w. In this
case, the subdivided edges at P have initial segments which project to an infinite
set of v-w paths in G. As we saw earlier, the union of such a set of paths makes
up a bundle or a fan.

Using an easy Ramsey type argument, we may now assume that all the branch
vertices of T behave in the same way; then either we obtain a subdivision of 7T
in G straight away, or else we obtain a bundle or a fan for each branch vertex
of T. Using a number of similar Ramsey type arguments, this infinite set of
configurations in G (fans or bundles) can then be streamlined in several ways.
Eventually we end up with a set of configurations that are not only either all fans
or all bundles, but which are compatible (with respect to their position towards
the skeleto'n T) in many other ways too. (In particular, these fans or bundles
will be pairwise disjoint.) In this way we eventually obtain a fan graph or a
bundle graph in G, completing the proof of the bounded graph theorem. 0

We now turn to the dominating graph theorem, proved in 151. Its proof is
much shorter than that of the bounded graph theorem, and we shall be able to
give a fairly complete sketch of the most typical case.

Theorem 2.3. (Dominating graph theorem)
A graph G is dominating if and only if it satisfies one of the following three
conditions:

(i) G contains a uniform subdivision of T,,;

(ii) G contains b disjoint subdivisions of T,;

(iii) G contains Z disjoint rays.

We prove the theorem under the set theoretic assumption that b = 0. This
is a comparatively weak assumption, much weaker, say, than Martin's axiom
or even the continuum hypothesis. Note that case (ii) of the theorem is now
redundant, since Z subdivisions of T, contain a disjoint rays.

We have already seen that uniform subdivisions of T, and unions of a disjoint
rays are dominating; it remains to prove that if G is dominating then G contains
one of these two types of subgraph.

The basic idea of the proof is similar to the way in which we obtained a good
family of paths for the bounded graph theorem. We recursively define a rank
function p on some or all of the vertices of G, with the following property. If
any vertex remains unranked, i.e. if the recursion ends before p is defined on all
of V(G), then G contains a uniform subdivision of T,; if p gets defined for every
vertex, then either G -ontains 0 disjoint rays or G is not dominating.
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Set p(v) = 0 for all vertices v that have finite degree in G. Now let a > 0 be
given, and suppose that for every / < a we have assigned to some vertices the
p-value 3. Set p(v) = a for all those vertices v for which

p(v) is still undefined, and
whenever P is a set of finite paths from v, pairwise disjoint except for v, all
of the same length, and each ending in a vertex which has not been given
any p-value # < a, then P is finite.

If there is no such vertex v, we terminate the recursive definition of p, and leave
p undefined for any remaining vertices of G.

It is not difficult to see that if p remains undefined for some vertices v C- G,
then G contains a uniform subdivision of T,. Indeed, the definition of p implies
that for every such v there exists an infinite set of paths from v, pairwise disjoint
except for v, all of the same length, and each ending in a vertex for which p is
also undefined. It is now easy to use all these paths as subdivided edges to build
a uniform subdivision of T,, choosing them inductively in w steps and so that
the portion of the tree constructed remains connected at all times: then at each
point of the construction only finitely many vertices have been used, but there
is always an infinite set of disjoint paths from which the next subdivided edge
can be chosen.

Let us therefore assume that p(v) is defined for all v E V(G), and that G
contains no union of 0 disjoint rays; we shall show that G is not dominating. Let
f: V(G)----w be any labelling; we now have to find a function f: w-*w which is
not dominated by any ray in G.

Let a path P from u to w in G be called upward if

p(w) = max{p(v) : v E P}.

We first show the following.

(2.3.1) For each u E V(G) and each integer m, there are only finitely many
vertices w such that G contains an upward path of length m from u
to w.

Suppose the contrary, and consider a vertex u, an integer m, and an infinite
set { wn : n E w } such that for each n there is an upward path P, of length m

from u to w,. Choose k < m maximal so that there exist a vertex v and an
infinite set P C { P,, : n E wI such that v is the kth vertex in very P E P.
(Note that k exists, because every P,., starts at u.) We shall now select an infinite
sequence { Pn, : i E w } of paths from P so that any two of these paths are disjoint
after v; since each Pr, is an upward path, and hence p(v) < p(wn) for every n,
this will contradict the definition of p(v).

Let Pr,, be any path from P. Now suppose Po,..,Pr have been chosen,
and let U be the union of their vertex sets. By the maximality of k, there are
at most finitely many paths in P that contain a vertex from U after v; let Pn,+,
be any other path from P. It is then clear that the full sequence { P,,, : i E w
has the required disjointness property. This completes the proof of (2.3.1).
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We now define the function f which will show that G is not dominating. Let
U be the vertex set of the union of some maximal set of disjoint rays in G. By
assumption there are fewer than a rays in this set, so IUI < 0. Note also that
every ray in G meets U in infinitely many vertices. Using (2.3.1) we may define,
fc- each u r U, a function f.: w -•w such that f/(m) > e(w) for every m E W

and e',ery vertex w to which u can be linked by an upward path of length m.
By our hypothesis that b = 0 > [UI, there exists an w -- w function which
dominates each of the functions f,; let f be such a function. Redefining f(n) as
max { 1(k) : k < n } if necessary, we may assume that f is increasing.

Now let R = vov1 ... be any ray in G; we have to show that f(k) > e(vk) for
infinitely many k E W. Using the fact that the ordinal sequence p(vo),p(v 1),...
cannot contain an infinite decrecsing sequence, it is not difficult to see that we
can find an infinite increasing sequence { ki : i e w} such that p(vk,) _ p(vk,+1 )
for each i, and p(vj) < p(v.,) whenever ki < j < ki+4 . Now pick k* > ko so
that u := vk. e U. Note that, for each ki > k*, the path uRvk,, is an upward
path of length ki - k*.

Since f dominates fi, there is some K E u; such that fu,(k) < f (k) for all
k > K. But then

fV, < f.,(k, - k*) <__ f(k, - k*) !__ f (k,)

for all i with ki - k* > K, by definition of fu = f,,.. Thus R fails to dominate f,
as required. 0

3. Domination games

As is well known, Adam and Eve used to play the following game. For a given
graph G, Adam first chooses a labelling e: V(G)--+w. Then the two players move
alternately: Eve, who moves first, plays a natural number, Adam a vertex of G.
In this way, Eve creates a function e: w --+ w, while Adam creates an w-sequence
of vertices.

In the bounding game, Adam tries to escape domination by Eve: he wins if
and only if he succeeds in constructing a ray A C G that is not dominated by
Eve's function e. Thus, playing Adam's part in the bounding game is like an
interactive version of trying to prove that G is unbounded. (The difference is that
now Adam does not know what Eve will play in future moves; for a proof that
G is unbounded, it would be sufficient to be able to construct an undominated
ray with respect to any w -w function given complete at the start.)

It is clear that if G is bounaed, then Eve has a winning strategy: once Adam
has chosen his labelling of G, she just plays a boinding function with respect
to this labelling, without ever paying attention to what Adam is doing. On the
other hand, Eve may still have a winning strategy when G is unbounded. For
example, Eve has a winning strategy for the graph Ib: she plays any number
in her first move, waits to see from which component of Ib Adam picks his first
vertex, and then plays a winning strategy for that component. (Recall that
each component of Ib is a ray, and is therefore bounded.) Since Adam can only
construct a ray if he stays in that component, Eve will win the game.
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The following result from [4 1 shows that the example of It does indeed mark
the difference between the graphs that are unbounded and those for which Adam
has a winning strategy in the bounding game. Its proof in (41 gives an explicit
winning strategy for either Adam or Eve, as appropriate.

Theorem 3.1. Adam has a winning strategy in the bounding game on G if and
only if G contains one of the graphs T•, B and F as a topological minor.

The dominating game is defined like the bounding game, except that now
Adam tries to construct his ray A in such a way that it actually dominates the
function e created by Eve (and is not just not dominated by it). Again, it is clear
that if Adam has a winning strategy in the dominating game on G then G must
be a dominating graph. However, unlike the similarity between the bounding
game and the bounded graph theorem, it turns out to be much harder for Adam
to win the dominating game on G than it is to prove that G is a dominating
graph: the followng result from [4] implies that the dominating game can be
won by Eve on 'most' subdivisions of T,,, including uniform ones, as well as on
disjoint unions of these (cf. Theorem 2.3).

Theorem 3.2. Adam has a winning strategy on a graph G if and only if G D T,.
Otherwise Eve has a winning strategy.

Proof. It is clear that Adam has a winning strategy if G D T,: he chooses a
labelling that is injective on this T•, and is then able to beat Eve in every move.
We shall assume that G 0 T,, and show that Eve has a winning strategy.

As in the proof of the dominating graph theorem, we start by recursively
defining a rank function p on some or all of the vertices of G. For each ordinal a,
give rank a =: p(v) to all vertices v such that all but finitely many neighbours
of v have rank < a. If any vertex remains unranked, then each of these vertices
has infinitely many unranked neighbours, and we may construct a T" C G from
these vertices by induction (in w steps, as in the proof of Theorem 2.3).

Thus, since G Z T, by assumption, p gets defined for every vertex of G. We
may now choose a winning strategy for Eve as follows. Let I be the labelling of G
chosen by Adam at the start of the game, and let Eve's first move be arbitrary.
Later, if Adam's last chosen vertex is v, let Eve play the number

I + max { e(w) I w is a neighbour of v and p(w) 2! p(v)).

by definition of p(v), the maximum above is just one over a finite set.
Now consider a run of the game in which Eve plays the above strategy. If

Adam fails to construct a ray, then Eve wins by definition. So assume that
Adam does indeed construct a ray A C G. Since there is no infinite descending
sequence of ordinals, A has infinitely many vertices whose rank is at most that
of its successor on A. But Eve beats Adam on all these successors, so A fails to
dominate her sequence e. Thus, Eve's strategy is indeed a winning strategy.

0
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An element a of the automorphism group AutX of the connected graph X is

called a translation of X if a(F) * F for every finite non-empty F Q V(X). The

following result was proved by R. Halin in [1] (Theorem 7).

Proposition 1. Let t be a translation of the connected graph X. There is a
unique end '9x of X such that rm(R) C Rfor some m > 0 and some R a "j9.

For a ray R = vlv 2 ... we denote the ray vnvn+l... by R[v,, oo) and

R(vn ., ,c).

We call a sequence v 1, v2 , ... of vertices on aray R bounded on R if there

exists a real M such that vn+ I is on R(vn, o0) and dR(vn, vn+ 1) < M, for all positive

integers n. Two rays R, R' in X are called b-equivalent in X if there exist a real M, a

bounded sequence v1, v2, ... on R and a bounded sequence w1, w2 ... on R' such that

d(vn, wn) < M for n = 1, 2, ... ; here d(vw) denotes the minimum length of paths

from v to w in X. We will show that b-equivalence defines an equivalence relation on

E.(X) and call the corresponding equivalence classes b-fibers.

Lemma 2.Let x1, x2 , ... and yl, Y2, ... be bounded sequences on a ray R.

There exist a real M, a sequence m(l) < m(2) < ... and a sequence n(l) < n(2) < ... of

natural numbers such that dR(xm(i), Yn(i)) :< M, m(i+l) - m(i) 5 M and

n(i+l) - n(i)!< M. (i = 1, 2....

Proof. By definition, there exists a real M such that dR(xn, Xn+ 1) < M and

dR(Yn, Yn+l) • M for n = 1, 2,.... Set m(O) = n(O) = 1 and assume that m(i) and n(i)

are constructed for some non-negative integer i. Let m(i+l) be the minimum integer m
such that xm is on R(yn(i), *a), and let n(i+1) be the minimum integer n such that yn

is on R[xm(i+l), -c).

By construction, dR(Xm(i), Xm(i+l)) < 2M and dR(Yn(i), Yn(i+l)) < 2M

fori= 1,2,.... U

To show that b--quivalence is an equivalence relation on rt(X) consider two pairs

R,.R' and R', R" of b-equivalent rays in X. There exist a real M, sequences

V1. v2, ... ; xI, x2, ... ; y1, y2, ... and w1, w2 , ... , bounded on respectively R, R', R'

and R" sp-ih that d(vn, xn) < M and d(yn, Wn)) : M for n = 1, 2 ..... We may assume



NOTES ON RAYS AND AUTOMORPHISMS OF LOCALLY FINITE GRAPHS 479

that M is also a common upper bound for all dR(vn,vn+l), dR'(xn,xn+i),

dR'(yn,Yn+l) and dR,(wn,wn+l). By Lemma 2 there exist integer sequences

0 < m(l) < m(2) < ... and 0 < n(1) < n(2) < ... such that m(i+l) - m(i), n(i+l) - n(i)

and dR'(xm(i), Yn(i)) are bounded by some real M'. It follows that

d(vm(i), Wn(i)) ! 2M + M', dR(Vm(i+1), Vm(i)) < MMW and dIR(wn(i+l), Wn(i)) <

MM. Hence indeed R and R" are b-equivalent. Ci

Clearly each end is the union of disjoint b-fibers.

For convenience and in view of Theorem 3 below we include a proof of

Proposition 1.

Proof of Proposidon 1. Pick a vertex x and a path P0 in G from x to r(x). Let

P be a minimal subpath of P0 (with respect to the subpath relation) such that

Tm(P)r'%P *0 for some m > 0, say rm(x) a V(P) for the vertex x on P. Then P has

the form P = P[x, Tm(x)]. If i(P)'ciJ(P) * 0 and i < j, then rJ-i(P) r) P * 0 and

x * ,J'i(x) yield P = P(x, TJ'(x)] and consequently j = m + i. Therefore for each

integer j the graph Rj = U (xim+j(P): i > 0) is a ray in X with am(Rj) c Rj. Note

that moreover Dj = U (,rim+j(P): i a Z) is a double-ray (2-way infinite path), D0 ,

D .. Dm. 1 are pairwise disjoint, o(Dj) = Dj+ 1 (j = 0,...) and Dm = D0 .

For the uniqueness part assume that R, R' are rays in X and m, n are natural

numbers such that im(R) C R and tn(R') C R'. Pick x0 a V(R), yo0 V(R) and

abbreviate xi = tmni(x0 ), yi = jmni(y0). Clearly x0 , x 1, ... and y0 , y1, ... are bounded

on R and R', respectively. Since d(xi, yi) = d(x0 , yo) it follows that the rays R, R' are

b-equivalent. 0
While 9. and 9.-1 may coincide the following holds.

Theorem 3. Let c be a translation of the locally finite connected graph X.

There is a unique b-fiber Wr in X such that Vm(R) C Rfor some R a 1 and some

m > 0. Moreover l3T *

Proof. By the preceding proof it remains to show 13T, • l3 -. There exist rays

R a nI€, R' s Inr_1 and positive integers pq such that TP(R) C R and cq(R) C: R'.

Assuming IS¶ = nT-- we can find a real M, a bounded sequence x0 , x1,... on R and a

bounded sequence y0 , yl1 ... on R' such that d(xn, yn) < M (n = 1, 2, ...). Abbreviate

• Pri = a, un = 'n(x0 ) and wn = 'n(yo). Employing Lemma 2 one can find a real M', a
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bounded sequence Um(l), Um(2), ... on R and a bounded sequence Wn(l), Wn(2) ... on

R' such that d(um(i), Wn(i)) : MW for i = 1, 2. Now d(wn(i), Um(i)) =

d(y0 , en(i)+m(i)(x0)). Since on(i)+m(i)(xo) (i = 1, 2, ... ) are distinct, one contradicts

the fact that X is locally finite. U

We say that the rays R = vO, vl, ... and R' = wo, wi, ... in X are 1-equivalent

in X if there exists an upper bound for d(vn, wn) (n = 0, 1, ...). Obviously

I-equivalence is another equivalence relation on Ut(X). The corresponding equivalence

classes are called 1-fibers of X. A 1 -fiber T is essential for the automorphism a of X

if a'(R) C R for some R a T and some m > 0.

Clearly each b-fiber of X decomposes into disjoint 1-fibers and any a a AutX

permutes the set of 1-fibers of X. If the i-fiber 7Y is essential for a a AutX and X is

locally finite and connected, then a is a translation since some <0>-orbit and hence all

<o>-orbits on V(X) are infinite; furthermore 7 Q B'lo

Theorem 4. Let t be a translation of a locally finite connected graph X. Then

each 1-fiber T Q 13.t is fixed by c, and the set of essential 1 -fibers for r is

countable.

Proof. Pick R a 1,• and p > 0 such that rP(R) C R. Let x0 be the initial

vertex of R.

Consider an element R' of n.•. By Lemma 2 there exist a bounded sequence
Tn(l)P(x 0 ), ,n( 2 )P(x 0 ), ... on R and a bounded sequence yl, y2, ... on R' such that

d(,Tn(i)P(xo), Yi) is bounded. Abbreviating x, = Tn(i)P(x 0 ) one obtains

d(yi, r(yi)) g d(yi, xi) + d(xi, -c(xi)) + d(¶r(xi), T(yi)) < 2d(yi, xi) + d(x0 , ¶c(x 0 )) for

i= 1,2 ....

Each y on R'[y1 , oc) is on some R'[yi, yi+1 ], and thus d(y, t(y)) < d(y, yi) +

d(yi, c(Yi)) + d(T(yi), ,(y)) ! 2d(yi, Yi+l) + d(yi, z(Yi)). Therefore d(y, T(y)) is

bounded for y a V(R'). Hence R' and r(R) are in the same 1-fiber Or of X, that is
'c(X) = •Y.

Now assume in addition that Tq(R) C R' and let y0 be the initial vertex of R'.

As n3 * 13 r-i by Theorem 3, necessarily q > 0. Abbreviate a =,cPq, a =

IR[x 0 , ca(x 0 )jl - 1 and b = IR'[y 0 , a(y0 )]l - 1. We have dR(xO,obi(xo)) = abi =

dR'(Y0, oai(y0)) and d(abi(x0 ), oai(y0 )) = d(y0 , a(b-a)i(x 0)). If a = b, then clearly R
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and R' are in the same 1-fiber. If a * b, then, as X is locally finite, the set

(G(b-a)i(x 0 ) : i = 0, 1, ...) is infinite and consequently d(abi(x0 ), aai(yo)) is not

bounded. This shows that R, R' are in the same 1-fiber if and only if for x a V(R) and

y a V(R) arbitrary, (IR[x, rP(x)1l - 1)/p = (IR'[y, ,q1l - 1)/q.

The rationals (IR[x, rP(x)][ - 1)/p form a "system of invariants" for the

essential 1-fibers for -. UI]

By a straightforward argument it can be shown that the set of essential 1-fibers

for r as in Theorem 4 is infinite unless X is a double ray.

We call a connected subgraph Y of a graph X a metric subgraph of X if there is

a real M such that dy(y, y) < Mdx(y, y') for all y, y' a V(Y) (that is if dy(.,.) and

dX(.,.) are equivalent metrics on V(Y)).

L.emma 5. Let R, R' be b-equivalent rays in X. If R is a metric subgraph of

X, then so is R'.

Proof. There are bounded sequences xI, x2, ... on R and y1. Y2, ... on R' such

that d(xn, Yn) is bounded. Pick a real M such that dR(xn, Xn+ 1), dR'(Yn, Yn+l) and

d(xn, Yn) are bounded by M from above, and moreover dR(x, xj < Md(x, x) for all

x, x' a V(R). Without loss of generality assume R = Rrx 1, -o) and R' = R'[y1, 00).

Consider distinct elements y, y' of V(R'). Taere exist yi and yj such that

dR'(Y, Yi) •• M and dR,(y', yj) < M. Then d(xi, xj) 5 4M + d(y, y') and

dR,(y, y') < 2M + dR'(yi, yj) : 2M + 1i - j1 M

< 2M + MdR(xi, xj) < 2M + M2 d(xi, xj)

< 2M + 4M 3 + M2 d(y, y)

< (2M + 4M3 + M2 )d(y, Y. y).

Theorem 6. Let r be a translation of the connected graph X, and supposer

has more than one fired end. Then ,9. * ,9x-1 and each R a n$ is a metric subgraph

of X.

The claim . * 9•%-1 was proved by R. Halin [1]. In fact the first part of the

following proof is essentially Halin's proof for the fact that t has at most two fixed

ends.
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Proof. Let 4 V' be different fixed ends of r. There exist a finite set F (. V(X)

and distinct components C and C of X - F such that C and C' contain respectively

rays R0 a [ and R'0 a V. W. 1. o. g. assume that F induces a connected subgraph of

X. Since T is a translation there exists some n > 0 such that ri(F) r) F = 0 for all

i Ž n. Therefore rn(F) Q CI and -'n(F) Q C2 for certain components C1 and C2 of

X-F.

If C1 * C, then C t F induces a connected subgraph of X - rn(F). From

F Q ,n(C 2 ) one deduces C u F Q rn(C 2 ), and equivalently r-n(C U F) C C2. But

'n(O) = Iand so '-n(C Q F) contains all but finitely many vertices of RO. We infer

T'n(C u F) Q C. In this case C2 = C holds, and a symmetric argument yields

T n(c' u F) Z C'. If Cl = C, then C1 * C' and we similarly obtain

T-n(C' u F) C C and Tn(C u F) Q C. W. 1. o. g. assume the latter case.

Since there is a path P0 = P0 [x, "n(x)] in C there exist also a path P C P0 and

m>O such that R = U (,mni(p) i ? 0) is a ray (see proof of Proposition 1).

Notice that R Q C and R a IS 1 9 -9.. Also C' contains a ray R" such that

(fkn(R') Q R- for some k > 0. In particular Ar * 9,-1, and no finite set can separate

( from both ,9. and ,r-i. This shows that r fixes no end other than ,9. and .•-I.

Let R = R[y, ao) and P1 = R[y, xmn(y)]. Since n (tmni(C): i > 0) = 0, one

can find some p > 0 such that y e 9mnp(C). Abbreviate rnmp = ', P2 = R[y, a(y)]

and M' = IP2 1 - 1. Any path in X which joins y to ai(y) (i > 0) intersects F, cr(F),....

o'(F) and therefore d(y, o'(y)) 2 i.

Now consider distinct vertices v and w on R, with say w on R(v, oo). As

R = U (ai(P2 ): i > 0) there exist integers j, i such that j Ž i ? 0, dR(v, ai(y)) 5 M

and dR(w, ao(y)) < M. The estimates

dR(v, w) < 2M + dR(ai(y), GJ(y)) = 2M + M'(j - i)

< 2M + M'd(&(y), Am(y))

5 2M + MN'(d(v, w) + 2M)

< (2M + M' + 2MM')d(v, w)

yield that R is a metric subgraph of X. Hence the claim by Lemma 5. El
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Corollary 7. Let a, T be translations of a connected graph X such that

J9( * .9a-1 and "9. = •9f" Then J9,€ * J9..1 and 5a = 131.

Proof. As shown in the preceding proof there exist a finite set F, a ray R+ and

distinct components C, C' of X - F such that om(C u F) 9 C, o'm(C' u F) Q C'

and om(R+) C R+ Q C for some m > 0.

Pick R a ?rz and n > 0 such that Tn(R) C R. By Lemma 5 one can determine

M > 0 such that dR+(x, x) < Md(xx) and dR(y, y') S Md(y, y') for all x, x' a V(R+)

and y, y' on V(R). Let R = R(x, -c), P = R[x, tn(x)j and R- = U (tni(p): i < 0).

First assume that for each j > 0 the ray R- intersects aJm(C u F). Then R"

contains infinitely many elements of aim(C). Pick Ji > 0 such that the double ray

D = R- u R = U (rmi(P): i a Z) is not contained in aJOm(C). For each j > j0

determine the first and last vertex xj and yj respectively of D in Grjm(F). Note that

D[x.j y j]C D(xj+1, yj+1 ) and therefore dD(xj, yj) > 20 -Jo) On the other hand

d(xj, yj) S dia 0 jm(F) = dia(F). For some k > 0 the vertices vj = Ekn(xj) and

Wj = Tkn(yj) are on R. As dD(xj, yj) = dD(vj, wj) > 20 - jo) and d(xj, yj) = d(vj, wj) it

follows that R is not metric in X. But R a "• = .i9o, contrary to Lemma 5.

This shows that for some j > 0 the ray R- does not intersect aJm(c u F).

Now R, R+ and cJjm(R+) are in 9(, and aJm(F) separates R- from aim(R+). From

R- a Vs-i we infer 9, *• J9,-1.

Pick jo > 0 such that neither R nor R+ are contained ir, aj0m(C). For each

j Z Jo determine the last vertex xj on R+ and the last vertex yj on R in X - caJm(C).

Then x , yj * a Jm(F) and therefore d(xj, yj) < dia aJm(F) = dia(F). Abbreviating
t) = ojm(F) we obtain

d(xj, xj+1) < dia(Fj) + d(Fj, Fj+ 1) + diaF.j+ 1) = 2diaF + d(F, orm(F)) =: M'.

Similarly d(yj, Yj+1) < M' for j > J0. Hence indeed R, R+ are b-equivalent, that is

The part ,9 $ *J9•-1 in the Corollary also follows from results in [1].
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Quasi-Ordinals and Proof Theory

L.GORDEEV

I. Introduction

One of the crucial goals in traditional proof theory is to characterize
provability in formal systems which extend PA (Peano arithmetic). Since
Gentzen proved the consistency of PA within PA extended by tranfinite
induction along (the canonical well-order of the type) F-0, results along these
lines are usually presented in the analogous form:

An arithmetical sentence is provable in a given formal recursively
axiomatizable theory S iff it is provable in PA extended by a
suitable transfinite induction axiom.

In particular, within PA, this reduces the question of the consistency of S to
the one about the well ordering property, WO[PJ, for a suitable linear order
P. In fact, a primitive recursive P can always be chosen, and the consistency
of S reduces to the corresponding primitive recursive assertion, PRWO(P],
expressing in APA (the language of PA) that P has no infinite descending
primitive recursive branch.

So consider a recursively axiomatizable formal theory S 3 PA. It is also
assumed that arithmetical theorems of S are true in the standard model of
PA. We are looking for a suitable primitive recursive well-order P with the
property required above

(1.1) V7E 4"A: (S proves V) #= (PA+TI[<P] proves ).

where TI[< P] is the arithmetical schema of transfinite induction for all
initial segments of P. Since, by G6del incompleteness, it is hopeless to try
"better" proofs of PRWO[ <PJ, it remains to look for "better" structures P.
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At least one might expect P to be easily expressible in familiar mathematical
terms.

It turns out that for any S in question, (1.1) always has a solution in
form of a primitive recursive well-order (w.o.) PS whose order-type is WO•,
i.e. PSEW1. This easily follows from an observation of G.Kreisel's that an
arithmetical sentence V is true iff its canonical infinitary cut free proof-
search tree is well founded while having order type <W1 for some n< W (n
corresponds to the logical complexity of V). [Hence the required PS results in
the effective linear supremum of a primitive recursive enumeration, for all
VE 4 pA provable in S, of these trees - which are well founded since the ep
are true.]

Does this mean that w0<eo is the desired "universal" proof-
theoretical ordinal?

The answer is NO, of course, since the structure of PS is more complicated
than provability in S itself. In fact, arguing in ordinal-theoretical terms, it is
often assumed that "truly proof-theoretical" ordinal of S should majorize all
ordinals whose primitive recursive representatives are well- ordered, provably
in S. This leads to the following familiar definition.

(1.2) The proof-theoretical ordinal of S, Q(S), is the least recursive
ordinal CL such that for any primitive recursive well-order (p.r.w.o.)
PEa, PRWO[ < P] is not provable in S.

[If S admits 2nd-order formulas, one can just as well replace PRWO[ < P] by
WO[< P]. In fact, by H.Friedman's observation, this also makes sense for 1st-
order intuitionistic(!) S.]

Now clearly w100Q(S), since canonical Cantor Normal Form representa-
tives of ordinals below F0 are known to be well-ordered provably in PA, and
hence also in S.

Having defined the proof theoretical ordinal, it seems plausible to expect
primitive recursive representatives of Q(S) to fulfill the basic assertion (1.1).

(1.3) Is it true that (1.1) holds for all p.r.w.o. PEQ(S), i.e.
VepE •PA: (S proves V) $=- (PA+TI[ < P] proves 0) ?

In fact, (1.3) fails, as easily follows from the previously mentioned obser-
vation of G.Kreisel. [Take (p: = Con(S), and let P. be the canonical proof-
tree w.o. of Wp. Hence V is true and PA+TI[Ps] FW0, although -(Sý-p). But
Ps is the initial segment of some PEQ(S), since the order type of P. is
smaller than EO0 Q(S).] Note that this pathology is no exception; actually,
(1.3) has both infinitely many solutions and counterexamples P.

Hence "real" proof theory (theory of proofs) is not about proof-
theoretical ordinals. Instead, it deals with certain solutions of
(1.3), which are called systems of ordinal notations (s.o.n.).

(1.4) Proof-theoretical s.o.n. of S is any p.r.w.o. PEQ(S) such that
VWE 4Ap: (S proves ep) #= (PA+Tl[ < P] proves W).
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Of course, this is merely a compromise between the set-theoretical concept
o(S), and the pragmatic assertion (1.1); this definition also admits various
"pathological" s.o.n. of the above sort. In practice, proof theory deals with
some special s.o.n. which are often called canonical.

However, for some S, there are known different "canonical"
s.o.n.. Is it possible to pick "truly canonical" ones?

In some cases, the answer is undoubtedly YES - for example, the Cantor
Normal Form presentation of ordinals below to seems "truly canonical"
indeed. Yet more advanced proof theoretical ordinals are rather involved.
When it comes to exhaustive explanations, one argues that the correlated
s.o.n. arise as recursively defined term models of certain set, or category
theoretical, structures whose real content can only be seen within the
framework of the corresponding strong theory (which, anyway, is stronger
than the subsystem of Analysis HI[CA, whose proof theory, in turn, has not
yet been developed). In other words, the ordinal-theoretical background
seems more involved than the theory being investigated - clearly not a
comfortable position. Actually, this applies to the very idea to first describe
o(S) in set, or category theoretical, terms, and afterwards to derive the
correlated s.o.n. of S. The "reverse" approach is to look for suitable familiar
structures (in simplest cases: finite graphs, trees, etc.) which in certain ways
characterize a desired s.o.n. whose order type, in turn, will legitimately
present the proof theoretical ordinal. Below, I illustrate this approach in
connection with well-quasi-orders (w.q.o.) of finite labeled trees.

2. Basic Notions

Denote by 0 the cou-itable ordinals, i.e. the factor space of countable
w.o. P= (M,_<) under the order of the homomorphic embeddability "_< ""

(2.1) (M1 ,-I) -< °(M 2 ,<2 :#=4(3f:M1 4 M2)(Vz, 3 EMj)(x•- Y-*f(z) - 2f(Y))A

Recall that a w.q.o. is any structure Q= (M,< ), "< " being countable
reflexive, transitive relation having neither an infinite descending branch, nor
an infinite antibranch (i.e. an infinite sequence of pairwise incomparable
elements). Clearly any w.o. is w.q.o..

Let Q denote the factor space of countable w.q.o, under the order of the
inverse homomorphic embeddability "< q"

(2.2) (M 1,-< 1) 5 i(M 2,- 2 ):$4(3Bf:MI-4M 2)(Vz,yEM 1)(f(z) < 21(Y)"•x-< IY).

Let me define the appropriate generalized structure QO of quasi-
ordinals. The underlying idea is as follows. Let Q= (M,• ) be any w.q.o..
Note that "_< " can be extended in an order preserving way to a well-ordered
relation "<". Usually there are different w.o. extensions, except that Q itself
is w.o.. In fact, there is a maximal w.o. that uniquely determines the ordinal
2(Q) of Q, due to D.DeJongh and P.Parikh (see (1]), but its definition is not
constructive. So a given w.o.-extension P= (M,ý) can be viewed as an
approximation of that maximal w.o.. This leads to the following definition.
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Let Q= (M,•) and P= (M,-) be respectively a w.q.o. and a w.o. such
that "`" extends "< 1", i.e. (VxyEM)(r< y-4r-(y). The correlated structure
D= (M,(, -) is called double wdl-quasi-order (d.w.q.o.). The space of quasi-
ordinals, QO, is the factor space of all countable d.w.q.o. under the following
"double" order "< d,<

(2.3) (M1 ,ý rý) < d (M2 ,• 2,_2):4-(3f:M1 -M 2)(VryEM1 )
((f(x)-( 2 AY)- -0 r 1y)^A(xýIY- Krlz)ý2 (Y)).

3. Basic Operations

Let (M,<) and (M,< ,<) be any w.o., and any d.w.q.o., respectively. Let

(3.1) i((MA)): = (MA), D((M,ý)): = (M,,), Po((M,< )):(M,),

Pq((M,• ,<)):= (M,S).

Then let i:O-Q, D:O-*QO, P0 :QO-#O and Pq:QO-#Q be the corre-
lated factorizations. Clearly i, D, P0 and Pq are homomorphisms; P0 and Pq
are epimorphisms, while i and D are monomorphisms. Since 0 is embeddable
in QO, ordinals are quasi-ordinals. In particular, this yields finite quasi-
ordinals 0, 1,..., n,... and W, whose canonical representatives are familiar to
everyone. Let me define on (or specify to) QO the standard operations
"sum" and "product" denoted by ) and 0, respectively, which are induced in
the factor space of d.w.q.o. by the corresponding homomorphic operations (
and @ on d.w.q.o.. Another simple homomorphism L:QO-*O will imitate the
Kleene-Brouwer linearization.

(3.2) Set (M 1 ,S 1,51)G(M 2 , 2,ý2) = (M,S ,<), where

M. = (Mlx{1})u(M 2 x{2}),

(Zji) _< (y,j):t-*i = j Ax< i y,

(r,i) _• (Y~j)::= i < j v (i = j AX_ i Y).

Let O:QOxQO-#QO be the corresponding factorized operation.

(3.3) Set (M 1,5 1, 1 )®(M 2 ,5 2,A2) = (M,< ,i), where

M- = M1 xM 2 ,

(4-1 42) ý (YjbY2 ):ý:*x 2.<2 Y2 V (-2 = pA zf<~jyj).

Let O:QOxQO-.QO be the corresponding factorized operation.

[Note that the corresponding linear components (M,5) provide the standard
representatives of the ordinal-sum (Mj,ý< 1)+(M 2 ,• 2 ) and ordinal-product
(Mr,51) - (M2,•2), respectively.]
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(3.4) Let D= (M,_ ,) be any d.w.q.o. Set L(D)= (M',-<'), where

M": = {(1--....xn) :(Vi<j<n)(XC Xj)},

ýr, .... , y.) 5' 1y,,...,y.): either (m<nA(Vi<rn)(xi = yi))

or (1i<m,n)(xi-< yiA(Vj< i)(zj = yj)).

Let L:QO40 be the corresponding factorized operation.

As 1, ®, L are homomorphisms, they preserve the underlying orders on
d.w.q.o and w.o.. Hence (, 0 and L are weakly monotone on each argument.

Let me introduce an auxiliary nonconstructive epimorphism _:Q-+O
such that, for any 0tEQ, Q(at) is the (uniquely determined, see above) ordinal
9(Q) for Q= (M,< )EOL. ["9" is unimportant for proof theoretical applica-
tions.] The following diagram clarifies the situation.

0

QO, 0 0 0QO

D Po L Pq

i0° i ýZOQ

(3.4) THEOREM. The following hold for oL,B,TEQO where Po(T) is limit.

(a) P0 (0096) = Po(Ot)+Po(B) and QoPq(0L0l) - o0Pq(ot)#QoPq(B).

(b) Po(O.J3) = Po(ct) P0o(0) and QoPeq(0L 3) =oPq()0X QOPq(B).

(c) Po(Q)•< QOPpq(Q) < L(o) and L(T) • exp(P 0 (T),Qo0Pq(T)+ 1).

["+", "1", "fl", "X" and exp(ot,c ) are the familiar ordinal theoretic
operations "sum", "product", "symmetric sum", "symmetric product" and
"exponentiation" CtD, respectively.]

PROOF: Straightforward by also using [1]. 0
The theorem shows that the operations just defined describe a very

elementary ordinal fragment. In order to reach large proof theoretical
ordinals, stronger operations are needed.
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4. Stronger Operation and Resdts

I employ labeled trees and/or intervals quasi ordered by the appropriate
strong relation of homeomorphic embeddability. Actually, it suffices to deal
with binary-branching trees, while finite intervals can be viewed as trees
without branchings. Recall that a (finite) tree is a finite nonempty partial
order T= IS,<) on IN, say, (the vertex set S is also denoted by I TI) which
has a minimal element r(T)ES (called the root), such that for any rES, the
set of all predecessors { yES:y<rJ is linearly ordered. A given zES lies
between xES and yES iff either z<z<y or y<z<x; zES lies under xES iff
z<x. Note that any , yES uniquely determine their infimum iinf(x,y)ES. A
tree T has no branchi,,g, i.e. is an interval, iff it is linearly ordered. A tree T
is called binary-branching iff every zES having a successor has exactly two
different immediate successors y,zESuc(r). Now for any two trees T1 and T"2,
let fEHEM:T 1-OT2 express that f is the homeomorphic embedding of T1 into
T2, i.e. a monomorphism preserving inf(-,-,) as well as the order of each
branching (with respect to the natural order on N restricted to Suc(-)). In
the case of intervals this simply means f is the order preserving embedding.

Let me define homomorphisms B:O-*QO and J:O-QO. B(O0) and J(0L)
are quasiordinals of binary-branching trees and intervals, respectively,
labeled below OL. The underlying operations B and J generalize the analogous
Friedman-type definitions applicable for OL< W (see 121,(3] j[5]).

Let P= (M,Q be any countable w.o.. Let B[PJ be a q.o. of all pairs
(T,) under the following homeomorphic embeddability "< ", T being a
binary-branching finite tree and C: I TI -+M a labeling function on T.

(4.1) (TJ,•I) < (T 2,C2):@4(3JEIEM: T1-# T2)

(WE T, I )(VyESuc(x) in T1)(VzE I T2 1 )

(a) EIx)(f(x)), and

(b) if z lies in T 2 between &(x) and f(y) then min{fj(x),N(y)}W 2(z), and

(c) if z lies in T 2 under f(r(Tl)) then t 1(r(T 1))<R 2(z).

That B[P] is w.q.o., as well as the analogous quasi-order of arbitrarily-
branching labeled trees, is proved in [31. In particular, the analogous sub-
quasi-order of labeled intervals, J[P], is w.q.o. (cf. [2]). The correlated
d.w.q.o.-extensions B(P) and J(P) of B[P] and J[P] arise by adding the
lexicographical linear order "-<" on trees and/or intervals, respectively (see
below). [Note that in the case of intervals, "_ <" is a sort of Higman's w.q.o.,
and "i" is the ordinary lexicographical w.o..]

So let P= (M,_) and B[P] be as above. Let B(P) be a d.w.q.o. that
extends B[P] by the following lexicographical well order "'s. [Below [R,S]
denotes a tree whose immediate subtrees are R and S, whereas #(T 1 ) denotes
the cardinality of I T j.J
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(4.2) (T 1 ,I) _ (T2,C2):4} either #(TI)< #(T 2)

or #(TI) = #(T 2 ) and

either Q(r( T)) <t2(r(T2))

or Qr(TI)) = t2(r(T2)) and one of the following holds.

(a) #( T I) = #(T2) I.

(b) TI= [RI,SI, T22= [R 2 ,S2 1 and either (R 1 ,tl fR 1)<(R 2 ,t. 2 fR 2 )

or (RJ1,•tr1J) = (RZE2 R%2) and (Sbtl S)-<(S2,E2 tS2 ).

Now for any w.o. P= (M,_), let B(P) and J(P) be the above d.w.q.o.-
extension of B[P] and its sub-d.w.q.o. of labeled intervals, respectively. Let
B:O-QO and J:O-QO be the corresponding factorizations. Note that B
and J are homomorphisms. It turns out that by combinirng 0, 0 and L with J
and B, respectively, one gets crucial proof theoretical ordinals of the
predicative and impredicative hierarchy of subsystems of Analysis. In
particular, consider the following operations.

(4.3) For any n>O, define J,:O-QO and B,:O-#QO recursively by
setting J: = J and BI: = B and J,.F: J=L J* and B,. 1 : = BoLoBs.

QO. ,QO

[ LoJ*: 0-40
it Po L PO BO Thus LoB. : 0"b0

J'.°Po: Q04Q0
BO oPo: QO-.QO

Oi .i

The homomorphisms LoJ 3:O-O, LoB.:O-*O and J.oPo:QO-4QO,
BMoP 0 :QO-#QO are weakly monotone operations on ordinals and quasi-
ordinals, respectively. In fact, these operations are the desired fast growing
functions on ordinals and quasi-ordinals, because they majorize the proof-
theoretical ordinals of the predicative ("jump") and impredicative
("hyperjump") hierarchy of subsystems of Analysis, respectively. Particularly,
this yields the following result. [ITR0 below denotes ACA0 extended by the
axiom of 1ll-transfinite recursion.]
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(4.4) THEOREM. Let Enf{ ,n} denote the sum of a sequence {1n}, n<W,
i.e. the order-type of the correlated w-iteratzon of the operation "sum" on w.o.

and/or d.w.q.o.. Then ,f{LoJ(n)}, En{0oJ 2 (n)}, Yn{LoJ.(1)}, E.{LoB(n)},
E {LoBoLoJ(fl)}, E,{LoB,(1)} are proof-theoretical ordinals of ACAo,
AMCA, ATRo, iIICAO, AWCA, ITR0 , respectively, and thetr canonical repre-

sentatives are the corresponding proof theoretical s.o.n..

PROOF SKETCH: That ACAo, A'CA, ATR0, II'CA0 , A'CA and ITR 0

prove the well-foundness of LoJ(n), Loj2(n), LoJ*(1), LoB(n), LoBoLoJ(n)

and LoB,(1) follows from [2], [3] and (3.4) above. As for the reverse, the

sufficiency of binary-branching follows from [4]. Since LoJ(n) converges to

F0 = o(PA) = o(ACA0 ), both LOJ 2 (n) = LoJ(Q,) and LoBoLoJ(n) = LoB(an)

hold for a. converging to co, which corresponds to the familiar equations

_o(AICA) - _o(I1CA<(), o(A CA) = Q(UlCA<,( ) =

On the other hand,

o(IlICAO) = 9(ID<,),

while §(ATRo) and o(ITRo) are the least (positive) fixed points of ordinal-

operations OL H ol(HICA< ) and Qt _-4 0(l ICA< ,), respectively. 0

Observe that all s.o.n. involved are w.o. En{Pn} for Pn- =Mn,ýn)Eotn,

where Mr contains objects of type3 arising recursively as follows: (1) finite

strings of binary-branching trees, or intervals, whose nodes are natural

numbers; (2) finite strings of ... (as above) whose nodes are finite strings of

binary-branching trees, or intervals, whose nodes are natural numbers; (3)

etc.. The correlated order "-n" is defined by combinatorial recursion on the

type complexity. For any typed object 6EM, let wht(b) be the total weight of
the expression b, where wht(n): = n for natural numbers n. With respect to

this measure, the notions of primitive recursive and linearly growing infinite

sequences in P are specified accordingly.

Let S be a theory as in (4.4). If E-I,{Pn}, Pi = (Mnl,'n)ECx0 , is s.o.n. of

S then VnPRWO[P 0 ] is not provable in S. By H.Friedman's approach, even

the analogous weaker assertion VnLWO[P.] about linearly growing sequences,
is not provable in S. This yields the following result.

(4.5) COROLLARY. The following is true but not provable in S. For every

n>O and k>O, there is an m so large that for any b0 ,b 1,...,bmEM 0 with

(Vi< m)(wht(bi)< k+i) there are i<j< mn such that bi'% bj.

By standard proof theoretical arguments, (1 5) extends to the following
proposition.

(4.6) For sufficiently large n and k, the correlated mapping F(n,k): = m

majorizes every recursive function which is everywhere defined provably in S.
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5. Remarks

(5.1) A more exhaustive fragment of quasi-ordinals arises by extending
the domain of the (unary) operations J and B. Namely, let J*.OXQO-#QO
and B*:OxQO-*QO be the analogous binary homomorphisms defined as
follows. As before, let J* be the restriction of B* to non-branching trees.

Now for any P= (M,<)EotEQ and D= (M',-<,< `)EDEQO, let B*[P,D] be
a q.o. of all triples (T,&Q) for (T,C) being as above and Q: I TI -+M' being
another ("quasi"-)labeling function on T. Now (T, 1 1,Q1 ) • (T 2 ,%C2 ,@1) is

defined as in (4.1) above, except extending (a) by Qj(z) 5 'Q2 (f(x)). The
correlated lexicographical linear extension "`" of "< " generalizes (4.2) in an
obvious way by using "<ý". According to [2,3], the resulting operations are
well-defined. By combining *, 0, L, J* and B* in the same manner as

above, one obtains more quasi-ordinals, whose ordinal-projections range over
virtually all known proof-theoretical ordinals before _((ITR 0 ).

(5.2) W.q.o. statements are of interest from a foundational, or construc-
tive, viewpoint as they enable us to replace 2nd-order existential axioms of

the sort "For every set X there exists a suitable set Y' by intuitionistically
neutral statements. Namely, ATR0 and ITR 0 have the same arithmetical
theorems as ACA0 extended for example by the "reverse" universal axioms
UI: "For any w.o. P, finite intervals labeled in P are w. .o. under the
embeddability of (4.1)" and UT: "For every w.o. P, finite tret, labeled in P

are w.q.o. under the embeddability of (4.1)", respectively. This follows from
[2],[3] and (4.4) above.

(5.3) It is an open problem whether QO is w.q.o..

6. Appendix

As mentioned above, the crucial statement "BtP] is w.q.o." generalizes
H.Friedman's variant of the Kruskal theorem in which labels are bounded
natural numbers. Its proof-theoretical strength is the one of IICAo (cf. [5]).
In (4.1) above I replace H.Friedman's asymmetric gap-condition (see [5]) by
the modified symmetric gap-condition (b) in order to get the adequat- proof
theoretical characterizations of theories up to ITR0 . On the other hand, it is
possible to gct ano"u., generalizaticn by replacin; (b'! by a stronger aIrvm-
metric gap-condition due to M.Okada

(ba) if z lies in T2 between f(x) and f(y) then E? 1(y)_<e 2 (z).

Call "asymmetric embeddability" the resulting modification of the
embeddability (4.1). Let UTA denote the corielated "asymmetric" 'iniversal
axiom: "For every w.o. P, finite trees labeled in P are w.q.o. under the
asymmetric embeddability". Obviously UTA implies UT. Moreover, UTA is
provable in II1CA according to the proof of Theorem 1.7 from [6], since the
above conditions (a), (b') and (c) together are equivalent to the asymmetric
gap-condition (1.2.5) from [6].
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I claim that in the proof-theoretic sense UTA is not stronger than UT,
i.e. UTA is in fact provable in ITR0. This result is proved by the appropriate
modification of [3) and will be published elsewhere.

On the other hand, according to 16], there is a clear correspondence
between vertex-labeled trees under the asymmetric embeddability and edge-
labeled trees under the homeomorphic embeddability with the symmetric gap
condition (e) of H.Friedman (see below). That is, consider finite trees with
edges labeled by ordinals (these trees are referred to as edge-labeled trees).
Thus an edge-labeled tree is a pair (T,fL) with Ei: I TIE-'O, I TIE being the
set of all edges of T. If (TT1 ,. 1) and (T 2 ,E2) are any two edge-labeled trees
then set

(6.1) (TJO )< (T 2,t 2):#z*(3fEHEN: T1-. T2)(VzEI T1 I E)(VyE I T2 I E)

(e) if y ties in T2 in the path f(r) then W.1(r) N(O)

In words, (6.1) expresses that (TJ,•I) is homeomorphically embeddable
into (T 2 ,E2) such that every edge is mapped onto a path with greater-or-
equal labels. Let UTE be the axiom expressing that all edge-labeled trees are
well-quasi-ordered by the latter embeddability of (6.1). Since UTE easily
follows from UTA (cf. [6]), the above claim implies that UTE is provable in
ITR0 as well.
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Minor Classes: Extended Abstract

DIRK VERTIGAN

ABSTRACT. This extended abstract is an informal and partial review of the
author's M.Sc. thesis "Minor classes" (1988, University of Tasmania). The

thesis introduces the concept of a minor class, develops some theory and
applies it to examples from the literature. A paper ts in preparation, and

is to appear.

1. Introduction

Statements such as "the minor class of directed graphs (with deletion and
contraction of edges) has six natural excluded minors of size two and 4890 of

size three (and no others)" are informally presented and explained here. Proofs
and formal definitions are to be found in the full paper. Terms appearing in this
introduction are explained later.

The main aim of this extended abstract is to convey minor class concepts and
the nature of the results obtained. It is unfortunately not possible to present

all the results, together with the necessary definitions, both briefly and formally.
Instead, the formal definition of minor classes in Section 2 is followed by an
intuitive discussion of results using some convenient visualisations.

There are several examples of minor classes in the literature, for example,
any minor closed class of graphs, digraphs, matroids or chain groups, with the
usual definitions of deletion, contraction and isomorphism. By taking a few
common properties of these, one obtains the axioms for a minor class. Loosely
speaking, a minor class consists of a class of structias (pronounced, structures)
each having a ground set, together with a certain axiornatised idea of minors
and isomorphism. A minor of a structia is obtained by removing elements of
its ground set in certain manners (for example, deletion and contraction). An
isomorphic structia is obtained simply by renaming the ground set elements. The
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axioms essentially say that element removals can be done in any order giving the
same result, and that isomorphism behaves as expected. A minor class contains
the information of not only when one structia is isomorphic to a minor of another
structia, but also how it is so obtained. Thus a minor class is richer than just
the underlying quasi-order relation 'is isomorphic to a minor of'. Definitions are

in Section 2.
When the structias in a minor class are, say, graphs or matroids, there is

a concrete way to visualise them. However, in the process of abstraction, we
'forget' what the original structias actually are. A structia is merely an element

of a minor class, and it attains its 'structure' by its place in the minor class--by

how it is related to other structias by minors or isomorphism.
It is natural to seek results showing how any 'abstract' minor class can be given

a concrete description in terms of concrete structias with a natural definition of
minors. Such results show how structias in a minor class can be visualised. It

also gives a unified way of describing the various minor classes in the literature.
Section 3 defines certain minor classes where the structias on n elements are

n-dimensional coloured grids, and minors are ce.rtain subgrids (inheriting the
col'curing). Section 4 presents a result stating that any minor class is contained

in some 'coloured grid' minor class. Although this gives a universal way of
viewing structias, it does not give a convenient or unique way of describing a

minor class.
Section 5 does. It discusses how any mniior class (in which ground sets are

finite) can be uniquely described by its so-called ib-description given by its lk.

structias and its natural excluded minors. Section 6 summarises the 0-description
of several minor classes from the literature. (A partial example is the strange,
but true, statement at the beginning of this introduction.)

The t-description of a minor class gives rise to the following visualisation of
its structias, here described in the case that there are two manners of element
removal, say deletion and contraction. In this case, structias can be depicted
as hypercubes with patterns on some sub-hypercubes. A minor is any sub-

hypercube, inheriting the patterns in the natural way. The structias can be
depicted by drawing approprib.te patterns on the sub-hypetcubes corresponding
to 0-structias, subject to the exclusion of the patterned hypercubes correspond-

ing to the natural excluded minors.
For example directed graphs, with deletion and contraction of edges, can

be depicted as hypercubes (where the dimension is the number of edges) with
patterns on certain 1- and 2-dimensional hypercubes, subject to the exclusion of

six patterned hypercubes of dimension 2 and 4890 of dimension 3.
Some notation is as follows. Let AB denote the set of all functions of the form

f : B -- A. Let A - B denote set difference (A - B = {zJz E A, z V BI). For a
function g : A --+ B and C C B, denote glg-,(c) by gjc. A one element set {q}
is cften abbreviated simply to q.



MINOR CLASSES 497

2. Definitions

We develop the definition of minor class in stages, accompanied by the familiar
example of finite directed graphs (with no isolated vertices) with deletion and
contraction of edges. (In this discussion, digraphs can just as well be replaced
by graphs, matroids or chain groups.) The defining steps are siructia class,
isomorphism-structia class and minor class. The first two are of little interest in
their own right, but are useful for developing the definition of minor class and
illustrating certain points.

Throughout this paper, Q is a set of sets of the form {QjQ ý: Qv, IQI < c) for
some set Qu and some cardinal c < IQu[. Also K is a set such that KnQ, = 0.
The elements of Q are the allowed ground sets for structias, while K is the set
of manners of element removal.

For the digraph example let Q be the set of all finite subsets of some infinite
set and let K = {delete, contrad)t.

A Q-siructia class is a family of disjoint sets S = (Sq IQ E Q). (It is permitted
that some SQ = 0.) The elements of each Sq are structias. The ground set of
a structia S E S, denoted gs(S), is the unique Q E Q such that S E Sq.
Sometimes a structia S with gs(S) = Q is denoted by the pair (S, Q). Note that
a structia S E S has no properties apart from ga(S).

For example we can define a Q-structia class g where gQ is the set of all
digraphs with edge set Q. (As a technicality, vertices are unlabelled, and two
digraphs are equal if they are identical with respect to the edge labelling.)

Now consider isomorphism. (Isomorphism is a straightforward but irremov-
able aspect of minor .asses.) For a digraph G with edge set Q (or any 'concrete'
structia on ground set Q) and a bijection w : Q -* Q' one can naturally define

g : 9q --+ 9q, where o(G) is obtained from G simply by renaming each edge
q E Q as w(q) E Q'. (It is allowed that q = w(q) and an edge is 'renamed' to
itself.)

In a structia class, structias are devoid of any 'structure' with which to define
isomorphism. Instead isomorphism must be axiomatised. The definition of Q-
isomorphism-structia class below shows how this can be done.

For sets Q, Q' E Q, let IQ,Q, be the set of all bijections from Q to Q'.
A Q-isomorphism-structia class is a pair (SJ, ) where 8 is a Q-structia class

and iT is a family of functions (i : Sq --+ Sq, I w E Iq,q, Q, Q' E Q) satisfying:
(ICI) If Iq E Iqq is the identity then Tq E Iq,Q is the identity.
(IC2) If w E Iq,Qo and w' E IQDq*r then

W11,0 W = Wi, 0 W.

These are immediately satisfied when isomorphism is defined naturally for
'concrete' structures. On the other hand (ICI) and (IC2) are irredundant; they
would not generally hold if they were not imposed. An isomorphism-structia class
tells not only when two structias are isomorphic, but also via which bijections
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they are isomorphic; there is more than just the relation a!. Also a structure S E

SQ has an automorphism group Aut(S) = {wlw E IQ,QW(S) = S). (Conditions

(IC1) and (IC2) guarantee that Aut(S) forms a group.) Thus structias in an
isomorphism-structia class gain some 'structure' from the fuinctions in I that

they didn't have in the structia class 6 alone.

Let us return to K, the set of manners of element removal. For any structure

(S,Q) in a (Q, K)-minor class (to be defined below) each element q E Q can
be removed in some manner I E K or else q can be renamed (possibly to q
itself). For many 'concrete' structias (digraphs, etc.) there are various explicit
and natural definitions of taking minors. But since structias in a structia class
have no 'structure' of their own, we must axiomatise minors-impose rules that
element removals should satisfy. (These rules are incorporated with the rules for
element renamings in an isomorphism-structia class.)

To find the appropriate rules, we consider the example of digraphs. Any
edge can be deleted or contracted from a digraph. These edge removals can
be performed in any order without affecting the result. It suffices to specify
which edges are deleted and which are contracted; they can be considered to be
removed simultaneously. Also deletion and contraction respect isomorphism-
any statement that one digraph is a minor of another via specified deletions and
contractions, remains true if all edges are consistently renamed in the statement.

(Of course, distinct edges are not allowed to be given the same name.) After a
sequence of removals and renamings, all that matters is how each edge was finally
removed or renamed. These general properties also hold for graphs, matroids

and chain groups and are to be formalised as axioms for minor classes.
First some notation. For Q, Q' E Q let FQQ, be the set of all functions of

the form f : Q U K -- Q' U K where f 1K is the identity and fIQ' (see note on

notation at end of §1) is a bijection. These f's play the same role for minor
classes as did bijections w for isomorphism-structia classes. The interpretation
of the associated f's is given after the definition.

DEFINITION 2.1. A (Q, K)-minor class is a pair (S,7) where S is a Q-structia
class and I is a family of functions (f : Sq -. Sq, If E FQ,q, Q, Q' E Q)

satisfying:
(MC1) If lQ E FQ,Q is the identity then TQ E lQ,q is the identity.
(MC2) If f E Fq,q, and f' E Fq,,q, then

ltu iip:cinctness of the conditions suggests that this is a natural definition.
Readers familiar with (many-sorted) universal algebra will see that minor classes

are algebras and that the definitions and theorems of [1] automatically apply;
others can ignore this sentence. Note that a (Q, @)-minor class is precisely a

?-isomorphism-structia class.
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For each Q, Q' E Q and f E FQQ9 the isominor operation f: SQ -4 SQ, is
interpreted as follows. the structia f(S) E Sq, is obtained from S E SQ by
(i) when f(q) E K, remove element q E Q in manner f(q),
(ii) when f(q) E Q', rename element q E Q to f(q) E Q'.

In this interpretation, condition (MC2) says that if you do a bunch of element
removals and renamings and then do another bunch, then it is the same as doing
them in a single step. Let q E Q, q' E Q', q" E Q", I E K, and consider the
following three cases of q '-. f(q) -# f(f(9)):
(i) for q ,--. q' i- q" (MC2) says that renaming q to q' then q' to q" is the same
as renaming q to q"
(ii) for q .-- q' --4 I (MC2) says that renaming q to q' then removing q' in manner I
is the same as removing q in manner I
(iii) for q -.4 1 P-•. I (MC2) says that if q is removed in manner I then it stays
.imoved in manner 1.
Condition (MC1) says that doing nothing to a structia leaves it unchanged.
Thus the natural conditions (MC1) and (MC2) capture the desired properties
(and ensure that the interpretation makes sense).

A 'concrete' minor class, such as digraphs with deletion and contraction, can
be abstracted to a minor class (S,1) by defining the isominor operations accord-
ing to the above interpretation and then 'forgetting' what the structias are. (Of
course you don't literally forget anything.) As shown in the following sections,
these structias attain 'structure' from their place in the minor class, and can
be given concrete representations. Typically, the original structias can also be
recovered.

To check that a concrete candidate for a minor class really is a minor class,
one must first check that it fits into the minor class framework; for example,
structias must have ground sets and any element must be removable in any of
the given manners. Secondly one must check that (MC1) and (MC2) hold; the
main property being that a minor does not depend on the order of element
removals. Of course, minor classes do not capture all definitions of 'minor' in
the literature but they do capture many examples of interest.

Here are some definitions with examples.
The structia f(S) is an isominor of S. If fJQ' is the identity (so that the

element renaming part of the operation is trivial) then f(S) is a minor of S.
If f -(K) = K (so that no elements are removed) then f(S) is isomorphic to
S, denoted f(S) 5 S. (Note that S' is an isominor of S if and only if S' is
isomorphic to a minor of S.)

A sub minor class of (S, 1) is a minor class of the form (S', V") where Sý C SQ
for all Q E Q, where S' is closed under isominors and the isominor operations in
V' are those in T restricted to the Sq's. For example the minor class of planar
graphs, with deletion and contraction, is a sub minor class of the minor class of
graphs with deletion and contraction.

A homomorphism from a (Q, K)-minor class (8,7) to a (Q, K)-minor class
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($',J') is a function a $ -- S'-partitioned into aQ : Sq --+ S for Q E
Q-which respects the isominor operations. If K = {delete, contract) then (in
conventional notation) this means a(S\A/B) = (a(S))\A/B (and a respects
structia isomorphism). More formally, for all Q, Q' E Q, f E FQ,q,, S E SQ,

aq(sS)= f~qS)

where the subscript on the f's indicates which minor class the isominor operation
is in. If a is surjective then the minor class S' is a homomorphic image of S. If
a is bijective then a is an isomorphism and the minor class S is isomorphic to
5'. If a is injective then a is an embedding and the minor class S is embeddable
in S' (or equivalently S is isomorphic to a sub minor class of S'). Examples of
minor class homomorphisms are the maps sending a digraph to its underlying
graph, or the map sending a graph to its graphic matroid, or the map sending a
chain group to its coordinatisable matroid.

In the following sections, most formal definitions are omitted and replaced
by more intuitive visual descriptions. Also some statements and arguments are
specialised to simplify discussions.

3. The 'coloured grid" minor classes

Let K, C, B be sets with K n C = 0, and let A = K U C, for the duration of
this section. Let Q be as above. In this section, a certain (Q, K)-minor class,
denoted Y2 (K, C, B), is defined. This is quite a general example because any
(Q, K)-minor class can be embedded in a minor class of the form P2 (K, C, B)
for some sets C and B.

The definition is developed in stages, starting with 712 (K, C, B) as a structia

class. The structias in Y.2(K, C, B) with ground set Q E Q are all the pairs
(g, Q) where g E B(AQ), that is, g is a function from AQ to B. Note that the
elements of AQ are themselves functions from Q to A, and can be thought of as
vectors z = (z:,q E Q) or (z(q)lq E Q) where z. = z(q) E A for all q E Q.

These structias, that is, functions of the form g AQ -- B, can be conveniently
visualised in the case that Q is finite and A C R and B is a set of colours (although

the visualisation can be extended to general Q, A = K U C and B). Consider
the fQJ-dimensional Euclidean space RQ, with coordinate axes labelled by the
elements of Q. Then AQ is the subset of RQ consisting of those points whose
coordinates are all in A, and these points form an IAI x JAI x ... x JAI (IQI-
dimensional) grid in this space. To each point z E AQ, in this grid, the colour
g(z) E B is assigned, creating a coloured grid in RQ.

Isomorphism for these structias is defined naturally. For a structia g E B(AQ)

and a bijection w : Q --* Q', the isomorphic structia W-(g) E B(AQ') is described,
in terms of the coloured grid visualisation, simply by renaming the q-axis to be
the w(q)-axis for each q E Q.

To make P2 (K, C, B) a minor class, it is necessary to define element re-
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moval. The visualisation of element removal is more illuminating than the for-
mal definition which is omitted. Recall the coloured grid in R'Q, associated with
g : A -Q- B. For any element q E Q and any manner I E K, consider the
IAI x JAI x ... x JAI ((IQI - 1)-dimensional) coloured subgrid consisting of those
gridpoints with qth coordinate 1. (This is the 'cross section' of the coloured grid
taken by the hyperplane of RQ, perpendicular to the q-axis and intersecting this
axis at coordinate 1). This coloured subgrid can be projected into RQ-i in the
natural way, by discarding the qth coordinate. With each such gridpoint retain-
ing its colour, this yields a coloured grid sitting in RQ-{41, which depicts the
structia on ground set Q - q (a function from AQ-9 to B) obtained from g by
removing element q in manner 1.

For minors in general, consider f E FQ,Q, with fIQ' being the identity. Then
f(g) on ground set Q' is obtained from g by removing each element q E Q - Q'
in manner f(q). Consider the IAI x JAI x ... x JAI (IQ'l-dimensional) coloured
subgrid consisting of those gridpoints with qtl c 3ordinate f(q) for all elements

q E Q - Q'. (This is the intersection of all the subgrids associated with removing
a single element q E Q - Q' in manner f(q). Since intersection is independent of
order, so is element removal.) This coloured subgrid can be projected into RQ'
in the natural way, by discarding the qth coordinate for all q E Q - Q'. With
each such gridpoint retaining its colour, this yields a coloured grid sitting in Re',
which depicts the structia f(g).

It is routine to check that yP (K, C, B) is a (Q, K)-minor class. The 'coloured
grid' visualisation is useful for providing insight.

Consider the case when K = {delete, contract} and identify delete and con-
tract with, respectively, 0 and 1, so that K = {0, 1). Suppose C is the open
interval (0, 1) so that A = K U C is the closed interval (0, 1]. In this case, the
structias in YP2(K, C, B) can be visualised as hypercubes [0, lJQ whose points
are coloured by the elements of B. In this visualisation, minors correspond to
subhypercubes (obtained by fixing some coordinates to 0 or 1) inheriting the
colour pattern.

4. Two embedding theorems

This section presents two embedding theorems for minor classes. The first of
these shows that structias in minor classes can always be visualised as coloured
grids (see §3).

EMBEDDING THEOREM 1. For any (Q, K)-minor class (3,1) there ezist sets
C and B such that (S, 1) is embeddable in Y12(K, C, B).

EMBEDDING THEOREM 2. For any (Q, K).minor class (3,1) with IKI > 2
there exists a set B such that (S, I) is embeddable in a homomorphic image of
P "(K, 0, B).
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For the purpose of illustration we discuss Embedding Theorem 1 in the case
where ground sets are finite and K = (delete, contract), visualising in terms of
colour-patterned hypercubes (see §3) rather than coloured grids. (This discus-
sion also leads into the next section.) The general proof describes an embedding
explicitly (with 1CJ = min{clc > IQI,VQ E Q} and lBt = IS/ ! 1, by no means
minimising these usually infinite cardinalities). In the case where ground sets
are finite so that the isominor ordering on S has no infinite descending chains,
the embedding a :8 --+ •F (K, C, B) can be built up inductively. Suppose that
a has been defined on all proper isominors of some structia S E SQ, say. Thus

in the patterned hypercube [0, lJQ to represent a(S), the colouring of the points
on its boundary is already determined leaving its interior (0, i)Q to be coloured.
(Consider the interior of a 0-dimensional hypercube (a point) to be itself.) Defin-
ing a(S) immediately determines a(S') for any S' -5 S so there are subtleties of
isomorphism and automorphism to consider. One could associate a new colour
with S (in fact with (S -5) = {S'[S' 25 S)) and colour all of (0, I)Q with this
one colour. However, doing this, it could occur that Aut(a(S)) 0 Aut(S) which
contradicts a being an embedding. Instead, a genuine embedding a is defined
if one colours (0, 1)Q with two new colours such that the automorphisms (per-
mutations of the coordinate axes) of the colouring of (0, 1)Q are the same as the
automorphisms of S. This idea can be extended to give a general construction
for Embedding Theorem 1, for arbitrary (Q, K).

When all ground sets are finite, a minor class 6 can be described by specifying
sets C and B and the excluded minors of S in P2(K, C, B). However this is not
really satisfactory, as there is much redundancy in Y (K, C, B) and for known
minor classes from the literature the list of excluded minors is infinite (though
describable). The next section develops a canonical way of describing a minor
class, which for many known minor classes is a finite description in this canonical
form.

5. 0-descriptions; 10-structias and natural excluded minors.

In this section all ground sets are finite and Q = {QfQ 9_ Qu,Q < No)
for some infinite set Qu. Assume K = {delete, contract), although all of this
section, rephrased appropriately, applies to arbitary K. (Some parts apply more
generally than minor classes.) Conventional deletion and contraction notation
is used where appropriate. Recall the patterned hypercube visualisation which
applies to the IKI = 2 case.

Let (S, 1) be a (Q, K)-minor class. Structias S, S' E S are 0-equivalent,
denoted SOS', if ga(S) = ga(S') = Q (say) and for all q E Q, S\q = S'\q and
S/q = S`/q. If SOS' and S 4 S' then S and S' are Ob-structias. Thus $ is a
O-structia if and only if it is not uniquely determined by specifying all its proper
minors-specifying not only what the proper minors are, but also how each is
obtained. Note that SObS' and S A S' neither implies S 5- S' nor implies S 9 S'.
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The core of S, denoted S,, is the sub minor class of $ consisting of all isominors
of 0-structias. In many well known minor classes there are just a few 0-structias
and they are easy to find.

For a patterned hypercube on [0, 1JQ depicting a structure (S, Q), the pattern
on the interior (0, I)Q is the inpattet-n for S and the pattern on the exterior
[0, 1]Q - (0, 1)Q is the outpattern for S.

A motivation for these definitions comes from the previous section. Consider
building up the patterning of hypercubes inductively. Suppose structia (S, Q) has
not yet been depicted as a patterned hypercube, but that all its proper minors
have-so its outpattern is determined, but its inpattern is not yet determined. If
S is not a 4'-structia then the outpattern already determines S and the inpattern
can simply be chosen to be blank, or given some default colour, say white.
However, if S is a 40-structia, then it is necessary to choose some inpattern for
S, so as to distinguish S from any other S' with S'YS. Also this must be done
so that the patterned hypercube has the same automorphisms as S, and the
pattern for any structia isomorphic to S is consistent, as discussed in §4.

The minor class S can be extended in a canonical way as now defined. Con-
sider patterned hypercubes where the only (non-blank) patterns on interiors of
subhypercubes are inpatterns for 0-structias, subject to the following compati-
bility condition:
-For any subhypercube, its exterior has the outpattern for a 4'-structia S if and
only if its interior has the inpattern for some S' such that S'YS. (Note that if
S-OS' then S' and S have the same outpattern.)

Let 9 be the minor class whose structias are exactly the patterned bypercubes
of this form. Now S is embeddable in 9 and ý is called the completion of S. In
fact 9 is the unique (up to isomorphism of minor classes) maximal minor class
with the same core, $0, as S (and 31 is of course the unique minimal one).

The natural ezcluded minors of S are its excluded minors in 3. These are
the minor minimal patterned hypercubes in ý which do not depict structias in
S. The 4-description of S is a list of its O-stuctures and its natural excluded
minors. This uniquely determines (and is uniquely determined by) S since the
0-structias determine SO' and hence 3 and the natural excluded minors then
determine S. The minor class S has a finite 0-deacription if there are finitely
many 0-stuctures and natural excluded minors (up to isomorphism of structias).

Consider the patterned hypercube for a natural excluded minor (S, Q) where
IQ[ = n. While S V S, its immediate minors S\q and S/q are in , for all
q E Q. These immediate minors are the n - 1 dimensional subhypercubes. They
intersect (if at all) in n - 2 dimensional subhypercubes, and they must agree on
these intersections. A characterisation, internal to S, of natural excluded minors
in terms of their immediate minors is as follows. Let Q E Q and for each q E Q
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let S1, Sq E SQ-q. Assume that

(S')\r =
(S')=r (S,)\q
(S)/r = (S,)lq.

If there is no $ E Sq such that 5' = S\q and S, = S/q for all q E Q, then the
St 's and S,'s arc the immediate minors of a natural excluded minor. (On the
other hand if there is more than one structure satisfying S9 = S\q and S, = S/q,
then such structures are ,-equivalent.) For any minor class S' with sub minor
class S, each excluded minor of S in S' is either ,-equivalent to a structia in S
or else it has tLe samie inunediate minors as some natural excluded minor of S.

A 'concrete' minor class can be described in various ways so there is no general
method for finding its ,-description, and a variety of techniques are useful. The
next section gives 0-descriptions for some well known minor classes. If S is a
subminor class of S' and the ,-description of S' is known, then finding the ,0-
description of S is much the same problem as finding the excluded minors of S
in 5'.

S. 4'-descriptions of some well known minor classes.

In this section, all ground sets are finite. The size of a structia is the cardi-

nality of its ground set. This section summarises the 0,-descriptions of several
well known minor classes. Some are given explicitly, while for other., jn.O the

numbers (up to isomorphism) of 0-structures and natural excluded minors of
given size are stated.

For IKI = 2 we have the patterned hypercube visualisation as described ear-
lier. For arbitrary K, structias can be depicted such that the IKI ways of re-
moving an element q correspond to IKI 'cross sections' perpendicular to the
q-axis. For JK( = 1 (say K = {delete)) one can say minors are only those sub-
hypercubes containing the origin. Alternatively, for IKI = 1, structias of size n
can be depicted as patterned n-vertex simplices, with minors being subsimplices
(disregarding size 0 strictias).

It is worth comparing (and contrasting!) the 0-description of a minor class
with its image under some homomorphism. Some homomorphisms are mentioned
after the 0-descriptions. For example, the map which sends a digraph to its
underlying graph yields a homomorphism from each minor class of digraphs

(three examples) to the corresponding minor class of graphs.

6.1. Minor classes of graphs. After some explanation, Table 1 summarises
the 0-description of six minor classes of graphs.

Edge digraphs are digraphs where the ground set is the edge set, and vertices
are unlabelled. Two edge digraphs are equal (not merely isomorphic) if they are
identical, with respect to the edge labelling. Define edge graphs, vertez digraphs,
vertez graphs analogously. The six minor classes in the table are respectively,
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simple vertex digraphs and graphs with vertex deletion, edge digraphs and graphs
with edge deletion only, edge digraphs and graphs with both edge deletion and
contraction. (Edge digraphs and graphs with edge contraction only, also form
minor classes but their 0-descriptions are infinite.)

The second row refers to structia size. The natural excluded minors are
counted up to isonwrphism. The numbers in the 0-structias column are the
cardinalities of the 4.-equivalence classes, mentioning each O-equivalence class
once up to isomorphism.

,0- structias nat. exc. rain's
size 0 1 2 3 >3 1 2 3 4 >4

9(SVD) 3 0 0 0 0 0
g(SVG) 2 00 0 0 0
g(ED, 1) 2 2,3,7 0 0 78 0 0
9(EG, 1) 2 2,3,3 2 0 0 7 8 0
g(ED, 2) 2 2,2,3,5 0 6 4890 0 0
9(EG, 2) 2 2,2,2 0 6 125 6 0

Table 1

6.2. Matroids and closure operators with deletion and contraction.
Let M be the minor class of matroids with deletion and contraction. (See [5]
foz defiitious. For those unfamiliar with matroids, a new visualisation and
axiomatisation of matroids arises here.) On a ground set {q}, say, there are two
matroids, called loop and coloop, which are 4.-equivalent. These are the only
0-structias. Thus the structias in XA, the completion of M, can be depicted
by hypercubes with just the 1-dimensional faces labelled by L for loop or C for
coloop. (The rest of the hypercube remains blank.) It is instructive to look at the
2-point structias in Tf, say those on the 2-element ground set {q, r). These are
depicted by squares in R19'*) with their four 1-dimensional edges (corresponding
to the 1-point minors obtainable by deleting or contracting q or r) labelled by
either L or C. The labelling scheme is given for a structia cr on ground set
{q, r} in Figure 1. Note that the only possible automorphisrns of or, and the
corresponding depiction, are that which fixes q and r (and fixes the corresponding
square) and that which swaps q and r (and reflects the square along the dotted
line, as in Figure 1). No other symmetries of the square correspond to structia
automorphisms.

There are, of course, 24 = 16 structias on ground set {q, r} in X, but only
10 up to isomorphism. Ten representatives have been named 2a, 2b, ..- , 2j as in
Figure 1. (Observe that 2a,2e,2h and 2j have the bijection which swaps q and r,
as an automorphism.) By observation, only 2a,2e,2f and 2j are matroids, so that
2b,2c,2d,2g,2h and 2i are natural excluded minors of M. These six, called the
maaroid six are the only natural excluded minors of Ml. Thus, a matroid can be



506 DIRK VERTIMAN

r-axis

aYr/
•\ q/ ab~lq

/ 40 r q-axis

CD L CD L C C C
L C L C

2 j
C C _DC C

L C L C

2h 21
L L L L

L C L C
2e 2 f 2g

LDL LDL LDC LD

L C L C
2a 2b 2c 2d

Figure 1: The 2-point structures of Jr.
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depicted as a hypercube with 1-dimensional faces labelled by L or C, such that
no 2-dimensional face is one of the matroid six.

Let A4C' be the minor clas of closure operators with deletion and contraction.
This has the same 0b-structias as M and only five natural excluded minors,
namely 2b, 2c, 2d, 2h and 2i.

6.3. Chain groups with deletion and contraction. Let R be a field. A
chain group, S, (see (3)) on ground set Q is a subspace of the vector space RQ.
Loosely speaking, for q E Q, S\q is obtained by intersecting S with RQ-9 and
S/q is obtained by projecting S onto Re-'. Let V(R) be the minor class of
chain groups with deletion and contraction.

Let MR be the minor class of matroids coordinatisable over R. The moti-
vation for studying D(R) is that it has MR as a homomorphic image. While
the 0-description of D(R) given below seems natural and aesthetic, the excluded
minors of MR in M, and hence the 0-description of MR, remain unknown for
IRI > 4.

Let chain groups loop(q), coloop(q) be respectively the 1-dimensional, 0-
dimensional subspaces of R(q). The homomorphism a : *D(R) --+ M is unque!y
determined by specifying that it sends loop to loop and coloop to coloop (see
§6.4). It also extends uniquely to a homomorphism from D(R) to MR.

For IQI =- n let U," .(Q) be the uniform matroid of rank rn on ground set Q.
Let + denote direct sum of matroids.

For a E R - {0) define the chain group a(q, r), called a slope, on ground set
{q, r} where z E a(q, r) if and only if z(r) = a x z(q). Note that a(a(q, r)) =

Uj'(q, r).
The only non-trivial 0-equivalences are:

(i) loop(q)0bcoloop(q),
(ii) a(q, r)Oa'(q, r), for distinct a, a' E R - {0}.
(For IRI = 2 case (ii) vanishes.) Thus any structia in *D(R) can be depicted
as a hypercube with all 1-faces labelled L or C, as for matroids, and all 2-faces
(squares) which look like 2e in Figure 1 (that is U?2), are labelled to indicate
which slope the corresponding two element minor is. The patterned hypercube
depicting a(S) is obtained from that depicting S simply by blanking out the
2-faces.

The natural excluded minors are:
(i) the matroid six,

(For any other natural excluded minor, S, a(S) is a matroid and this can be
used to describe S.)
(ii) S where a(S) = U1 (q) + U2L(p, r) and S\q = a(p, r) and S/q = b(q, r) for
some distinct non-zero a, b E R,

(iii) S where a(S) = U'o(q) + U?(p, r) and S\q = a(p, r) and S/q = b(q, r) for
some distinct non-zero a, b E R,
(iv) S where a(S) = U13 (p, q, r) and the slopes S\p, S\q and S\r are respectively
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(a, q, r), (b, r,p) and (c,p, q) where non-zero a, b, c E R are such that abc 6 -1,
(v) S where a(S) = U(p, q, r) and the slopes Sip, S/q, Sir are respectively
(a, q, r), (b, r,p), (c,p, q) where non-zero a, b, c E R are such that abc # 1.
(vi) S where a(S) = U4(1, 2, 3,4) (for some 4 element ground set {1,2,3,4}, say)
and S does not have a minor as in case (iv) or (v) but S is not in D(R). Morek!
explicitly: for distinct k, 1, m, n E 1, 2,3,41 let non-zero an,, E R be such that
s\ (a. = m,n). (Note that -= 1/a" .) Let a = a , b = a, C=21, 31, f =a41, 32 h - 4 12 43 /C"- 13 .. 23

-a4, e=a24, f - a13,g-a4, aog, a34, . a2, a42, a14.

Then S is a natural excluded minor provided that 1 abc = def = ghi jkl
and -I = aik = bdl = ceg = fhj, but afi :A i - ef.

For any field R (not necessarily finite) V(R) has tk-structias of size 1 and 2
and has natural excluded minors of size 2, 3 and 4 (except for IR1 = 2 where
some of the cases vanish). The i0-description is finite for finite fields. However
the 0/-description of MR (which is the 0-description of M together with the
excluded minors of MR in M) are known only for JRI = 2, [3] and IRI = 3, [2].
The question remains open whether MR has finitely many excluded minors for
each finite R with IRI > 4. This is a motivation for the study of minor class
homomorphisms.

6.4. Some examples of homomorphisms. The homomorphism in §6.3
is an example of the following situation. There is a surjective homomorphism
a : S' --# S, where S' has a finite i-description and S has a finite core. It is a
theorem that a is uniquely determined by aIls' which can be described finitely
(listing the finitely many structias in 8' sent to the 0-structias of 3). Some
homomorphisms, such as the a in §6.3, correspond to simply blanking out some
patterns in the patterned hypercubes. This is not true in general, but for reasons
omitted here, one can easily reduce to such homomorphisms. However, there are
no results for finding the natural excluded minors of S or even characterising
when there are finitely many. This is an important problem in minor classes.

Here are some examples of such a homomorphism where a finite list of nat-
ural excluded minors of S is known (but seem to bear no obvious relation to
those of S'). The only obvious observation from these few examples is that the

homomorphic image seems to have fewer but larger natural excluded minors.
-The map which sends a digraph to its underlying graph is a surjective homo-
morphism from each minor class of digraphs in Table 1 (three examples) to the
corresponding minor class of graphs.
-The map sending a digraph or graph to its graphic matroid is a surjective
homomorphism from G(ED, 2) or Q(EG, 2) to MG, the minor class of graphic
matroids. The i-description of MG is the i/-description of M together with the
excluded minors of MG in M which (see [4]) have sizes 4, 7, 7, 9, 10.
-The map sending a digraph or graph to its line graph is a surjective homomor-
phism from g(ED, 1) or Q(EG, 1) to the minor class of line graphs with vertex
deletion. Its excluded minors in 9(SVG) have sizes 4, 6, 6, 6, 6, 7, 7.
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-For the field R with JRf = 3, the map sending a chain group over R to its
ternary matroid is a surjective homomorphism from D(R) to M3, the minor
class of ternary matroids. The -0-description of M 3 is the 0-description of M
together with the excluded minors of M 3 in M which (see [21) have sizes 5, 5,
7,7.
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WELL-QUASI-ORDERING FINITE POSETS

(EXTENDED ABSTRACT')

JENS GUSTEDT

ABSTRACT. We show that the set of finite posets is a well-quasi-order with
respect to a certain relation -< , called chain minor relation. As a consequence

we get that every property which is hereditary with respect to -< has a test in
0 (iPic) where c depends on the property. This test has an easy paralleliza-
tion with the same costs. On a parallel machine (CRCW PRAM) it may be

implemented in such a way that it runs in constant time and needs 0 (OPIC)

processors.

1. INTRODUCTION

In the last years algorithmic aspects of well-quasi-orders (wqo's) brought great
progress in algorithmic graph theory. In a series of papers Robertson and Seymour
( see [RS83], [RS86] ... ) showed that a set of graphs together with the graph
minor relation forms a wqo. This can be used to show the existence of polynomial
time algorithms for a wide class of problems. These problems are those which are
hereditary with respect to the graph minor relation.

A similar theory for finite posets was not known until now. In this paper we
investigate the chain minor relation between finite posets. This relation was intro-
duced recently by Mbhring and Miller in [MM91] to generalize certain approaches
in the theory of scheduling stochastic project networks.

We show that this relation indeed leads to a wqo, and that a test for hereditary
properties can be done in polynomial sequential time (or in constant time with the
same cost on a parallel machine model).

To show polynomiality we give a brute force algorithm to test whether or not
two posets are related in the chain minor relation.

2. BASIC NOTATION AND FACTS

P = (V, <) is called a partially ordered set, poset for short, or order if "<" is a
transitive irreflexive relation on the set V. It is finite if V is finite, and to denote
this we write 1P1 = IVJ.

Q = (V, <) is called a quasi-order or qo if "<" is transitive and reflexive. A
sequence of elements (vi) in Q is called good if there are i < j such that vi _5 vj.
It is bad if it is not good and it is perfect if vi :< vj for all i - j.
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Q is a well-quasi-order or wqo if it is a qo and if every sequence is good. Observe
that in a wqo every sequence has a perfect subsequence and that every antichain
is finite. For an overview and bibliography on wqo's refer to the articles of Milner
[Mil85] and Pouzet [Pou85] in [GO85] and for a historical overview see for example
[Kru721.

For our purposes the difference between the definitions of posets and qo's is not
very important. If we define an equivalence relation • in a qo Q = (V.! <) by

(1 VS:W =* ((v < )^ (w _< v))

then Q/l = (V/a, <) is a poset.
We use the distinction between posets and qo's in the following way: posets will

be finite and qo's will represent infinite sets of finitp posets. The relations in these
qo's will be given by the existence of certain morphisms between the posets.

Let P = (V, <) and P' = (V', <') be posets. We say P is a chain minor of
P', P -< P', if there is a partial mapping p: V' -- V which has the following
property:

For every chain C in P there is a chain C' in P' such that p I c,
is an isomorphism of chains.

p is then called a chain morphism. Here p C' denotes the partial mapping
induced on P1 I C', the order restricted to the groundset of C', Observe that every
chain morphism is onto and that -< defines a qo on any set of posets.

Our first aim is the following theorem.

Theorem 2.1. Any set of finite posets is a wqo with respect to ".

A property E of the elements of a wqo Q is hereditary if the subset of elements
with that property forms a lower ideal, that is if

(2) E(w) A (v w) = E(v).

There is a one-to-one correspondence between hereditary properties in Q/a_ and
the antichains of Q/s. : Every such property defines an antichain, its set of minimal
obstructions, which are just the minimal elements of the corresponding upper
ideal.

Vice versa every antichain {Ivi] .... ,[vi]} in Q/9_ defines a hereditary property
in Q/l_ (and thus in Q) by

(3) ([v1 : IV]

For our special relation -< we will get

Theorem 2.2. E'bery property of finite posets which is hereditary, with respect to
<has a decision clgorithm which runs

-- in sequential polynomial time
in constant time on a CRCW PRAM and uscs polynomially many proces-
sors.
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3. SHOWING THE WELL-QUASI-ORDERING PROPERTY

We give a sketch of a proof for theorem 2.1. We have to show that any infinite
sequence (PO) of finite posets is good.

First we can easily exclude two cases. The first is that the given sequence of
posers (Pi) has members with arbitrary large height. Then we find a large chain
C = {cl,... ,ch} in P1, say, such that h = JCJ = IPIJ. If {Vl,. . -,Vh} is a linear
extension of P1 the partial mapping p given by p(c4) = vi is a chain morphism. So
(Pi) is good in that case.

For the second we assume that height (PF) is globally bounded. We may there-
fore assume that height (Pi) is fixed independent of i, by choosing an infinite sub-
sequence. In addition we assume that the number of disjoint chains of maximum
length is not globally bounded. Then we find P1, say, which has more disjoint max-
imum ch nan P, has maximal chains. But then clearly P, -- P1 and (P,) is
good in that case, too. See figure 1.

FimURE 1. Many disjoint chains

So from now on we may assume that height (Pi) is equal to h, say, and that in
each of the Pi no c + 1 maximum chains are mutually disjoint. We choose a set
Ki = {C',..., Ci } of maximum chains in Pi such that each maximum chain in Pi
intersects one of the chains in Ki. We have for all i that

(4) U Cij <c-h.
j=1

So there are only finitely many isomorphism types if we restrict our posets to
these sets. Choose a subsequence with isomorphic restrictions, se figure 2. We
may now identify all these isomorphic restrictions with one single poset. Denote it
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with R. All maximal chains in all posets are now classified by their intersection
with R. For example, one special class is formed by the set of maximal chains which
do not have maximum length and do not intersect R.

FIGURE 2. Subsequence with isomorphic restrictions

There are only finitely many classes and the chains in each class are necessarily
shorter than h if we omit R. For such a class K and C E K let hK be h - IC n K1.
We define

(5) SK(i) = {C I C C Pi, C is a chain in K with length hK }I•

If we now carefully apply an analogous recursive procedure to all the suborders
induced by all these classes we end up with a subsequence and restriction R as
above with two additional properties. The first is that for each class sK(.) is either
increasing and unbounded or it is 1 for all i. (If it is 1 the corresponding chain
belongs to R.) The second is that every two chains in the same class intersect
exactly in R.

Now there exists P1, say, such that each of its unbounded classes has more
maximal chains than P1 has maximal chains, say. But then P1 -- P1 and the
sequence is good, too.

4. ALGORITHMIC ASPECTS

We now prove theorem 2.2, that is we want to show that there are polynomial
algorithms for hereditary properties on posets. For that let

(6) c(P) = E ICI
C ma*ximal
chain in P

Lemma 4.1. Let P,1 - P2 be posets and c = c(P1 ) >_ 3. Then there is a poset Po
which fulfills:

(1) P, 1 PO
(2) Po is an induced suborder of P2

(3) IPol <- c.
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Proof. Let p be a chain morphism which gives P --< P2 and let C.,... , Ck be the

maximal chains of P1 . There are chains C21,... , Ck in P 2 such that p jC' isa

isomorphism of chains for all i. Set Vo = U C P, Po = P2 I V and po = pvI0 * Then
Po and po obviously have all the desired properties. []

Lemma 4.2. Let P1 and P2 be finite posets and c = c(P1 ) > 3. Then there is a
constant I depending only on P1 and an algorithm to decide whether or not P1 :_ P2

holds that runs

- in o (c2. 1P21c + ) sequential time

- in 0 (c2 + 1) time on a CRCW PRAM with 0 (oP2 1c) processors.

We omit the proof of this lemma. It is based on the observation that with
lemma 4.1 we only have to test small subsets of P2 .

Proof (of Theorem 2.2). Let E be a property of finite posets which is hereditary
with respect to -<. By theorem 2.1 we know that the set of minimal obstructions
for E is finite, {P 1,... , P1 } say. Set cmx to the maximum of the constants c(Pi).
With lemma 4.2 we know that the test for

(7) (P 1 :" P) V-... V (Pi•:ý P)

can be done in 0 tiime sequentially and in constant time with 0 (IPIc C*n)

processors. 0
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The Immersion Relation on Webs

Guoli Ding

Abstract: A web is a cyclicly ordered finite set N together with a partition of

N into two-element subsets. We introduce a containment relation on webs called

immersion and we prove that webs are well-quasi-ordered under the immersion.

1. Introduction

Let N be a finite set and let P2 be a cyclic permutation of N. Let N be
partitioned into two-element subsets and let the set of these subsets be E.
Then we call the triple W = (N, Ql, E) a web. The members of N and E are

called nodes and edges of W respectively. Figure 1 gives an example of a web.

12. 6

Figure 1. A web W

Webs are combinatorial objects which are very similar to graphs. We shall

investigate in this paper a containment relation called "immersion" on webs.
Let W = (N, Q, E) and W' = (N, f', E') be two webs. We say W' is

a subweb of W if N' C N, E' C E and 11' = QwN', where R' is the natural
restriction of (0 to N', that is, for every x E N', Q'(x) is the first term of the

sequence (x),l(x)),..., x which is in N'. If there are two distinct edges
el = {xl,y;} and e2 = {x 2 ,y21 of W such that fQ(yt) = Y2, N' = N\{y,,y 2},

Q' = Q1,v, and E' = (E\{ei,e 2}) U {e}, where e = {x:,x 2 }, then we say that
W' is obtained from W by an elementary contraction operation. We call W' a
contraction of W if W' can be obtained from W by a sequence of elementary
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contraction operations. An immersion in W is a contraction of a subweb of W.
We denote the binary relations "is isomorphic to a subweb of, a contraction of
and an immersion in" by _, c and -<j respectively.

Our main question is the following. Given a web W, let Y(W) be the
class of all webs U such that none of the immersion in U is isomorphic to W.
Then what can we say about the structure of the webs in .F(W) and how can
we recognize the members of Y(W)? We start with the following definition. A
set Q of webs is called a generator if for every web W, there exists G E g such
that W "f,, G. Let 9i = IGn : n = 1, 2,...) for i = 1, ... , 12, where G1,, G•2

are the webs shown in Figure 2. Then our first result is
Theorem 1.1: g 1,...,g 12 are a generators.

I X 6

sit

40-
. ,-. "I

,- 4 IS
4  

11 01

Figure 2. Some generators
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Because of this theorem, in order to study the structure of the members
of '(W) for a general web W, we only need to study, for every positive integer
n. the structure of the webs without G', ..., G" as subwebs. We shall present
the structure of these webs in the next section. In section 3, we present some
results concerning well-quasi-orders, and in section 4, we discuss some web
algorithms. Finally, in section 5, we point out the connection between the
immersion relation on webs and the minor relation on graphs.

2. Excluding the generators

We begin this section by introducing two classes of webs, planar webs and
webs of bounded width. It turns out that all members of .F(W) can be built
up from these webs by certain elementary operations.

Let W = (N, Q, E) be a web and let X,Y be two disjoint subsets of N.
We shall say that X crosses Y if there are two distinct nodes xi, x 2 E X such
that 0'(xI), f2'(x 2 ) E Y, where S' = SllY{(,. 2 }. It is not difficult to see that

X crosses Y if and only if Y crosses X. An edge of W is called planar if it
does not cross any other edge. If all the edges of a web are planar, then we
call the web a planar web. The class of all planar webs will be denoted by P.
It is clear that no member of P has a subweb isomorphic to Gý for any i.

Let W = (N, Q, E) be a web and let x, y E N. We define Q(x, y) to be
the closed interval from x to y, that is, QZ(x, y) is the set of nodes z E N with
R'(y) = x, where Wl' = If x $ y, we define Cr(x,y) to be the set of
edges e E E such that e n f2(Q(x), y) 4 0 # e n fQ(Q(y), x). For convenience,
we also define Cr(x,x) = 0 for all x E N. To visualize Cr(x,y), we look at
two ordered pairs of consecutive nodes (x, fl(x)) and (y, 0!(y)) of W. Think of
these as two pointers. Then Cr(x, y) is the set of edges crossing this pair of
pointers. Now we define the width w(W) of W as follows. If N(W) = 0, then
w(W) = 0. If IN(W)I > 0, then w(W) = max{ICr(x,y)I : X,y E N}. For
every positive integer k, the class of all webs of width at tnost k is denoted by
Ak. Clearly no member of Ak has a subweb isomorphic for any i.

To generate more webs without any G, subwebs, we define the following
composition operation on webs. Let W' = (N', 0l1, E'), Wt' = (N'", Off, Elf) be
webs with N' n N" = 0 and let x' E N', x" E N". By sticking W" on W' at
(x, X") we get a new web W = (N, Q,E) such that N = N'UN", E = E' uE"

and P2 is given by

X1, Siff(X"), n"(fY"(x"f)), .... X11 n'al(X'), ST'(q,(x')), 1... '

Let W, U be webs and let W be a class of webs. If there exist a subset X of
N(W) and webs W, E W with y. E N(Wz) for all x E X, such that U is
obtained by sticking W, on W at (x,y.) for all x E X, then we say that U
is obtained from W by W-sticking. For positive integers s and t, we define
S(s, t) to be the class of all webs W such that W can be obtained from a web
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in S(s,t - 1) by PU A,-sticking, where S(s,0) is P U A,. It is not difficult to
see that no member of S(s, t) has a subweb isomorphic to G',t for any i < 11.

To understand more about the class S(s, t) of webs, we introduce some

more notation. Let W = (N, fl, E) be a web and let d(x, y) be the number of

nonplanar edges in Cr(x,y), where x,y E N. We define the depth d(W) of W

to be maxz{d(x, y) : x, y E N}. If N = 0, we define d(W) = 0. We also define

webs H, and H,,, as illustrated in Figure 3, for all positive integers n. Then

we have In

301 --- -2n

Pt~ WO n• t

Figure 3. Webs Hoa

Theorem 2.1: For every positive integer n, there exit two numbers 6 and -Y
such that if W• is a web with no subweb is•omorphic to G'n, G', G'n, HO~ or H'•

then d(W') 5 -y for some subweb W' of W with JE(W) - E(W')i < 6.
Now we are ready to describe the structure of the members of Fr(W).

Let W = (N, Qt, E) be a web and let e = Ix, y) E E. Suppose that N is
disjoint from V(Hnl) = 11, 2,...,2n). Then we define the replacement of e by
H1 to be a new web W' -- (N", Wt, E') such that N' = (NV\e) U I{I,-., 2n,

E' = (E\{ e}) U E(H.,), and 12' is given by

n-• (x), ,..,n, Q(x), Q(x) .. ,- 1 (,t),-" + I,-... 2n, il(y), ... , Q -' (x),

where fl-'(x) is the inverse image of x under Qt. We also define the replacement

of e by H,2, as above except that

E I= (E\{ e}) U I11, 2n),12,2n - 1 I..,n,n + 1)}

Let 0 be a positive integer. We shall call a web W a O-web if W can be obtained
from a web U = (N, fl, E) by replacing every edge e E E by either HI~e or

H2,(,) such that
(i) JEJ _< 8;

(ii) let E, be the set of edges e E E such that e is replaced by H,(• if
el = fX1,Y1}, e' = fX',Y'} E E, are crossing edges with W'(x!) =x',

whee f' =•]ffi.•,•,•),then both ]lS(x1,x')J + IQ'(yi,y')l > 4 and

lfl(x', yl)l + 10(y', xl)! > 4;
(iii) none of the edges in E2 = E\E1 is of the form {x, SI(x)}; and for any two

non-crossing edges C2 = fX2, y2), e'2 = { ', y'} E E2, if Sl'(X2) = X' where

n' then iSI(x,x2;)t+ I0(y;,y2)1 > 4.

e9
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For any two positive integers 0 and y, we denote by L(O, -y) the class of

all webs obtained from a 9-web by S(y, y)-sticking.

Theorem 2.2 For every positive integer n, there exist three numbers 0, -Y and

q such that ifW is a web with no subweb isomorphic to G' for any i 1, .... 10,

then W' E E(O, f) for some subweb W' of W with IE(W) - E(W')I < q.

3. Well-quasi-orientation

A quasi-orientation Q = (Q, -) consists of a set Q and a reflexive binary

relation - on Q. We call it a well-quasi-orientation if for every infinite sequence

q,, q2, q3, ... of elements of Q, there exist i < j such that qi -< qj. Clearly, every

well-quasi-order is a well-quasi-orientation and conversely, every transitive well-

quasi-orientation is a well-quasi-order. Our first result in this section is about

planar webs.
Theorem 3.1: Both (P, _,) and (P, -<) are well-quasi-orders.

The following sequence of webs shows that (A4, •8) is not a well-quasi-

order.

Nevertheless, we are able to show that

Theorem 3.2: (i) (An, _) is a well-quasi-order; and
(ii) (A k, _',) is a well-quasi-order for all k > 0.

As we have seen that (Ak, •a) is not a well-quasi-order in general. How-

ever, by weakening the binary relation -< a little, we are able to prove a result
very similar to 3.1. We define for every positive integer k a new binary relation

OCk on webs as follows. Let W and W' be webs. We say W cA: W' if W -_, W"

for some subweb W" of W' with IN(W")l < 11(k + 1)!IN(W)I. Then we have

Theorem 3.3: (Ak, 4oc,) is a well-quasi-orientation for all k > 1.

In general, we have

Theorem 3.4: For all positive integers 0 and -y, (E(8, y), ocy) is a well-quasi-

orientation and (S(0, y), _ is a well-quasi-order.

As consequences, we have the main results of this paper.

Theorem 3.5: For every web W, there exist finitely many webs W 1 , ... , Wk

such that for every web U, W -<m U if and only if Wi "5, U for at least one

Wi .
Theorem 3.6: Webs are well-quasi-ordered by •i.

4. Algorithms

We shall summarize in this section our algorithms concerning webs. As before,

we shall not go into any detail. If a web W = (N, SI, E) is the input of an
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algorithm, we always assume that it takes unit time to compute Ž(x), f2-Ž(x)
and e(x) (the node of W such that {e(x), x E E) for every x E N, and it takes
unit time to compute x and y with {f, Y} = e for every e E E. Moreover, we
also assume that it takes unit time to decide if x E il(y, z) for every choice of
x,y,z E N.

With these assumptions, it is clear that it takes constant time to decide if
two edges are crossing. It follows that it takes linear time to compute Cr(x, y)
for every choice of nodes x, y. Therefore, it takes time O(IE1) to compute the
set of edges which cross a given edge (and hence to decide if a given edge is
planar), and it takes time O(1E12) to compute the width of a web.

It follows from 3.5 that to test if a web U is a member of F(W) we only
need to test if U has a subweb isomorphic to one of W1 , ..., Wk. Thus we
conclude that there exists an algorithm with running time O(IEI"), where n is
maxf{JE(W1 )I -, IE(Wk )}, which decides if U is a member of .(W). However,
by using the technique introduced in [1], we can prove that for every fixed web
W, there exists an algorithm with running time O(1EL3) which decides if U is
a member of Y(W).

We first observe that there is a linear time algorithm for every fixed web
WO in P (or in Ak) which decides if a web in P (or in Ak) has a subweb
isomorphic to WO. Then based on the proof of 2.2 one can show that there
is an algorithm with running time O(1E13 ) which, for every fixed web W0 and
fixed positive integer n, decides if a web has a subweb isomorphic to one of
W0 and G' for i 1, ... , 12. Therefore, combined with 3.5, we have proved
that there exists an algorithm with running time O(1E13) which determines
the membership of F(Wo) for every fixed web W0 . Unfortunately, we do not
know how to construct this algorithm because we do not know how to derive
the list of webs Wl, ... , Wk described in 3.5.

5. Webs and graphs

In this section, we point out a few connections between webs and graphs. We
start with graph ideals. A class ! of graphs is called an ideal if for every graph
G E G, all the minors of G are also in 9. It has been conjectured that ideals
are well-quasi-ordered by the inclusion relation. This conjecture is still open
except for the following case. We say an ideal ! has tree width at most w if
every graph in 9 has tree width at most w. It has been shown [4] that for
every fixed positive integer w, graphs of tree width at most w are better-quasi-
ordered by the minor relation. This result implies that the conjecture holds
for the class of ideals of tree width at most w. In the following, we present a
class of ideals with unbounded tree width which is well-quasi-ordered by the
inclusion relation.

Let G be a planar graph which is embedded in the plane and let N C V(G)
have even cardinality such that each x E N is on the boundary of the infinite
face F of G. Suppose that the boundary of F is a simple closed curve. Then this
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curve cyclicly permutes N in the natural way. Let Q be this cyclic permutation
of N (clockwise, say) and let U = (N, Q, E) be a web. Let H(U, G) be the
graph obtained from G by adding the edges xy for all {x,y} E E. Finally
we define for every web W an ideal 9(W) of graphs such that every graph in
9(W) Is a isomorphic to a minor of some H(U, G), where U is isouiorphic t,
W. Obviously, every !(W) has an unbounded tree width. Moreover, it is not
difficult to see that for every -y > 0, there exists a web W such that G(W) has
genus at least -f.

We observe that for any two webs W and W', W "<i W' implies that
9(W) C 9(W'). Thus from 3.6 we deduce that the class of ideals G(W), for
all webs W, is well-quasi-ordered by the inclusion relation.

Next, we consider the disjoint paths problem, that is, given a graph G
and k pairs of vertices of G, do there exist k mutually vertex-disjoint paths of
G joining the pairs? It is well known that this problem is NP-complete if k is
part of the input. For fixed k, however, this problem is solvable in polynomial
time [3]. We shall present in the following an algorithm to solve the disjoint
paths problem (with fixed k) for a special class of graphs.

Let us assume that every input graph has the form G = H(W, G') for

some graph G' and web IV = (N, Q, E). Moreover we assume that the k
pairs of vertices sl, ri,..., sk, rk are all distinct and they are members of N.

Let No = {sl,rl,-,Skrk}, 0o = DItv Eo = {{si,ri} : i = 1,...,k} and
Wo = (No,Do, Eo). It is easy to see that if G has the required paths, then
Wo is an immersion in W. It follows from 3.5 that there exists an integer f
depending only on W0 such that W0 _-ý W' for some subweb W' of W with
IN(W')I < f. Suppose that x is a vertex of G' such that the (vertex-region)
distance, in G', from x to the infinite face of G' is longer than f. It is not
difficult to se! that if the required paths exist in G, then the required paths

exist in G\x. This observation enable us to reduce G to a graph of bounded
tree width without changing the problem. Then we may use the technique
suggested in [1] to find the required paths.

As a matter of fact, this algorithm is exactly the one presented in [3]. The
only reason we present it here is that we use a different argument to show the
algorithm is correct.

Finally, we point out a common generalization of webs and graphs. Let
G = (V, E) be a graph (G may have loops or multiple edges). For any edge
e = xy of E, let us view e as two half-edges which are associated with (e, x) and
(e, y). It is clear that there are 21EI half-edges in total. We denote by NG,(x)
(or sometimes simply N(x) if there is no confusion), for every x E V, the set of
half-edges incident with x. Let Q_. be a cyclic permutation of N(x) for every
x E V, and let D = f , :x E V}. We shall call the triple R = (V,E, Q) a
rotated graph. To visualize a rotated graph, we may think of G as a graph
drawn on an orientable surface and each Q, is the natural cyclic permutation
of N(x) determined by the drawing (say, clockwise). As a matter of fact, it
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is well known that for every rotated graph, there exists an orientable surface
and a drawing of G on this surface such that each Q. is precisely the natural
cyclic (clockwise) permutation of N(x) determined by this drawing.

Let R' = (V', E', Q') be another rotated graph. We call f' a sub-rotated

graph of R if V' C V, E' C E and Q' = {1lj,(,) : X E V'}. Let e, = xyl,

e2 = XY2 be two distinct edges of R and let h, = (ei,x), h2 = (e 2 ,x) be half-

edges with Qf)(h 1 ) = h2. Then we say R' is obtained from R by splitting off

el, e2 from x if V' V, E' = (E\{ei,e2})U{e}, where e = YiY2 is a new edge,

and F•' = {f:lzIN 0 ,(z) x E V'}. If R' is isomorphic to a rotated graph obtained

from R by a sequence of splitting off operations, then we write R' < R. We

say R' is an immersion in R, and denote it by R' <* R, if R' < R" for a

sub-rotated graph R" of R. Finally, we call R = (V, E, Q) Eulerian if each

connected component of G = (V, E) is an Eulerian graph.
With the terminology above, we have the following two conjectures:

(1) Rotated graphs are well-quasi-ordered by _<.

(2) Eulerian rotated graphs are well-quasi-ordered by <.
It is obvious that Nash-Williams' graph immersion conjecture is a special

case of (1) and 3.6 says that (1) is true for rotated graphs with one vertex. We

do not know much about (2) even for webs (that is, Eulerian rotated graphs
with one vertex). The only thing we know is that it implies Wagner's graph

minor conjecture.
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STRUCTURAL DESCRIPTIONS OF

LOWER IDEALS OF TREES

NEIL ROBERTSON, P. D. SEYMOUR and ROBIN THOMAS

ABSTRACT. A lower ideal of trees is a set I of finite trees
such that if T E I and T topologically contains S then S E I.
We prove that every lower ideal of trees I has a structural
description, a finite set of rules which describes how to construct
an arbitrary element of 1.

1. INTRODUCTION

Trees in this paper are non-null, finite, rooted, directed away from the root, and
for technical reasons the vertices are assumed to be integers. More precisely,

a tree is a triple T = (V, E, r), where V, the set of vertices, is a non-empty

finite set of integers, E, the set of edges, is a subset of V x V, and r, the root

of T, is a member of V, such that for every t E V there is a unique directed
walk from r to t. (A sequence to,t1,...,t,, is a directed walk from to to t,, if

(t-- 1,ti) E E for all i = 1,2,...,n.) We write V(T) = V, E(T) = E, and

root(T) = r. The height of T is the maximum number of edges in a directed

walk in T. For s, t E V(T), let s A t denote the last vertex of the directed walk

from root(T) to s which belongs to the directed walk from root(T) to t. We say

1991 Mathematics Subject Classification. Primary 05C05, 05C75.

Research of the first and third author was performed under a consulting agreement with
Bellcore. The first author was supported by NSF under Grant No. DMS-8903132. The third
author was was supported by NSF under Grant No. DMS-890311-.

This paper is a final version, and will not be submitted elsewhere.

Q 1993 American Mathematical Society
0271-4132/93 I.00 + S.25 per page

525



526 NEIL ROBERTSON, P. D. SEYMOUR, AND ROBIN THOMAS

that T2 topologically contains TI, or that T" is topologically contained in T2 if
there exists a 1-1 mapping f : V(T 1 ) -- V(T2), called a tree-embedding, with
the property that f(s At) = f(s) A f(t) for every two elements s, t E V(T 1). Let
I be a set of trees such that if T E I and T topologically contains S then S E I.
We say that I is a lower ideal of trees, or a tree ideal for short. A tree ideal I
is proper if some tree does not belong to 1. A tree ideal 1 is coherent if 196 0
and for every T1, T2 E I there exists T E I such that T topologically contains

both T, and T2. For notational convenience we introduce a formal symbol r,
called the null tree. We define v(r) = E(r) = 0, and if T is a tree or r we say
that r is topologically contained in T.

If T, T2, ... , Tn (n> 0) are vertex-disjoint trees or r we define a new tree
Tree(TI, T2 ,.. ., Tn). Its vertices are V(T 1) U V(T2 ) U ... U V(Tn) U {to), where
to V V(TI) U V(T2 ) U ... U V(T,,) is a new vertex. Tree(TI, T2, .. ., T,) has root

to and edges E(T 1) U E(T 2 ) U ... U E(T,) U {(to, root(Ti)) : 1 < i < n, Ti : r}.
We say that B = (17 ,...,Jn;k;"o) is a bit if nk > 0 are integers,

11,...,IJ, are coherent tree ideals and Ti is a tree ideal. The tree ideals
10,111.. .,, will be called the lower ideals of B, and k will be called the
width of B. Two bits are considered identical if they differ only by a permuta-
tion of i, ... , 1,,. Let B be a set of bits. We define 1(8) to be the intersection
of all tree ideals 7 that satisfy the following condition:

*)If (21 .... , Zn; k; To) E 13, Ti E 1i, for i = 1, 2,..., n, T,&+i E i u gri for i--
1, 2,..., k,j 0 and Tk+n+ 1,..., Tk+n+j E "o, then Tree(Tr,..., Tt+,n+ 1 )

belongs to 1.
We remark that I(B) is a tree ideal satisfying (*), and that if B 6 0 then
every one-vertex tree belongs to I(B). We offer the following examples. Let

.T be the tree ideal consisting of all one-vertex trees. Then J = I({(; 0; 0)}).
Further, I({(; 2; 0)}) is the tree ideal of all trees with out-degree at most two,
and I({(J; 1; 0)}) is the tree ideal of all trees obtained from a directed walk by
gluing a directed edge to some of its vertices. As a last example we consider
I({(; 2; 0), (; 0; .J)}). Every element of this tree ideal is obtained from an arbi-
trary tree with out-degree at most two by gluing stars onto a set of vertices of
out-degree zero.

Let B = (11, 1 2, .. Jn;k;Yo), B' = (11,12..... -,I,; k';.10') be bits and let
I be a tree ideal. We say that B is I-dominated by B' if there exist a set
S C {1,2,...,n} and a mapping f : {1,2,...,n) - S --. {0, 1...,n ' such that

(D1) IS 1• k' - k (and hence k < h'),

(D2) Ti C I for every i E S,

(D3) for ii E {1, 2,..., n} - S, if f(i) = f(j) > 0 then i = j, and

(D4) o g 1,e , and tre e i (d) for every i a 11, 2,f.n.i.s nB - S.
Let 1" be a tree ideal. A name of I7 is a finite set 6 of bits such that
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(NI) if (I,...,17,n;k;To) E B then 1i T To for all i = 1,2,..., n and 1i is a
proper subset of I for all i = 0, 1,..., n,

(N2) 1(B) = 1,

(N3) no bit of B is 1-dominated by a bit of B other than itself, and
(N4) if B E B has width zero and I({B}) C V for a lower ideal V of a bit

B' E B, then B = B' = (1'; 0; 0).

The following is the main result of this paper.

(1.1) Every proper lower ideal of trees has a unique name.

There is a trivial difficulty that the lower ideal of all trees does not have a name.
This could be overcome for instance by allowing k to be oo. However, we chose
not to do so. A related result, in terms of finite automata, for lower ideals in
the minor containment relation was obtained by Gupta [1).

We now put this result into the context of well-quasi-ordering. A quasi-
ordering is a reflexive and transitive relation. Let Q be a set and let < be
a quasi-ordering on Q. We say that Q is quasi-ordered. We say that Q is
well-quasi-ordered (wqo) if for every infinite sequence q1, q9,... of elements of
Q there are indices i, j such that i < j and 9i _5 q9. The following is a theorem
of Kruskal [3]; for a simple proof see [4].

(1.2) The set of all trees quasi-ordered by topological containment is well-
quasi-ordered.

A lower ideal in Q is a set I C Q such that if q E I and q' < q then q' E I. We
say that a sequence qj, q2,... of elements of Q is nondecreasing if qi < qi fnr all
i < j. The following is easy to see.

(1.3) Let Q be wqo. Then
(i) every infinite sequence of elements of Q contains an infinite nondecreasing

subsequence, and
(ii) there is no infinite strictly decreasing sequence I1 D I2 D "."of lower ideals

in Q.

It should be noted that if B = (1i, 12,..., ;, k; lo) belongs to the name
of a lower ideal of trees, then each 1i also has a name, expressed in terms of
finitely many smaller lower ideals. Thus the name of a lower ideal of trees can
be regarded as a finitely branching structured tree. It follows from (1.2), (1.3ii)
and K6nig's lemma that this structured tree is finite. This is the structural
description we were referring to in the title and in the abstract. Given the
structural description of two lower ideals of trees 11,12 one would like to be
able to test if 21 C 172. It follows from (2.3) and (2.6) that this can be done. We
remark that conditions (N3) and (N4) are only needed to guarantee uniqueness.
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Another remark that needs to be made is that it follows from (1.2) that for

every lower ideal of trees I there exists a finite set of trees Q such that T V I
if and only if T topologically contains some member of 01. Thus both 0 and
the name are "finite descriptions" of ". However. there is a difference in how

0 and the name describe 1; namely, C. describes the structure of non-members
of 2", whereas the name describes the structure of members of I.

In the rest of this section we state several lemmas. Let Q be quasi-ordered.

A lower ideal I in Q is said to be coherent if I $ 0 and for every q, q' E I there
exists q" E 1 such that q 5 q" and q' < q". Thus 0 is a lower ideal, but not a

coherent lower ideal. We need the following lemma.

(1.4) Let Q be wqo and let I be a lower ideal in Q. Then there exists a unique

finite set {I1, 12,..., 1,,} of coherent lower ideals such that I, U 1,7 u... U I = I

and Ii T Ij for all ij = 1,2,...,n with i $ j.

Proof. We first prove that every lower ideal in Q can be represented as a finite
union of coherent lower ideals. Suppose to the contrary that there is a lower
ideal I in Q which is not expressible as a finite union of coherent lower ideals.

By (1.3ii) we may choose I in such a way that every proper lower subideal of
I is expressible as a finite union of coherent lower ideals. Since, in particular,

I is not coherent, there are 9142 E I such that there is no q E I with q, !5 q
and q2 <_ q. For i = 1, 2 let 1i be the set of all q E I such that q6 j q. Then

11 U 12 = I, and both I, and 12 are proper lower subideals of I. Since both
I1, 12 can be expressed as a finite union of coherent lower ideals, so can I, a

contradiction.
To prove uniqueness we assume that there are coherent lower ideals I,

12,. . ., In, 1', 12, . . . ,' , such that I, .= 12 U ... U I, = I', U 1 U'..=. U 1", = I and
1j g Ij for all ij = 1, 2,..., nwith i o j and I! ýg 1• for all i, j = 1, 2,..., n'

with i 6 j. Let i E {1, 2, ... , n}. Since 1i is coherent there exists an integer
Wr(i) E {1,2,...,n'} such that I• C I4(t). Similarly there exists an integer

j E {1,2,...,n} such that I'(j _ lj, and so i =j nd thuslI =1 ' We

deduce that n = nW, and that r is a permutation of {1, 2,..., n}, as desired. 0

If 1,,12,..., In are as in the above lemma we say that {fI, 12, ... , I1 is the

coherent lower ideal decomposition of I.

Let Q1, Q2,..., Qn be quasi-ordered. The Cartesian product Q1 xQ 2 x...X
Q,, is quasi-ordered by the coordinatewise quasi-ordering, that is, (qx,12,-...

q..,q,) !5 (q', 9 ,-... q') if qi _• q• in Qt for every i = 1, 2,..., n. The following

lemma follows easily from (1.3i).

(1.5) If Q1 ,Q 2 ,.. .,Q, are wqo, then Q, x Q2 x ... x Q,, is wqo.

Let Q be quasi-ordered. We denote by Q<1 the set of all finite sequences of
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elements of Q quasi-ordered by the rule that (ql, q2 , ... , q,) _ (q', q',. .. q,',) if
there exists a strictly increasing function f 1, 2,...,n} -. 1, 2,..., n'} such

that qi <- q'(q. The following lemma is due to Higman [2].

(1.6) IfQ is wqo then Q<- is wqo.

We say that a set I C Q is generated by a sequence q9, 9q,..., or that the
sequence q1, q2,... generates I if I is the set of all q E Q for which there exists

an integer i > 1 with q !5 qi. The following is easy to see.

(1.7) Let Q be a countable quasi-ordered set and let I C Q. Then I is a
coherent lower ideal if and only if I is generated by a nondecreaaing sequence.

2. UNIQUENESS

In this section we prove that every proper lower ideal of trees has at most

one name. Let T be a tree, and let B be a set of bits. We say that T conforms to
B if there exists a bit B = (11, 12,.. .,-Jn; k; o) E B such that either T E 4o U
11 U. ...Ul,,, or there exist an integer m > 0 and trees T1,..., T,T+n+,, such that
Ti E Zxu{f} for i = 1, 2,...,n, T,+i E I(B)u{r} for i = 1, 2,..., k, T,+t+i E Zo
for i = 1, 2,..., m and such that T is isomorphic to Tree(TI, T2,..., Tk++,n+).

We also say that T conforms to B in B. We omit the (easy) proof of the
following lemma.

(2.1) Let B be a set of bits, and let T be a tree. Then T belongs to I(B) if
and only if it conforms to some B in B.

We say that a set B of bits is coherent if B is nonempty, finite, and either
B contains at most one bit of width zero or B contains a bit of width at least

two. We need the following lemma.

(2.2) Let B be a set of bits. If B is coherent, then I(S) is a coherent lower

ideal of trees.

Proof Let B be coherent. Since B is non-empty we see that 1(B) is non-empty.
Suppose for a contradiction that T, T' E I(B) are such that there is no tree in
I(B) that topologically contains both T, TV, and, subject to that, the sum of
the heights of T and T' is minimum. Since Tree(T, TV) topologically contains
both T and T', we deduce that
(1) TreT )0I(B).

From (1) we deduce that B contains no bit of width two or more, and
therefore contains at most one bit of width zero.
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(2) Lff = (Bh,...,h;k;7o) E B and T E To0 Ul U*... U , then
T' ý To u 11 u .. u. Iand k = 0.

This follows from (1) and the fact that TA is a coherent tree ideal for an

t= 1,2,...,n.
Let B = (7 1,1 2,...,:I;k;Zo),B' = (1,',1.... I,; k';lo) E B be such

that T conforms to B in B and T' conforms to B' in B. Then k, k' < 1. Let
T =Tree(TI, T2,..., Tn+h+m), where m > 0, and for i = 1, 2,..., n + k + rn, Tj
is a tree or r in such a way that either T C Zo U I1 U... u In, or T E i u {r}
for i = 1, 2,..., n, Tn+j E i(B) u {r) for i = 1, 2,..., k, and Tn+k+i E To for

1, 2,..., m. Let T' =Tree(7', T2,..., Tl,'+k,+m,) similarly.
Ifk = 1, then T V -ToU7 1U.. uZ, by (2). By the choice ofT and 7• there

exists a tree V" E I(B) which topologically contains both Tn+, and T7. Then

Tree(T1 , T2,..., Tn, T", T .+2, Tn+ 3 , • • -, T.n+. +)

belongs to 1(8) and topologically contains both T and T', a contradiction.
Because of the symmetry between k and W we may therefore assume that k =

k' = 0. Then B = B', and we deduce from (2) that {T, T'} To UlU1 U .. U!In.
From the symmetry we may assume that T 0 To U 11 U ... U 1,. We wish to
define 7•' for every i = 1, 2,..., n. We choose Ti" E -A in such a way that if
R E {2T, Til, T'} nZj, then Ti" topologically contains R. Such a choice is clearly
possible, because A is a coherent tree ideal for every i = 1, 2,..., n. Let To = T'
if T' E Zo, and let To = r otherwise. If T' E To U 1 U ... U U. then

Tree(2*', T2',... , Tn', T+i, T.+2, .. •, Tn+k+m, To)

belongs to I(B) and topologically contains both T and TV, and if T' V To U 1 U

•.U Ithen

eeT(+k', Z "+ ... ,T ~ e ~ vj , 2 " . . ., T , , T + , T + j . . .i n k.i ' + 1 , T n l+ 2 , P T n l+ k l+ m f )

belongs to I(B) and topologically contains both T and T', a contradiction in
both cases. 3

(2.3) Let B, 8' be finite sets of bits such that B is coherent. Then I(B) C I(ff)
if and only if for every bit B E B there exists a bit B' E B' such that either
(i) B is I(B')-dominated by B', or

(ii) I({B}) C I' for some lower ideal ' of B', and if B has positive width then
I(B) C 7'.

Proof. We first prove the "if" part. Let T E 1(B), and assume that no tree
of smaller height belongs to I(B) - I(8'). By (2.1) T conforms to some B in
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B; let B = (-,1 1,...,2-,;k;2-o). Then either T E 10o U Ti U...U1I., or T

has the form Tree(Ti, T22,..., Tn+k+m), where T7 E ii U r} for i = 1,2,..., ,

T.+i E I(B)u {r} for i = 1,2,...,k, and Tn+t+i E lo for i = 1,2,...,'m.

By the minimality of the height of T it follows that T,.+i E I(8') U {r} for

i = 1, 2,..., k. By the hypothesis there exists a bit B' E B' such that (i) or (ii)

holds.

We assume first that (i) holds. Then there exist a set S and mapping f

satisfying (DI)-(D4). It is now routine to verify that T E I(B'). So we may
assume that (ii) holds. Let V' be as in (ii). If B has positive width, then

T E l(B) 9 1' C 1(8'), and if B has width zero then T E I({fB)) C I' C l(8').

This completes the proof of the "if' part.

To prove "only if" let B = ("1, 1 2,..., I.;/k; To) E B. For j = 1,2,. .. ,n
let, by (1.7), {T,'}•>l be a nondecreasing sequence that generates ;, for j =

n + 1, n + 2,...,n + k let, by (1.7) and (2.2), {T,'}_>1 be a nondecreasing

sequence that generates I(H), let nl+k+lpT•+k+2, ... be a sequence that con-

tains infinitely many isomorphic copies of every element of I0, for i > 2 and

j_> n+k-+ 1 let7t = T7i, and for i > 1 letT' =Tree(T7l, V2,..., Tn,+k+i)- Then

7E I(B) C I(&'), and hence V" conforms to B'. Since B' is finite, by (2.1)

we may assume (by taking a subsequence) that there exists a bit B' E B' such

that Ti conforms to B' in 8' for all i = 1, 2,.... Let B' --- ; 1,. 2, ).

There are two cases.

We assume first that 7V E OU1-VU-.. Ul,0 for alli >_ 1. Since the sequence
TI, T2,... is nonde,.tasing, we deduce that there exists j E fO, 0,..., n') such

that 7" E 1j' for all i > 1. Since the sequence {Tf}t>_ generates an ideal that

contains 1({B}) it follows that 1({B}) C 2-•. Moreover, if k> 0 then {fTi}>Ž

generates I(B), and hence I(B) g 1. Thus (ii) holds.

We now assume that (ii) does not hold. In particular, T" l 2.U U.•.U,
for some i > 1. By taking a subsequence we may assume that V ý 1-' U I' U

U .. jn', for all i > 1. We claim that

TZo 9_ 10-.

Indeed, let T E iTo and let i be so big that at least n + k + 1 of the trees

7n+k+1t 7fn+h+2, .. i,+,+, are isomorphic to T. Since TV conforms to B' in

B' and 1' U 2 11 U u... U I,1, we deduce that T E 10. This proves (1).

Since 7V conforms to B' in B' and Ti 10' U I' U... U I,,, there exists a

function f: {1, 2,..., n + k} - f- 1, O, 1,..., n') such that

(a) lf-i(..)j < h',

(b) 7 E I(B') for all j=1,2,..., k + n with f,(j) -1,

(c) for all j,j' = 1, 2,..., k + n, if f,(j) = f(j') > 0 then j=j',and
(d) ri Z,(• for all =1, 2,. .. , k + n with fi (j) >_ 0.
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By taking a subsequence we may assume that .•(j) is constant for every fixed

j = 1, 2,..., , + k. Let f(j) denote this common value.

(2) f(j) = -1 forj = n+ 1,n+2,...,n+ h.

Indeed, let f(j) Ž 0 for some j E {n + 1, n + 2,. .. , n + k}. Since fT_}2>

generates I(S), it follows from (d) that I(S) C -f(j), contrary to our assumption
that (ii) does not hold. This proves (2).

Let S be the set of all integers j such that 1 < j < n and 1(j) = -1. From

(1), (2) and (a)-(d) it follows that S and the restriction of f to {1, 2,..., n} - S

satisfy (D1)-(D4), because {1j7}i>I generates 11 for j = 1,2, .. ,n. Thus (i)

holds. 0

(2.4) Let B, B' be names of some tree ideals, let B E B, B' E B' and let I

be a tree ideal. If B is I-dominated by B' and B' is I-dominated by B .hen

B= B'.

Proof. Let B = (Zi,1 2,..., I.; k;1o) and B = (14,'2,. .. ,IT,;,k;I). From
the fact that B is I-dominated by B' there exist a set S C {1, 2,..., n} and a

mapping f :{1, 2,..., n- {0, 1,..., ni'} such that (DI)-(D4) hold. Similarly,

from the fact that B' is I-dominated by B there exist a set ST C {1, 2,.. ., n'}

and a mapping f' : {1,2,...,n'} -- {0,1,...,n} such that (DI)-(D4) hold
with B, S, f replaced by B', S', f'. Thus k =k', To = 2", S = S' = 0, f(i) > 0
for every i = 1,2,. . ., n (because otherwise TI C 10' C lo, contrary to (NI)),

f'(i) > 0 for every i = 1,2,...,n' and n = n'. Since bits that differ by a

permutation of h, 4,... , are considered equal, it follows that B = B', as

desired. 0

(2.5) Let B, B' be names of a tree ideal 1, and assume that both B, B1 are

coherent. Then B = ff.

Proof. Let B, denote the subset of B consisting of all bits of B of positive width,

and let B' be defined similarly. We first prove the following.

(1) B1 = BW.

Indeed, let B E B have positive width. By (2.3) there exists B' E B' such

that either B is I-dominated by B', or I(B) is a subset of one of the lower
ideals of B', say 1'. The latter case is impossible, because then I = 1(5) 9

I' C l(i') = 1, and hence r' = 1, contrary to (NI). Thus B is I-dominated by
B', and, in particular, B' has positive width. Similarly there exists B" E B such

that B' is I-dominated by B". Since 1-domination is transitive we see that B
is I-dominated by B", and hence B = B" by (N3). Thus B is I-dominated

by B' and B' is 1-dominated by B, and so B = B' by (2.4). This proves (1).

(2) For every bit B E B of width zero there exists a bit B' E B' as in (2.3)
of width zero.
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Indeed, let B E B have width zero, let B' E B' and suppose that B" has
positive width. Then B' E B by (1). From (N3) we deduce that B is not I-
dominated by B', and from (N4) it follows that I({B}) is a subset of no lower
ideal of B'. Hence B' satisfies neither (i) nor (ii) of (2.3). Thus if B' E 13' is
as in (2.3) we see that B' has width sero. By (2.3) at least one such bit exists,

and (2) follows.
From the symmetry we dedte that

(3) For every bit B' E B' of width zero there exists a bit B" E B as in (2.3)
of width zero.

(4) For every bit B E B there exists a bit B' E B' such that B is --dominated
by B'.

Indeed, let B E B. We may assume that B has width sero, because oth-
erwise the result follows from (1). Let B' E B' be as in (2); we may assume
that I({B}) is a subset of one of the lower ideals of B', because otherwise we
are done. Let B" be as in (3). Since B" has width sero, it follows that IQ({B)
is a subset of one of the lower ideals of B", say Xi, and so I({B}) = I1, and
B" = B = (I1; 0; 0) by (N4). Similarly B' = (I1; 0; 0), and so B is I-dominated
by B', as desired. This proves (4).

It follows similarly that

(5) for every bit B' E B' there exists a bit B' E B such that B' is I-
dominated by B".

Now we are finally ready to finish the proof of (2.5). Let B E B, let
B' E W' be as in (4), and let B" E B be as in (5). Then B is --dominated by
B", and so B = B" by (N3). Consequently, B is I--dominated by B' and B' is
I-dominated by B, and hence B = B' by (2.4). Thus B B', as desired. .o

Let B be a finite set of bits. We define a set {Bý, B3, .. , Bm } of finite sets of

bits, called the coherent decomposition of B, as follows. If B is coherent then we
define the coherent decomposition to be {fB}. Otherwise we let BA, B 2,..., Bm
be all the elements of B of width zero, and for i = 1, 2, . . ., m we put Bi =

(B - {B1, B 2 ,..., Bm }) U {Bi} and define the coherent decomposition of 8 to
be {B1 , B2,.. ., BmI}.

(2.6) Let B be a name of a tree ideal I, and let {Bj,B2,...,Bm} be the
coherent decomposition of B. Then I(B 1 ) U 1(82) U ... U 1(Bm) is a coherent
lower ideal decomposition of I.

Proof. It follows from the definition that each Bi is coherent, and hence each
I(Bj) is a coherent lower ideal by (2.2). To prove that I(B•) f I(8,) for i,j
with 1 < i, j <_ m and i : j we suppose the contrary and note that (since then
m > 1) B. contains exactly one bit of width zero, say B and that B V BH. Then
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I({B}) C I((H) C 1(B) C I. By (2.3) there exists a bit B' E B, C 8 - {B}

such that either B is 1(Bi)-dominated by B', or I({B}) is contained in some

lower ideal of B'. The latter is impossible by (N4), and so B is !-dominated

by B', contrary to (N3). This proves that 1(8!) !. I(B) for i i4

Finally, we must show that I = I', where IV = l(BI)U I(Bl)U.., U 1(Bm).

Since obviously I' C I, it remains to prove that 1t C 1'. We may assume
that m > 1, for otherwise the equality I = I' is trivial. Then B contains only
bits of width zero and one. Let T E I and assume Lhat no Liee of smuder

height belongs to I - I'. Since T E I = I(S) it conforms to some B in B; let

B = (11,12,.. .,I, 1 ; k;Io), where k = 0 or 1. Then either T E 1oU1i U..-UT,,

or T has the form Tree(T1 ,T2,...,T,+h+,), where p 2 0, Ti E ii u {r} for
i = 1,2,...,n, T•+k E Iu {r} and T,++,+j E 1o for j = 1,2,...,p. We define

I E {1, 2,..., m} as follows. If either k = 0 or T E To U 1 1 U ... U , we let I be

such that B E BA. Otherwise T.+ 1 E V' U {r} by the induction hypothesis, and
we let I be such that Tft+ E I((B) u {r}. We remark that B E 81, because if

k = 1 then B belongs to every A- for i = 1, 2, ... , m. In either case we see that

T conforms to B in B1, and hence T E V', as desired. 0i

(2.7) Every lower ideal of trees I has at most one name.

Proof. Let B, B' be two names of a lower ideal of trees 1, and let {B1, B2,...

°..,Bk}, {B 1 , B2,..., Bi,} be their respective coherent decompositions. From

(1.4) and (2.6) we deduce that k = k' and that we may choose our notation so
that l(Bj) = I(ff) for all i = 1, 2, ... , k. By (2.5) Bi = B,' for all i = 1, 2,.... 'k,

and hence 8 = , as desired. ci

3. EXISTENCE

In this section we complete the proof of (1.1) by showing that every proper

lower ideal of trees has at least one name. We need the following lemma.

(3.1) Let B be a set of bits, let B E B have width sero and assume that

1({B}) C I' for a lower ideal V of a bit B' E B. If = B' let B' = (8- {B})u
{(I'; 0; 0)}, and otherwise let B' = B - {B}. Then 1(8) - 1(&).

Proof. Assume first that B $ B'. Then clearly 1(8') C 1(B). To prove the

converse let T E I(S) and assume that every tree in I(B) of smaller height

belongs to I(8'). By (2.1) T conforms to some B, in 8. If B, 0 B it follows

that T E I(8'); if B1 = B then (since B has width zero) T E I({B}) C_ T C

I({B'}) 9 1(8'), because B $ B'. This completes the proof in the case when

B# B'.
We may therefore assume that B = BV. We first show that I(') : I(B).

Let T E I(8') and assume that every tree in I(8') of smaller height belongs to
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f(B). By (2.1) T conforms to some B2 in B'. If B 2 6 (1'; G; 0) then it follows

that T E I(B); otherwise T E I({('; 0; 0)1) C I({B'}) = I({B}) C I(B). This

proves that I(8') g I(B). To prove the converse inequality let T E T(S), and

assume that every tree in I(B) of smaller height belongs to I(B). By (2.1) T
conforms to some B 3 in B'. If B3 : B then it follows that T E I(8'); otherwise

(since B has width zero) T E I({B}) = I({f'}) C I({(V7; 0; 0)}) C_ I(8'), as

desired. 0

We say that tT 1,T 2,. . .,T.;k;;M) is a germ if n,k > 0 are inmegers, T1 ,
T2,. .. ,T are trees, and M is a finite set of trees. Ifg = (T1,T 2, ... ,T,;k;M)
is a germ and I is a lower ideal of trees, we denote by H(g, 1) the set of

all trees isomorphic to Tree(71,T2,..., ,T++,t+ ), where m > 0, 7. is r or

a tree topologically contained in Ti for i = 1, 2,..., n, Tn+i E 21 u {} for
i =1,2,...,k, and T, +t+i is a tree topologically contained in some member

of M for i = 1, 2,..., m. A germ g is a germ of a lower ideal of trees 27 if

H(g, I) C I.
We order germs as follows: (T 1, T 2 , • .. , T,,; k; M) • (T1 ,T2, ,..., Tn,; k-'; M')

if there exists a set S C {1, 2,..., n} and a mapping f {1, 2,..., n} - S --

{0, 1,...,n'} such that
(i) Is1 _< k, - k,

(ii) every element of M is topologically contained in some element of M',

(iii) for i, j E {1, 2,..., nr}- S, if f(i) = f(j) > 0 then i = j,
(iv) for every i E {1, 2,... , n}- S, if f(i) > 0 then Ti is topologically contained

in TI(i), and if f(i) = 0 then T; is topologically contained in some member

of MI.
It follows from (1.5) and (1.6) that germs are well-quasi-ordered. We say that

a germ g = (TI, T2,. ., Tn; k; M) of a lower ideal of trees .1 is reduced if there
is no germ g' = (T1, T2,..., T.,; k'; M') of 2. with g < g' and n > n'. Clearly

for every germ g of I there exists a reduced germ g' of I with g < g'.

(3.2) Every proper lower ideal of trees has at least one name.

Proof. Let .I be a proper lower ideal of trees and let 9 be the set of all germs of

-. Let 9 = "-• • 2U ... *UQ be the coherent lower ideal decomposition of 9. Let
us fix I E {1,2,...,p}. By (1.7) 91 is generated by a nondecreasing sequence,
sayg 1 g2 1 -, wheregi = (*, Ti,,; kh, M). We may assume without loss

of generality that each gi is reduced. (To see this, we may assume by taking a

subsequence that gj ý C'•0 Gi and then consider ,i = (it, t~s,..., !,; i.; ki) E

9 with gi <- ji and subject to that with fii minimun.) Let Si, fi be a set and
a mapping witnessing that gi - gi+i. The sequence {kJ is bounded (because

2I is proper), and so we may assume (by taking a subsequence) that {fk is

constant; let k denote the common value. It follows that Si = 0 for every i > 1,
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and since each gi is reduced we deduce that Jf(n) > 0 for all i = 1, 2, ... and

all n = 1, 2,..., ni. We may therefore assume that each f, is the identity. We
now claim that

(1) the sequence f{i,},>I is bounded.

To prove (1) suppose that the sequence {ni},>Ž is unbounded. By taking
a subsequence we may assume that n Ž> 1, that J{uaJ,>I is strictly increasing

and that, by (1.2) and (1.3i), {T,',}> 1 is a nondecreasing sequence of trees.
We claim that g - (T 1 ,T1, .. ., T,',, -..; k; M, U {T,,1,) is a germ of I. Indeed,
let T E H(g,I). Then T = Tree(Ti,T 2,...,Tni+k+,m+t), where m,t > 0, for

j = 1,2,...,ni - I, Ti is r or a tree topologically contained in Ti, Tn, = r,

Tn,+i E 2 U {rF for j = 1, 2, .... k, Tn,1+h+, is topologically contained in T,

for j = 1, 2,...' m and Tn,+kt+m+j is topologically contained in some member

of M 1 for j 1,2,...,t. Let j E f1,2,...,m} and put n(ij) = n + k +j. In
the sequence T+k+3 , 7, ,n(), rn() eich term is topologically contained in
the next (the last containment holds because gn(j) •: gn,,(,) and all the f,'s are

assumed to be the identity). It follows that 7' E H(gn(m),Z), and hence 2' E I.
Thus g is a germ of 1, contrary to the fact that g, is reduced, since obviously

g1 !5 g. This proves (1).
By (1) we may assume by choosing a subsequence that fr _>Ji is constant;

let n denote the common value. We have thus arrived at a sequence 91, 92...

of elements of QG. This sequence will be later referred to as a fundamental
sequence of 91, and the notation gi = (P, 72,..., T.; k; Mi) will be assumed.
Let 10 be the lower ideal generated by Ui>1 Mi, and for j = 1, 2,..., n let 1i
be the coherent lower ideal generated by 7,, T2,.

(2) 1o,5n,...,5,, are proper lower subideals of 2, and i T 1o for all i =
1,2, ... , n.

The proof of (2) is very similar to the proof of (1), and so we just sketch

it. If Ti = T for some i = 1,2,...,n, say for i = 1, then it can be shown
that (T2, . , T•, ; k + 1; MI) is a germ of 1, contrary to the fact that g• is
reduced. Similarly, if i C_ i"0 for some i = 1,2,..., n, say for i = 1, then it can

be shown that (T1, T, . ..., Tnl,; k; MI U {T,}) is a germ of T. Finally, if lo = 1,
then it can be shown that every tree belongs to 1, contrary to our assumption
that I is a proper lower ideal of trees. This completes the sketch of the proof

of (2).
We now define BI = (11,1 2,...,Z,;k;10) and put Bo {B1,B1 ,...,Bp}.

We will modify 8o to obtain a name of 11. We need the following three claims.

(3) For 1, 1' E 1, 2,..., p}, if B I is T-dominated by B1, then G1 C_ Gp.

To prove (3) let BI = (71, 172 ,...,5t;k;5o) and let B1, =

k';17). By the assumption there exist a set S C {1,2,.. .nj and a mapping
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f {1,2,...,n} -* {0,1,...,n'J} such that conditions (DI)-(D4) hold. We
may assume that there are integers m, t such that f(i) = i for i = 1, 2,..., m,

f(i) = 0 for i=m+1,m+2,...,t, and {t+1,t+2,...,n}= S. Let 91,g2,...
be a fundamental sequence of Q1; we must show that gi E 9t, for every integer

i > 1. To this end let i > 1 be an integer. Then gi = (71 , 7..., Tn; k; M0=v

where 27 E 2i for j = 1,2,..., n and M, C To. It follows that 7r7 E I., for
j = 1,2,...,m, fT,+V,+2,..., TtUM A g and k+n-t < k1. We deduce

that g9 E 9v, as desired. This proves (3).

(4) .r C I(Bo).

We prove (4) by induction on height. Let T E 1, and assume that every tree

in I of strictly smaller height belongs to I(Bo). Let T =Tree(TI,T 2,.. ., Tt).

Then g = (TI,T 2 ,...,Tt;O;0) is a germ of I, and so 9 E Gi for some I =

1,2,...,p. Let gl,g9,... be a fundamental sequence of Ql. Then g :5 gi for

some integer- i > 1. Thus there exist a set S C {1,2,.. .,t} and a mapping

f: {1,2,..., } - S -- {0,1,...,In} satisfying (i)-(iv). Since T• E 27 for j =

1, 2,..., n, Mi C Io and Ti E I(Bo) for j E S by the choice of T, we deduce

that T E I(Bo), as desired. This proves (4).

(5) I(Bo) C 2.

Again, we prove (5) by induction on height. Let T E I(Bo), and as-

sume that every tree in I(BN) of strictly smaller height belongs to I. Let I E

{1,2,...,p} be such that T conforms to BI in B0, and let B, = (7 1 ,272,...,";

k;2-O). Then either T E To U 11 U ... U In, or T has the form Tree(Ti,T 2 ,...

• .. ,T,n+'+ , where m > 0, T E ii u {r} for i = 1, 2,..., n, Tn+i E i(Bo) u {r}

for i = 1, 2,...,k and Tn+k+÷ E To for i = 1, 2,..., m. In the former case T E 1,
and so we assume the latter. Let g1 , g,... be a fundamental sequence of.Qi.

Then there exists an integer i > 1 such that Tj is topologically contained in

77 for j = 1,2,..., n and Tn+k+i is topologically contained in some member

of M1 for j = 1, 2, ... , m. By the induction hypothesis T,+j E I7 U {r} for

j - 1,2,...,k. Thus T E H(g, 21) C 1, as desired. This proves (5).

It follows from (2), (3), (4), (5) that Bo satisfies (Ni), (N2) and (N3). Let

us call a bit B proper if B has width zero and is not of the form (1i; 0; 0), where

2.1 = I({B}). We choose a finite set of bits B such that
(i) B satisfies (Ni), (N2) and (N3),

(ii) subject to (i), BI1 is minimum, and

(iii) subject to (i) and (ii), the number of proper bits in B is minimum.
Such a choice is possible, because B0 satisfies (i). We claim that B satisfies
(N4). Indeed, let B E B have width zero, and let I({B}) C 2V for some
ideal V' of a bit B' E B. We must show that B = B' and that B is not

proper. If B # B' we put B' = B - {B}; then I(B') = I by (3.1), and
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hence M' satisfies (NI), (N2) and (N3), contrary to (ii). Thus B = B'. Now
I' C I({(Z'; 0; O)}) C I({B'}) = I({B}) C V'; hence equality holds throughout
and thus (1'; 0; 0) is not proper. If B is is proper let B' = (6-fB )Uf(11; 0; 0) ,
and again, using (3.1) we see that B' satisfies (i), contrary to (iii). This proves
that B = B' and that B is not proper, and hence B satisfies (N4), as desired.

03
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Finite Automata, Bounded
Treewidth and Well-Quasiordering

KARL ABRAHAMSON AND MICHAEL FELLOWS

ABSTRACT. Some aspects of the finite-state point of view on bounded
treewidth graph properties are exposited, and several new results relating
finite-state recognizability to well-quasiordering are presented. The point
of view presented emphasizes (1) a division of labor between structural

parsing of graphs on the one hand, and standard tools of finite automata
theory on the other, and (2) a Myhill-Nerode perspective on the description
and handling of finite automata. The main new result is a straightforward
necessary and sufficient condition (cutset regularity) for a family of graphs
to be recognizable from structural parse trees by finite-state tree automata.
Based on this main result, a second necessary and sufficient condition for

finite-state recognizability is developed, which states that a family of graphs
F is finite-state recognizable for bounded treewidth if and only ;f a certain
quasiorder induced by the family is a well-quasiorder. We obtain a similar
well-quasiordering characterization of regular formal languages. The cri-
teria are applied to a number of natural graph families. For example, it

is shown by a direct Myhill-Nerode argument that for k > 2 and w > 1

the family of graphs of bandwidth at most k is not finte-state recogniz-
able from parse trees for graphs of treewidth at most w. It is also shown
that for every fixed k, the family of graphs of cutwidth at most k is finite-
state recognizable for graphs of bounded treewidth. The main theorem
also allows us to give a straightforward Myhill-Nerode style proof of the

important theorem of Courcelle relating finite-state recognition to second-

order monadic description of graph properties. Finally, it is shown that
a quasiorder on graphs of bounded treewidth satisfying a weak technical

condition is a well-quasiorder if and only if every lower ideal is finite-state.
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1. Introduction

In the setting of bounded treewidth, there are strong and beauztiful connec-
tions between well-quasiordering and finite-state recognition. These connections
have emerged in a body of recent work by several authors and "schools" [ALS]
[AP) [Bol] [BLWI [BPT] [CK] (Co2] [ECI [He] [MP] [Sel [Wi] [WHL]
[WPLHH]. It. has gradually become clear that almost all of the work that has
been done on algorithms for bounded treewidth can be systematically viewed
in terms of the standard mathematical objects: finite-state tree automata. The
classical theorem of Myhill and Nerode characterizing regular languages can be
seen to generalize elegantly to the graph-theoretic setting and to provide a useful
characterization of graph families that are easy to recognize, for input restricted
to graphs of a given treewidth bound.

The main purpose of this paper is to provide an exposition of this po-int of
view, to present this graph-theoretic generalization of the Myhill-Nerode the-
orem and to demonstrate its use on concrete problems. We also prove a new
characterization of regular formal languages in terms of well-quasiordering, and
an analogous well-quasiordering characterization of finite-state graph properties.

The ideal reader is thoroughly grounded in classical finite automata theory
including the Myhill-Nerode theorem (as may be found in a textbook such as
[DW] or [HU]), is familiar with the basics of graph minor theory, bounded
treewidth and well-quasiordering (as may be found in the papers of Robertson
and Seymour), and has at least some superficial familiarity with the extensive
literature on graph algorithms for graphs of bounded treewidth (a comprehen-
sive bibliography on this subject is maintained by Steve Hedetniemi of Clemson
University; see also (Bo3]). The new results presented here are in many respects
a sequel to those of [FL], which describe a general method for computing the
obstruction sets for lower ideals in the minor order. Tree automata are surveyed
usefully and concretely in [Th], and [Mil can be consulted for background in
well-quasiordering theory. Despite these prerequisites to a full appreciation of
the paper, we have included examples and illustrations to try to make the main
results, and the finite-state point of view on this subject, accessible to readers
without them.

A quaszorder is a reflexive and transitive relation. A quasiordered set (S, <) is
well-quasiordered (or a wqo) if, for every infinite sequence (zj,.. . ) of elements of
S, there are indices i < j such that xi < xj. (Such a sequence is termed good, and
a sequence without such a pair of indices is termed bad.) To the reader interested
in graph minor theory for its applications in computational complexity, wqo's
may at first seem unfamiliar and exotic. At least in the setting of bounded
treewidth, however, we will show that well-quasiordering is intimately connected
to familiar ideas of finite-state automata.

Let L C E" be any formal language. Define the canonical quasiorder induced
by L: X <L y if and only if Vu,v E E,, uyv E L implies uzv E L.
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(1.1). L is finite-state if and only if <L is a wqo.

(1.1) should be thought of as representing another step of abstraction beyond
the Myhill-Nerode Theorem [HUI that it half-resembles. Although we do not

pursue this further here, the well-quasiordering characterization (1.1) can be

used to provide nonconstructive proofs that some formal languages are regular,
providing an analogue in the familiar setting of formal languages to some of the
nonconstructive consequences of the Graph Minor Theorem. The proof of (1.1)

can be found in section 3.

DEFINITION 1.1. A lower ideal in a quasiorder (S, <) is a subset A C S such
that x < and y E A imply z E A.

DEFINITION 1.2. A quasiordered set (Q, <) is Noetherian if there are no prop-

erly infinitely descending chains (xi > X2, > ... ) in Q, where z > y denotes that

x > y and not y > z.

DEFINITION 1.3. A quasiorder < on E" is well-behaved if it is (1) Noetherian,

and (2) a congruence with respect to concatenat;.n, that is, x < z' and y < y'
imply zy < X'y'.

(1.2). A well-behaved 1 uasiorder < on E" is a wqo if and only if <_L is a wqo

for every lower ideal L of (E, <).

What does it mean for a graph family to be finite-state recognizable? For

bounded tree-width we can answer this in an elegant and powerful way by means

of (1) structural parse trees to represent the graphs, and (2) finite-state tree
automata.

The structure of a graph of bounded treewidth can be represented by a rooted
labeled tree. The labels represent a finite set of structural primitives that de-

scribe how the graph is built up. (A concrete example of such a parsing formalism
can be found in the next section.) Such a parse tree of a graph is, in general,

not unique. If T is a parse tree, we let G(T) denote the graph that it represents.

There are a variety of possible ways to settle the details of the parsing formalism.
Any reasonable choice will do, and makes no difference to the theory we present.
In the next section we give as an illustrative example a parsing formalism for

graphs of treewidth 2.

DEFINITION 1.4. Let t be a positive integer. A family F of graphs is t-finite

state if there is a leaf-to-root finite state tree automaton [ThI that accepts a

parse tree T (of a graph of treewidth at most t) if and only if G(T) E F. We say
that a family of graphs F is finite state if F is t-finite state for every t.

The main results that we describe establish necessary and sufficient conditions

for a family of graphs to be finite-state. We apply these characterizations to

some natural graph famiiies to obtain both "positive" and "negative" results
concerning finite-state recognizability for bounded treewidtO.
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In this "graph-theoretic" exposition we employ the notion of a t-boundaried
grapit, J developed in [FL] (see also [Wi]). A t-boundaried graph is just an ordi-
nary graph equipped with t distinguished vertices labeled I through t. Formally,
we have:

DEFINITION 1.5. A t-boundaried graph G = (V, E, B, f) is an ordinary graph
G = (V, E) together with (1) a distinguished subset B of the vertex set V,
IBI =t, and (2) a bijection f: B - {1,... ,t}.

A fundamental operation (denoted Eý) on t-boundaried graphs that we con-
sider is that of gluing them together along their boundaries by identifying like-
labeled vertices.

DEFINITION .6. If G = (V, E, B, f) and G' = (V', E', B', f') are t-boundaried
graphs, then G D G' denotes the t-boundaried graph obtained from the disjoint
union of the graphs G = (V, E) and G' = (V', E') by identifying each vertex
u E B with the vertex v E B' for which f, = f'(v). (In some situations which
will be clear from the context, such as the next definition, we consider G D G'

to be an ordinary graph, by "forgetting" the boundary.)

We are concerned with at least two universes of t-boundaried graphs: (1)
the large universe UtlJre of all t-boundaried graphs, and (2) the small universe
U1,matj of t-boundaried graphs that arise in the parsing of graphs of treewidth at
most t. The universe UsmaiU is concretely described in the next section.

DEFINITION 1.7. Let F be any graph family, and let Ut be either U,.,01 or
U/arge. Define the canonical quasiorder induced by F: X <F Y if and only if
(VZ EU t)(Y(ZEF--XeZE F).

We have the following analogues of (1.1) and (1.2).

(1.3). A graph family F is t-finitle-state if and only if:<F is a well-quasiorder
on Usrmall.

DEFINITION 1.8. j, quasiorder < on U.1matt is well-behaved if

(1) < is Noetherian, and
(2) < is a congruence with respect to D, that is, X < Y and X' < Y' imply

X(X' < Y BY'.

(1.4). A well-behaved quasiorder < on Usmalt is a well-quasiorder if and only
if < F is a well-quasiorder on Um.i for every lower ideal F of :.

(1.3) and (1.4) follow from the basic result (1.5) stated below. The proofs of
(1.1)-(1.5) are presented in the next section. A family of graphs F induces an
equivalence relation on a universe U' (large or small) of t-boundaried graphs as
follows.
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DEFINITION 1.9. If F is a family of graphs then the F-canonical congruence
is defined for t-boundaried graphs X, Y by X -r Y if and only if for every
t-boundaried graph Z E UW, X e Z E F - Y (B Z E F.

The following definition captures an essential feature of the complexity of

the "information flow" across a bounded-size cutset necessary to determining
membership in a graph family.

DEFINITION 1.10. A graph family F is t-fully cutset regular if the F-canonical
congruence on t-boundaried graphs has a finite number of equivalence classes
(finite index) with respect to the large universe Ul.re of all t-boundaried graphs.
We say that F is fully cuiset regular if it is t-fully cutset regular for every t.

DEFINITION 1.11. A graph family F is t-cutset regular if -rF has finite index
on U, mai. We say that F is cutset regular if t-cutset regular for every t.

Note that if a graph family is t-fully cutset regular then it is t-cutset regular.
It is not presently known if these notions are distinct for families of graphs of

treewidth bounded by t. (For interesting recent progress on this question see
[CL].)

(1.5). A family of graphs F is 1-finite-state if and only if F is t-cutset regular.

The main interest for algorithms research in RS posets (for bounded treewidth)
is the result, based on the finite obstruction sets, that all lower ideals are finite-
state, and therefore recognizable in time O(n log n), (and NC-recognizable).
But the collection of 1-finite-state graph families is far more extensive than the
collection of such lower ideals. For example, it is easy to show directly that for

the family F of Hamiltonian graphs, -F has finite index on Ularge (and therefore
also U"mall).

RS-posets are defined by two distinct properties: well-quasiordering and fea-

sible order tests. Robertson and Seymour develop more-or-less separate argu-
ments for these two properties for the minor order on general graphs (RS1]
(RS2] [RS3J. (1.4) shows that, for bounded treewidth, (well-behaved) well-
quasiordering implies fast order tests. (Interestingly, this implication is non-

constructive.) (1.2) and (1.4) may open the way to automata-theoretic proofs
of well-quasiordering results (such as the Graph Minor Theorem) for graphs of
bounded treewidth.

In [Col] Courcelle establishes a sufficient condition, termed recognizability for
a graph family to be finite-state recognizable for bounded treewidth. In (Co3]
it is shown that recognizability coincides with the property we have termed here
full cutset "egularity.

The next section presents the basic machinery of the finite-state point of
view on bounded treewidth graph problems, and proves our central result (1.5).

Section 3 presents the well-quasiordering characterizations (1.1)-(1.4) of finite-
state recognizability. Section 4 describes various applications. Section 5 gives
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a proof of Courcelle's important theorem on second-order monadic logic in this
framework. Section 6 concludes with a discussion of open problems.

2. Bounded Treewidth and Finite-State Automata

We must first describe how a graph of bounded treewidth can be represented
as a labeled binary parse tree.

DEFINITION 2.1. A tree-decomposition of a graph G = (V, E) is a tree T
together with a collection of subsets T, of V indexed by the vertices z of T that
satisfies:

1. For every edge uv of G there is some x such that {u,v} C Ti,.
2. If y is a vertex on the unique path in T from z to z then T, n T, C Ty.

The width of a tree decomposition is the maximum over the vertices z of the
tree T of the decomposition of ITI - 1. A graph G has treewidth at most k if
there is a tree decomposition of G of width at most k. Alternatively, a graph
has treewidth at most k if and only if it is a subgraph of a k-tree (see [Ar,AP]),
and this provides perhaps the most accessible concrete picture of what bounded
treewidth is all about.

EXAMPLE. 2-TREES.

(1) K 3 is a 2-tree.
(2) If G is a 2-tree and uv is an edge of G (uv is a subgraph isomorphic to

K2) then the graph G' consisting of G together with a new vertex x and
new edges xu and xv is a 2-tree. (Thus the K2 subgraph is augmented
to K3).

(3) Nothing else.

A recipe for generating (all) k-trees, for k arbitrary, differs from the above in
"starting" (1) with the complete graph on k+1 vertices, and in (2) by augmenting
a complete Kk subgraph of G to Kk+i. Figure 1 shows some examples of 2-trees.

At the heart of the automata-theoretic approach to bounded treewidth is
the representation of graphs of bounded treewidth as labelled trees, where the
labels are taken from a finite alphabet and represent structural primitives and
operations for building the graph. Such a labelled tree we refer to as a parse tree
for the graph. A general notion useful for such representation schemes is that of
a composition operator for boundaried graphs.

The idea of a boundaried graph composition operator is quite simple: the
operator is described by a fixed operator graph that has several boundaries (not
necessarily disjoint). E.g., for a binary operator, the operator graph is equipped
with 3 boundaries, two for the arguments to the operator, and one to be the
boundary of the resulting graph. Arguments to the operator (which are bound-
aried graphs), are attached to the operator graph in the same way as with E, by
vertex identification along the appropriate argument boundary.
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FIGURE 1. SOME 2-TREES.

Ii, " 2, ' 2" 2, I 2, 2"

0a 0b

FIGURE 2. OPERATORS FOR PARSING TREEWIDTH 2.

DEFINITION 2.2. An n-ary t-terminal composition operator ® is defined by
the data:

1. A t-boundaried graph T® = (V®,E®, B®, fg).
2. Injective maps fi : {1,... ,t} - V® for i- I,... ,n.

For the binary case, if Gi for i = 1, 2 is a pair of t-boundaried graphs G, -
(Vi, Ei, Bi, f,) then G1 ® G2 is defined to be the t-boundaried graph for which
the ordinary underlying graph is formed from the disjoint union of G1 , G2 and
T& by identifying each vertex u of Bi (for i = 1, 2) with its image fi(u) in V&.
The boundary set and the labeling for G, ® G2 is given by Be and f®.

In this exposition we focus for notational convenience on binary composition
operators. All of the theory goes through if one considers composition operators
of any fixed arity. Graphs of treewidth at most t can be parsed using a small
number of t-ary operators of boundary size t; they can also be parsed with binary
operators of size t + 1.
Illustration. Parsing graphs of treewidth 2, and the universe U'

The following operators are sufficient to parse graphs of treewidth 2: E and
the operators 0, and ®b illustrated in Figure 2. Our notational convention is
that the first argument boundary of an operator graph is labelled {1',2'}, the
second argument boundary is labelled {1", 2"}, and the boundary of the resulting
graph is labelled {1,2). (Note that these boundaries are not disjoint; a vertex
may play several roles.)
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FIGURE 3. AN EXAMPLE OF PARSING.

DEFINITION 2.3. The small universe U' is described:

(1) The "empty" graph 0 consisting of two isolated vertices and the only
possible boundary is in U.mai1 -

(2) If G, and G2 are boundaried graphs (necessarily having boundary size
2) in U,2.aii then G 1, G2 , G1 ®, G2 and G1 06 G2 are in U.m..1

(3) Nothing else.

It is straightforward to verify that the underlying (ordinary) graph of any
boundaried graph in U has treewidth 2.

Conversely, one can show that if G is any graph of treewidth at most 2 (and
having at least 2 vertices) then G can be parsed using the set of labels 0 =
{0, D, a, b} in such a way that each leaf is labeled 0. We illustrate with a parse
for the graph G shown in Figure 3. The label a denotes the operator ®a and the
label b denotes the operator ®b shown in Figure 2.

How fast can a parse tree be found, starting from scratch? One of the more
accessible fundamental results of Robertson and Seymour showed that in time
0(n 2) one can find a tree decomposition (and therefore a parse tree, by a linear-
time translation) of width t = 5w for any graph of treewidth at most w [RS2I.
This has been improved, parallelized, and randomized in a number of ways (see
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[ACPS], [Lal and [Re]), culminating in the t = w, linear-time algorithm due to
Bodlaender (Bo2].

The following results are useful.

(2.1). For an arbitrary graph family F, the canonical equivalence relation -F

is a congruence with respect to all binary composition operators.

PROOF. Let 0 denote an arbitrary binary composition operator and suppose

X1 -F X 2 and YI -F Y2. Suppose there is a boundaried graph Z such that
(Xi®Yi)BZ E F and (X 2 ®Y 2))Z ý F. But X1 'F X 2 implies (X 20Y 1 )OEZ E
F, and Y1 -•F Y2 further implies (X 2 ® Y 2) E Z E F, a contradiction.

(2.2). An equivalence relation -,. on t-boundaried graphs is a congruence with
respect to all composition operators if and only if it is a congruence with respect
to all unary composition operators.

PROOF. The proof is similar to that for (2.1).
We next formally define the finite-state recognition mechanism for sets of

binary trees that are vertex-labeled from a finite alphabet. Such a set we will
term a language of trees.

DEFINITION 2.4. A finite-state tree automata is a 5-tuple M = (E, Q, q0, A, 6)
where E is a finite alphabet, Q is a finite set of states, qo E Q is a distinguished
start state, A C Q is a set of accept states and 6 : Q x Q x E - Q is a transition
function.

In order to describe the set of E-labeled binary trees recognized by a finite-
state tree automata M we must first recursively define a function eval on these
objects. In the natural way, we refer to the two labeled binary trees T, and T2

of a labeled binary tree T as the children of T, where if T has root r then T1
and T2 are rooted at the children of r in T. To denote this relationship between
T1 , T2 and T in the case where the root r of T is labeled by a E E we write
T = T, 0. T2, and we will refer to ®a as a tree composition operator.

Since we are concerned with the situation where the letters in the finite al-
phabet E denote the operators that describe the parsing of a graph of bounded
treewidth, it will be convenient to use the notation E to denote the tree com-
position operator that corresponds to the operator D defined on boundaried
graphs.

In the case that T consists of just the single vertex r, we regard the children
of T to be T, = T2 = 0, the tree with no vertices.

Where E is a finite alphabet, we write E** to denote the set of all E-labeled
binary trees.

DEFINITION 2.5. If M = (E, Q, qo, A, 6) is a finite-state tree automata then
the function evalM : E*- Q is defined by

(1) evalM(O) = qo
(2) evalM(T1 ®a T2 ) = 6(eval(T 1),eval(T2),a)
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DEFINITION 2.6. The language of trees L(M) recognized by a finite-state tree
automata M is the set of all labeled trees T E E°° for which evalM(T) is in the
set of accept states A of M.

DEFINITION 2.7. A language of binary trees L C E"i is finite-state if aud
only if there is a finite-state tree automata M such that L(M) = L.

DEFINITION 2.8. An equivalence relation -, on E°* is a congruence if and
only if Va E E, To " To and T1 "- T1 imply To ®. T1 ,- To ®, V1.

DEFINITION 2.9. The canonical congruence on E*" induced by L C E°" is
defined T -L T7' if and only if(Va E E)(VTo E E*")(T®8 T0 E L .- + T' 0 To E L).

The following standard theorem is the tree automata analogue of the familiar
Myhill-Nerode theorem concerning regular formal languages.

(2.3). A language L C E*" is finite-state if and only if-L has finite index,
and this is true if and only if there is an equivalence relation - on E*V that
satisfies:

(1) "- is a congruence
(2) - has finite index
(3) T - T' and T E L imply T' E L

We next prove our central theorem relating finite-state tree automata to
bounded treewidth graph families.

(1.5). A graph family F is t-finite state if and only if F is t-cutset regular.

PROOF. We argue the case for "only if" by contraposition. Let X1, X2,...be

an infinite set of representatives of the equivalence classes of -F. Let L = T(F)
denote the set of all labeled binary trees that are parse trees of graphs in F. We
claim that the canonical equivalence relation -L must also have infinite index.
For each Xi choose a parse tree Ti. For each pair of indices ij with i 0 j
choose a graph Zq such that (without loss of generality) Xi (D Zj is in F and
Xj E) Zji is not in F, and choose a parse tree Ti2 of Zjj. Then T, (9 T/• is a
parse tree for Xi (B Zij E F and so T, 0 Tbj E T(F). By a similar chain of
reasoning 7' @ T,,j ý T(F). Since the graphs Xi are all distinct, the trees Ti are
also distinct, so that -L has infinite index and T(F) is not finite-state.

The converse is argued as follows. Define an equivalence relation -, on E'*
by T - T' if and only if G(T) -•F G(T'). It suffices to argue that - satisfies the
three conditions of (2.3) with respect to the language L = T(F) of parse trees of
graphs in F. That L is a union of equivalence classes of - is immediate. That

has finite index follows from the hypothesis that -p has finite index.
It remains only to argue that ,- is a congruence with respect to binary tree

composition operators. Suppose T, -" T, and T'2 - T2. Let a E E. Then by the
definition of - and the fact (2.1) that -F is a congruence with respect to all
binary composition operators, we have G(Ti)®aG(T2) -F G(T/)®0 ,G(T2) where
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®9 denotes in this expression the graph composition operator corresponding to
a E E. By the definition of our parse tree representations, we have G(T1 ® T2) =

G(T1 ) ®0 G(T2 ) and G(T• ®6 T2) = G(T•) ®. G(T2) so that G(T1 ®9. T2) -F

G(Tj ®& T2) and therefore TI &a T2 ,-. T1 ®& T2.
A useful variant of the above theorem goes as follows. (The proof is straight-

forward.)

(2.4). Let F be a family of graphs for which by some means we can decide
membership. If for every t a decision algorithm is known for an equivalence
relation .- on t-boundaried graphs that satisfies

(1) -- has finite index,
(2) - is a congruence with respect to unary composition operators, and
(3) X -. Y and X E F imphes Y E F,

then F is cutset regular and for every positive integer bound w a finite-state
tree automaton can be computed that recognizes the parse trees of the graphs in
F of treewidth at most w.

Where F in (2.4) is a lower ideal in a well-quasiorder, and a bound on the
obstruction treewidth is known, the automata that can be computed provides a
means for computing the obstruction set for F (see fFL] and (APS] for details).

To illustrate the main idea in (2.4), consider the simpler case of a formal
language L C E* for which we know (1) a decision algorithm for L, and (2) a
decision algorithm for the Myhill-Nerode congruence -L on EX, and assume that
-L has finite index. We wish to compute a finite-state automata that recognizes
L. The states of this automata will correspond to the equivalence classes of
"L, the start state will be the equivalence class of the empty word, and the
accept states will be those equivalence classes that are subsets of L. On a letter
a E E the transition function takes us from a state [z] to the state [xa]. We
compute the automata by computing representative words for the states, by a
greedy procedure that begins with the empty word representing the start state.
For a representative x, we use algorithm (2) to determine whether za represents
a new state, or one for which we already know a representative. In this way,
beginning with the start state, we gradually elucidate the states and transitions
of the automata. We use algorithm (1) to identify the accept states.

(1.5) and (2.4) provide easy to use graph-theoretic tools for showing that
graph families are (or are not) finite-state for bounded treewidth. They are easy
to use because they focus on a simple and elegant property of the graph family:
the amount of information flow required across a bounded sized cutset in order
to to decide membership in the family. Some concrete applications are explored
in Section 4.

3. Finite Automata and Well-Quasiordering.

In this section we prove our main new results, (1.1) - (1.4). From the applica-
tions point of view, one of the main consequences of the Graph Minor Theorem
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is that every minor order lower ideal is finite-state for bounded treewidth. By a
cardinality argument, we have the following converse. (Note that the particulars
of the quasiorder play essentially no role in the argument.)

(3.1). Let < be a Noetherian quasiorder on U¶s1 , (on E*). If every lower
ideal of < is finite-state then < is a well-quasiorder.

PROOF. If > is not a well-quasiorder then there is an infinite antichain A.
Each (possibly infinite) subset S of A determines a distinct lower ideal Is =
{z : x < a E S}. If S,T are subsets of A with S # T then Is : IT. Thus
A yields a collection of uncountably many distinct lower ideals. Since there are
only countably many finite-state tree automata (linear automata), there must
be a lower ideal Fs that is not finite-state.

We will use the Myhill-Nerode Theorem and (1.5) to prove (1.1) and (1.3),
after the following preliminaries.

(3.2). If F is a family of graphs for which <_F is a well-quasiorder on U11.1.
(U maui) then <F- is a well-quasiorder on U1ar0e (Umaj), where F1 denotes the
complement of F.

PROOF. If the statement is false, then we may take (X 1,X 2 ,...) to be a
bad <F. sequence which is <F ascending. For i < j let Zj, be a choice oý
evidence for the badness of the sequence: Xi E) Zi, E F and Xj E Zij E F'.
Consider the sequence of t-boundaried graphs (Z 1,2, Z3,4, Z5 ,6,... ). Since <F
is a well-quasiorder, we must obtain the situation (reindexing for conveiiience):
X1 5F X 2 •F X 3 :F X 4 , X 1 E Z 1 .2 E F, X 2 E Z 1 ,2 ý F, X 3 E Z3 ,4 E F,

X4 (Z 3 ,4 0 F, and Z 1,2 <!F Z3 ,4. But this is a contradiction, since X3 BZ 3 ,4 E F

implies XA3 e Z 1,2 E F, and this implies X2 ( Z 1,2 E F.
We have the following similar result for formal languages.

(3.3). If L C E* is a formal language for which <L is a well-quasiorder on
E*, then <LC is also a well-quasiorder on E*.

PROOF. If the statement is false, then we can find a bad <L0 sequence
(zi, z2,...) that is <L ascending. By considering the associated sequence of
evidence as in the proof of (3.2), we obtain the situation (renaming for conve-
nience): X1 !5L Z 2 •_L X3 5L X4, uxlv E L, UX2V V L, u'z 3 v' E L, u'z 4v' V L,
and (using that <L X _<L is a wqo) U <-L u' and v <L v'. This is a contradic-
tion, because uXv' E L implies uz3 v' E L, which implies uX3 v E L, and in turn
uX2v E L.

PROOF OF (1.1) AND (1.3). We present the argument for (1.3), the proof
of (1.1) is similar. First note that for t-boundaried graphs X and Y, X -'F Y
if and only if X <F Y and X <F- Y, by definition. If <p is a well-quasiorder
then by (3.2) <F. is a well-quasiorder, The Cartesian product of <F and <rc is
then a well-quasiorder, and therefore -'F has finite index. By (1.5) we are done.

PROOF OF (1.2). By (1.1) and (3.1) it is enough to argue that if L is a lower
ideal of a well-behaved quasiorder < on E*, then <L is a well-quasiorder. If not,
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FIGURE 4. REPRESENTATIVES OF ''k

then there is a bad <L sequence (XI, X2, -...). But then, since < is wqo, there
are indices i < j such that xi _< xj. Since it is not the case that xi 5L Xj there
are words u, v E E* such that uxi v E L and uxi v q• L. This contradicts that L
is a lower ideal, since xi <ý zj implies zi v < xj v which implies uxi v <_ uxjv.-

PROOF OF (1.4). Similarly to (1.2), by (1.3) and (3.1) it remains only to
argue that if < is a well-behaved quasiorder on U.I,,,,1 and F is a lower ideal,

then 5F is wqo. Fr,.rm the definitions, if X < Y then X <p Y.

4. Some Concrete Applications of Cutset Regularity

The results of Section 2 (especially (2.4)) can be used as the basis for argu-
ments that certain graph families are not finite-state. The method of argument is
essentially as in textbook applications of the Myhill-Nerode theorem in proving
that formal languages are not finite-state. We demonstrate for the k-Bandwidth

problem [GJ].

DEFINITION 4.1. A layout of a graph G = (V, E) is a one-to-one function
I : V -.- f{1,... , IVI}. The bandwidth of layout I of G is the maXu•,CE VI(U) -- l(V)I.
The bandwidth of G is the minimum bandwidth of a layout of G.

(4.1). The family Fk of graphs having bandwidth at mosl k is not 1-cutset

regular if t >_ I and k > 2,

PROOF•. It suffices to prove the theorem for t = 1, since additional boundary
vertices can easily be added. Our proof consists simply of exhibiting an infinite
set of representatives of distinct equivalence classes of the equivalence relation
"-F,. The representatives are (Xi, i >_ 1), where Xi is the graph illustrated in

Figure 4.
The single boundary vertex of Xi is bi. The stars at either end of Xi strongly

constrain the layouts of bandwidth at most k. They must look like Figure 5, up
to permutation of the layouts of the stars.

Let Yj be a path of 2i+ I vertices, whose single boundary vertex is the centroid
of the path. Suppose n > mn. The reader can easily check that X,, ?6F,, X,, by

observing the following.
(1) X," e YAt.-n E Fk
(2) X., ( Yk._. V Ft
The layout needed to verify assertion (1) is constructed by placing k - 1

vertices of Yk,,-,, between each pair (6j, bi+,), for i = 0, ... , 2n - 1. There is not
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FIGURE 5. THE CONSTRAINED LAYOUT.

enough room in Xm to do the same thing, so some edge will have to be stretched
to length more than k to accommodate Y 5,,- within the layout for X,.

So far, the argument has established that k-Bandwidth is not fully cutset
regular. Noticing that the representatives Xi are in fact trees, we complete the
proof of theorem.

Theorem (4.1) leaves only the case k = 1 undetermined. A graph G has a
layout of bandwidth 1 if and only if G is a disjoint union of paths. So each
equivalence class is determined by where the boundary vertices lie on paths:
whether they are isolated, at the end of a path or somewhere in the interior of a
path. Hence, for t-boundaried graphs, there are 3' equivalence classes.

Bruno Courcelle has pointed out that this outcome for the Bandwidth prob-
lem can also be obtained indirectly from an undecidability result of Wanke and
Weigers concerning context-free graph grammars [WWI.

Another interesting example of a problem which can be shown to be non-finite-
state for bounded treewidth is the Perfect Phylogeny problem of computational
biology. Background and details can be found in [BFW] where it is shown that
for a fixed number k of characters, with k > 4, the k-Perfect Phylogeny problem
is not finite-state for treewidth > 4.

The finite-state characterization theorems of Sections 2 and 3 are also useful
for showing that graph families F are finite-state. We wish to point out a useful
general method of argument that these characterizations provide. The method
of test sets proceeds by the following steps.
Step 1: Identify a finite set S of tests T to be performed on a t-boundaried graph
X. (For example, a test might consist of a t-boundaried graph Y for which we
determine whether X E Y is in F.)
Step 2: Argue that the equivalence relation X - Y defined: X - Y if and only if
Sx = Sy where Sx = {T E S : X passes test T} has the properties (1) X -, Y
and X E F implies Y E F, and (2) - is a congruence with respect to unary
composition operators.

We demonstrate the method of test sets on the problem of determining whether
a graph has a layout of cutwidth at most k.

DEFINITION 4.2. A layout of a graph G = (V, E) is a one-to-one function
I : V -- R, where R is the real line.

DEFINITION 4.3. The value of a cut at a E R is the number of edges uv of
G with l(u) < a and l(v) > c. The cutwidth of a layout I of a graph G is the
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maximum value of a cut at any point a E R. The cutwidth of a graph G is the
minimum cutwidth of a layout of G.

(4.2). For every k and for every t, the problem of deciding whether a graph
has a layout of cutwidth at most k is t-finite state.

PROOF. Fix k and t, and let F denote the family of graphs of cutwidth at
most k. Let w : R -* N be a non-negative integer valued function which we will
refer to as a weighting of the real line R. We will consider the cutwidth of a
graph relative to a weighting of R in the following way.

If I is a layout of a graph G = (V, E), the value of a cut at a E R with respect
to w is the sum of w(a) and the number of edges uv of G with 1(u) < a and
1(v) > a. The cutwidth of a layout I of G with respect to w is the maximum
value of a cut at any point a E R. The cutwidth of G with respect to w is the
minimum cutwidth of a layout of G with respect to w.

A test T = (ir, S) of size n consists of the following: (1) a map 7r : {1,... , i} --

{1,... , n}, and (2) a sequence S of non-negative ir,-egers S = (S(O),... ,S(n)).
To a test T of size n we associate a weighting WT which consecutively assigns

the intervals of R: (0, 1), (1,2),... (n, n+l) the values S(0),... , S(n). Precisely,
WT(a) = S(i) if i < a < i + 1 and wT(a) = 0 otherwise.

We say that a t-boundaried graph G = (V, E, B, f) passes a test T of size n if
there is a layout I of G of cutwidth at most k relative to wT that further satisfies
the conditions:
(1) For all v E V, 0 < l(v) < n +.
(2) If u is a boundary vertex oi (,7 with label j, f(u) = j, then l(u) = r(j). Thus
the boundary vertices are laid out in the order and position described by it.

(3) If u is not a boundary vertex, u E V- B, then 1(u) 0 N. Thus non-boundary
vertices of G are assigned layout positions in the interiors of the weighted inter-
vals of R.

Let G and H be t-boundaried graphs and define G - H if and only if G and

H pass exactly the same set of tests. We will establish the following.

Claim 1. There is a finite set of reduced tests such that G and H agree on all

tests if and only if they agree on the set of reduced tests.

Claim 2. The relation - is a congruence with respect to all unary t-boundary

operators, and thus by (2.2) it is a congruence with respect to all t-boundary

operators.

Claim 3. If G E F and H - G then H E F. From these three claims it follows
by (2.4) that F is t-finite-state.

Note that Claim 3 is trivial, since given a layout I for G, we can describe a

test T1 where the weightings of the intervals of R are zero, which G passes. Since

H also passes T1, there is a cutwidth k layout of H, which furthermore places

the boundary vertices in the same order.

Claim 2 is also easily seen. Let ® denote a unary operator. We must argue
that if H - G and T is test passed by ®(H) then T is also passed by ®(G). Let
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I be a layout of &(H) that witnesses the fact that H passes T = (jr, S). Let S'
be the modification of S obtained by considering S together with the restriction
of I to the graph X of ®.

The graph X of® thus has two boundaries, one of which is attached to H, and
the other is "attached" by I to the weighted line in the manner prescribed by Ir.
We modify S by considering the weighting of R described by S to be subdivided
by the images of the vertices of X, and with the weights of the resulting intervals
adjusted to reflect the presence of any edges between vertices of X.

Let 7r' denote the map obtained by (1) normalizing the intervals of the mod-
ified weighting of R described above to unit length (by topological deformation,
which does not affect the cutwidth combinatorics), and (2) recording the image
of the boundary between X and H that is identified in forming O(H).

This gives a test T' = (ir', S') that is passed by H, and therefore also by G.
Let P' be a layout of G passing TV. By extending P' to a layout of O(G) in the
same way that the restriction of I extends to I for H, we see that &(G) passes
T.

Lastly, we turn to Claim 1. We define an equivalence relation on tests, with
T - T' if and only if every t-boundaried graph that passes T passes T' and vice
versa. We will argue that there are a finite number of equivalence classes of tests.

Call the sequence of integer weights between two consecutive images of { 1,... , tj
under the map 7r of a test T a load pattern of T. Each test T = (ir, S) thus has
t + I load patterns between the images of the boundary vertices prescribed by 7r.

We will use the following notation. The symbols s, s', si denote sequences
of integers taken from the set J = {0,... ,k}. Letters such as a,b,c will be
used to denote single particular values in J. Two load patterns s and s' are
termed equivalent if T - T' for any test T for which s is a load pattern,
where T' is the test obtained by replacing s with s'. Write s > s' if every
t-boundaried graph which passes a test T for which s is a load pattern, also
passes the test T' where the load pattern s has been replaced by s'. Thus
for example we have s = (5,4,1,3,2,7) > (5,1,1,1,1,7) > (5,1,7) = s' and
(5,1,7) > (5,5,1,7,7,7) > (5,4,1,3,2,7), and therefore s , s', since decreasing
the weight of an interval only makes finding a cutwidth k layout easier, and con-
secutively repeating weights (or deleting such repetitions) makes no difference.

We have the following reduction rules for load patterns.
(R1) If s = slabcs2 with a < b < c (or a > b > c) then s ~ s-acs2.
(R2) If s = slas2bs3 where each element of S2 is greater than or equal to the
maximum of a and b, and c = max(s 2 ), then S -. slacbs3.
(R3) If s = slas2bs3 where each element of S2 is at most the minimum of a and
b, and c = min(s 2 ), then s -'. slacbs3.

(RI) is shown by the sequence of implications: slabcs2 > siaacs 2 > siacs 2 >
s1accs2 > s abcs2 . To see (R2) let rn = max(a,b), and suppose c is in the i+ 1
position of s2,and that Is21 = i +j 1 = q. We have the sequence of implications:
sLas 2bs3 t> sIam icm bs3 > slaa+Icbj+ 1s 3 > s1acbs3 > s1 acqbs3 >_ slas2bs3.
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The argument for (13) is similar.
Note that since we are concerned with cutwidth k where k is fixed, every load

pattern is trivially equivalent to one where the largest integer weight occurring

is at most k. Define a load pattern s to be reduced if it contains only integer
values in the range (0,... , k} and none of the reduction rules (RI)-(R3) can be

applied to s. Define a test T to be reduced if each of the t + 1 load patterns of

T is reduced.

We next argue that a reduced load pattern s over {0,... , k} has length at

most 2k + 2. Otherwise, s must contain some value a at least 3 times. Consider
the factorization: s = s 1 as2 as3 as4 where a does not occur in 82 or s3. Neither
of the subsequences s2 or s3 can be empty, or s is not reduced. Let b be the

rightmost integer in s2 and let c be the leftmost integer in $3. If b < a < c or
b > a > c then (RI) can be applied. So both of b,c must be greater than a,

or both must be less than a. Suppose the latter. (The other case is handled

similarly.)
Let d denote the rightmost occurrence in the subsequence as2 of a value greater

than or equal to a. Let e denote the leftmost occurrence in the subsequence s3a

of a value greater than or equal to a. There are at least 3 integers in s properly

between d and e, and each intervening value is at most a. By (R3) s is reducible.
It follows that there are finitely many reduced tests, completing the proof.

Note that our argument shows that for every k, the family of graphs of

cutwidth at most k is fully cutset regular.

There is a difference in the style of the above proof from previous work on
algorithms for bounded treewidth, such as can be found for example in [WHL]
and [Wi]. The difference is that in those approaches one essentially describes

the finite-state automaton explicitly at the level of states and state-transitions.
The test set method, in the "abstract" spirit of the Myhill-Nerode theorem, gives

only an implicit description of the automaton. In the above proof, a finite test

set is constructively described, and from this we can construct the relevant finite
automaton by the standard greedy procedure discussed in Section 2. In the

next section we further illustrate method of test sets with a proof of Courcelle's

theorem concerning second-order monadic logic and bounded treewidth.

5. Courcelle's Theorem

The important theorem discussed in this section was first proved by Courcelle

in a universal algebra framework. Similar results were obtained independently

by Borne, Parker and Tovey [BPT]. (An extension of the theorem to handle some
kinds of search problems can be found in [ALSJ.) The "graph-theoretic" procf

given below is based on (1.5) and the method of test sets. The theorem is widely

useful for establishing that graph decision problems are finite-state for bounded
treewidth, since with a little practice it is often quite straightforward to write

down a second-order monadic expression that describes the family of graphs
of interest. An example of such a description for Hamiltonian graphs is given
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below. It is interesting to note, however, that some kinds of graph properties
have proven to be difficult to express directly in second-order monadic logic, even
though it is known by other means (for example, the Graph Minor Theorem)
that second-order monadic descriptions of the property exist. Notable in this
regard have been the "graph layout" problems, such as the Graph Cutwidth
problem addressed the last section.

The syntax of the second-order monadic logic of graphs includes the logical
connectives A, V, -, -- , --- , variables for vertices, edges, sets of vertices and sets

of edges, the quantifiers V, 3 that can be applied to these variables, and the five
binary relations:
(1) u C U where u is a vertex variable and U is a vertex set variable
(2) d E D where d is an edge variable and D is an edge set. variable
(3) inc(d, u) where d is an edge variable, u is a vertex variable, and the interpre-
tation is that the edge d is incident on the vertex u

(4) adj(u, v) where u and v are vertex variables and the interpretation is that u
and v are adjacent vertices
(5) Equality for vertices, edges, sets of vertices and sets of edges.
Example. Hamiltonian graphs. It is obvious that a graph G is Hamiltonian if and
only if the edges of G can be partitioned into two sets, say red and blue, such that
(1) each vertex of G has exactly two incident red edges, and (2) the subgraph
induced by the red edges spans G. By progressive refinement of our task, we
show to express this in second-order monadic logic. (We use lower case letters
for vertex or edge variables, upper case letters for variables representing sets of
vertices or edges; early letters of the alphabet for edge variables, late letters of
the alphabet for vertex variables.) We first have, by the above observation, and
in notation corresponding to the above discussion, with E1 representing the red
edges, and E2 the blue edges :

Hamiltonian -* 3ElBE2 VuVv (part(El, E2)A(deg(u, E1 ) = 2)Aspan(u, v, El))

We can write part(El, E 2 ) as:

Ve ((e E E) V (e E E)) A -,((e E E1)A (e E E 2 ))

The expression for deg(u, ELi) = 2 can be expanded as:

(3e, e 2 (el 9 e2 ) A inc(el, u) A inc(e 2 , u) A (ei E EI)A(e 2 E El)) A

-,(3e13e 2 3ea (ei I e2 )A(ei 1 e3 )A(e 2 ý e3 )Ainc(e1, u)Ainc(e 2 ,u)Ainrc(e 3 , u)A

(ci E EI)A(e 2 E EI) A(e 3 E El))

The connectivity requirement span(u, v, E) can be expressed (note the neat,

trick):

VV1 Vv 2 v,, vV ((u, E V) A (v E V2)) -

(3e~hr.y inc(e, x) A inc(e, y) A (x E VI) A (Y E V2) A (r •E El))
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(5.1) (COURCELLE [Col] + [Co3]). If F is a family of graphs described by
a sentence in second-order monadic logic, then F is fully cutset regular.

PROOF Let 0 be the sentence that describes the graph family F, and write
.- for -•'. We prove the theorem by induction on formulas, for t an arbitrary
positive integer describing the boundary size. For convenience, we may write
8(X) to denote the boundary of a t- boundaried graph X. By the interior of X
we refer to the vertices in V(X) - 9(X).

To each formula 0 (possibly with a nonempty set Free(o) of free variables)
we associate an equivalence relation -0 on the set of all t-boundaried graphs
that are partially equipped with distinguished vertices, edges, sets of vertices
and sets of edges corresponding to the free variables in the set Free(o). (The
details follow shortly.)

Two partially equipped t-boundaried graphs X and Y are defined to be -'
related if and only if they have the "same" partial equipment and for every
compatibly equipped t-boundaried graph Z, the formula 0k is true for X e Z if
and only if it is true for Y 0 Z.

The compatibility condition on Z insures that the partial equipment of Z
agrees with that of X and Y on the boundary vertices and edges, and further
insures that all of the free variables have interpretations as the distinguished
elements and sets in the product graphs X ED Z and Y ED Z. The formalization of
what we mean by "partial equipment" is tedious but unproblematic; it can be
accomplished as follows.

Let f r(O),fr(1), Fr(O) and Fr(1) denote, respectively, sets of variables for
vertices, edges, sets of vertices and sets of edges. Let Free denote the disjoint
union of these four sets. Allow S2 to denote the set of all 2-element subsets
of a set S. Define a partial equipment signature a for Free to be given by the
following data.
(1) Disjoint subsets into(a) and ao(a) of fr(O), and a map f. : (o)--
{1,... ,t}.
(2) Disjoint subsets inti(a) and 8l(o') of fr(l), and a map f 9(a)
{I,... ,t}2.
(3) For each vertex set variable U in Fr(O) a subset U, C {1,... ,t}.
(4) For each edge set variable D in Fr(1) a subset D C {,... t}2.

Let Free(a) denote the union of the sets into(ar), o(t),intl(a), 9 1(a), Fr(O)
and Fr(1). We will say that a t-boundaried graph X = (V, E, B, f) is a-pariially
equipped if it has distinguished vertices, edges, sets of vertices and sets of edges
corresponding to the variables in Free(a), where the correspondence is compati-
ble with the data that describes 0. More precisely, the following conditions must
be satisfied by these distinguished elements and sets.
(1) If u is a vertex variable, u E into(a), then the distinguished vertex in X
corresponding to u must be in the interior of X.
(2) If u is a vertex variable, u E 0o(a), then the distinguished vertex in X
corresponding to u must be the unique vertex z E V for which f(z) = f°(u).



.558 KARL ABRAHAMSON AND MICHAEL FELLOWS

(3) If d is an edge variable, d E intl(a), then the distinguished edge in X
corresponding to d must have at least one endpoint in the interior of X.
(4) If d is an edge variable, d E ai(a), then the distinguished edge in X corre-
sponding to d must have as endpoints the pair of vertices x, y of 8(X) for which
fJ(d) = If(x),f(y)}.
(5) If U is a vertex set variable, U E Fr(O), then the distinguished set of vertices
VU in X corresponding to U must satisfy f(Vu n a(X)) = U,.
(6) If D is an edge set variable, D E Fr(1) then the distinguished set of edges ED
in X corresponding to D must satisfy {{f(z), f(y)} : {x, y} E Eo nc8(X) 2 = D,.

All of this is just as expected. We say that partial equipment signatures a
and CT for Free are complements with respect to Free if the data describing
them is in agreement with respect to the boundary and if together they provide
for a complete interpretation of the variables of Free. More precisely, a must
satisfy the next listed (symmetric) conditions with respect to a. (Note that & is
completely determined by a.)
(i) 8o(e) = ao(a) and fe = fo.
(2) into(&) =fr(O) - 0o(a) - into(a).
(3) 01 (&) = 8a,(a) and fcJ = f,.
(4) int 1(e) =fr(1) - 01(a) - inti(a).
(5) For each vertex set variable U in Fr(O), Ua = U,.
(6) For each edge set variable D in Fr(I), D,, = D,.

The important thing is that if partial equipment signatures a and & are com-
plements with respect to Free and if X and Z are t-boundaried graphs with X
a-partially equipped and Z &-partially equipped then every variable in Free has
a consistent interpretation in X D Z.

If a is a partial equipment signature for Free(O) and X, Y are a-parLially
equipped t-boundaried graphs then we define X -, Y if and only if for every
&-partially equipped t-boundaried graph Z: X®DZ k q if and only if YEZ • 0.

The induction claim may now be stated precisely. In what follows we will
avoid mentioning signatures when they can be deduced from the context.

Claim. For every second-order monadic formula 4, -- has finite index.
We must first show that the claim holds for atomic formulas. Since vertex

adjacency is easy to express as the existence of an edge incident on both vertices,
iz suffices to assume that the only atomic formulas are d E D, u E U and
inc(e, u). Our consideration breaks up into cases according to the possible partial
equipment signatures. All of these are easy, and are left entirely to the reader.
For example, let 0 = inc(e, u) and suppose a is described by e E intI(a) and
u E 0o(a). The relation -- has index 2. For another example, let 0 be the
formula d E D where d is an edge variable and D is an edge set variable, and
suppose d E a,(a) and D, = 0. The equivalence relation -- s then has index 1.

For the induction step we may suppose (without loss of generality) that € is
a formula obtained from simpler formulas in one of the following ways.
(1 € =-4
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(2) 4)= 1i A 0 2

(3) 0 = 3u€' where u is a vertex variable free in 0'
(4) 4 = 3do' where d is an edge variable free in 0'
(5) 4 = 3UW ' where U is a vertex set variable free in 4'
(6) 4 = 3DO' where D is an edge set variable free in 0'

We treat each of these six cases separately, giving a complete argument for
(1),(2),(3) and (6). An appropriate equivalence relation is defined for cases (4)
and (5) and the reader will have no difficulty adapting the arguments given for
the others to these two cases.
Case 1. 4) -,0'

It is enough to argue that X -0, Y implies X -0 Y. By contraposition,
if 3Z, X Z k 4 and Y EZ h -,0 then immediately Xe Z k= -,0' and
Y B Z k -', =- 0'. The converse is just as easy, and in fact ,
Case 2. 0 = 01 A 02

Here we have Free(o) = Free(01) U Free(0 2). Let o- be a partial equipment
signature for Free(O). Our strategy is to define a cor'venient equivalence relation
-.- on the o-equipped t-boundaried graphs, and then show two things: that -,

has finite index, and that it refines -,0.
The sets of variables in Free(oi), i = 1, 2, are subsets of the sets of variables

in Free(O), so the partial equipment signature a for Free(O) induces partial
equipment signatures a, for Free(01) and 02 for Free(0 2 ) just by forgetting
the unneeded equipment. It is with respect to these induced signatures that
we define -, to be -, n -k,. Since it is, by the induction hypothesis, the

intersection of equivalence relations of finite index, -.- has finite index.
It remains to argue that X - Y implies X -0 Y. By contraposition, if

3Z, X ( Z 1= 0 and Y e Z k -,0 then either (i) X D Z k 01 and Y E Z - ,
or (ii) X 9Z k 02 and YEDZ k -0'2. So either (i) X and Y are not -0,
equivalent, or (ii) X and Y are not -0,, equivalent. In either case it follows that

X and Y are not - equivalent.

Case 3. 4 = 3uO' where u is a vertex variable free in 4'
For i E {1,.., ,t} let Xi denote the partially equipped t-boundaried graph X

further equipped with the boundary vertex with label i in correspondence with
the variable u.

Let a(X, Z) denote the statement: There is a vertex x in the interior of X
such that Xu ®D Z • 4', where X, is X additionally equipped with the vertex x
in correspondence with the variable u.

Define X -3u Y if and only if for all Z, a(X, Z) -. a(Y, Z).

This is an equivalence relation of finite index, since, by the commutativity
of ( and the d'" jition of a, the conditions a(X, Z) and Z ,-0, Z' together
imply a(X, Z'), so that a(X, Z) depends in the second argument only on the
equivalence class of Z.

Define X -, Y if and only if
(a) X -,p, Y
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(b) X, -0', Y1 for all i E {1,... ,t}
(c) X -3. Y

The relation - is an equivalence relation of finite index since it is the inter-
section of finitely many such relations.

It remains only to argue that X ,- Y implies X -0 Y. If not, then 3Z with
"X ( Z V 0 and Y D Z 1--4?. Choose an instantiation of u to a vertex v in
"X E Z making 4? true.

Case (a). The vertex v is in the interior of Z. Let Z, denote Z further equipped
with the vertex v in correspondence with the variable u. Then X E Zu = 4? and
by (a), Y E Zu k 0' which implies Y q Z ý= 4, a contradiction.

Case (b). The vertex v is a boundary vertex of X. Then for some i E {1,... , t}
we have Xi(D Zi • ' which by (b) implies Y®Z1 J= 4' and therefore YgZ ) 4,
a contradiction.

Case (c). The vertex v belongs to the interior of X. Then (c) implies that there
is a vertex v' in the interior of Y such that Y,, E Z 1= 0' where Y,, is Y further
equipped with the vertex V in correspondence with the variable u. This implies
Y E Z h= 4, a contradiction.
Case 4. -.; 3do', where d is an edge variable free in 4'

For each {i,j} E {1,... ,t} 2 let X~j denote X further equipped with the edge
ij in correspondence with the variable d.

Let 3(X, Z) be the statement: There is an edge d' with at least one interior
endpoint in X such that Xd D Z 1 4' where Xd denotes X equipped with d' in
correspondence with d.

Define X -3d Y if and only if for all Z, 3(X, Z) - O(Y, Z). This is an
equivalence relation of finite index.

Define X - Y if and only if:
(a) Xij -,0, Yj for all {i,jJ E {1,... ,t} 2

(b) X ~0, Y

(c) X -3d Y
The relation - is an equivalence relation of finite index since it is the inter-

section of finitely many such relations. The verification that X - Y implies
X -- Y is straightforward.
Case 5. 4 = 3U4?' where U is a vertex set variable free in 4'

For each subset S C (1,... ,t} let ys(X, Z), defined for Z equipped with
VU = S, be the statement: There is a subset Uo of the interior of X such
that XU B Z h 0' where Xu is X equipped with the vertex set Uo U S in
correspondence with the variable U.

Define X -s Y if and only if for all Z, 7 s(X, Z) --, "ys(Y, Z).

It follows easily from the commutativity of E and the definition of ys that
-s(X, Z) and Z -,y Z' imply -ys(Y, Z), and from this and the induction hypoth-
esis that "-s is an equivalence relation of finite index.

Define X -- Y if and only if for all S C {... 1 t1, X -s Y.
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The relation , is an equivalence relation of finite index, since it is the in-
tersection of finitely many such relations. The verification that X - Y implies
X 0 Y is straightforward.

Case 6. 0 = 3DO' where D is an edge set variable
For each subset S C {1,... ,t}2 let 6s(X,Z) be the statement: There is

a set of edges Do, each having at least one interior endpoint in X, such that
XD DZ k 0' where XD is X equipped with the edge set DoUS in correspondence
with the variable D.

Define X -s Y if and only if VZbs(X, Z) +-+ bs(Y, Z). As in the other cases,
this is an equivalence relation of finite index, by the induction hypothesis and
the fact that bs(X, Z) depends in the second argument only on the equivalence
class of Z with respect to -0,.

Define X - Y if and only ifVS C {1,... ,t} 2X -s Y.
The relation -- is an equivalence relation of finite index since it is the intersec-

tion of finitely many such relations. It remains only to show that X - Y implies
X -,-0 Y. If not, then 3Z such that (without loss of generality) X E Z [
and Y D Z ý= -,0. Fix an instantiation of the variable D to a set of edges ED
in X E Z making 0 true. Let S = ED n O(X). Let ZD denote Z additionally
equipped with the set of edges of ED in Z in correspondence with the variable D.
Thus we have 5s(X, ZD). Since X - Y, we have also 6s(Y, ZD), which implies
Y $ Z j €, a contradiction.

6. Conclusions and Open Problems

The most intriguing open problems concerning the automata-theoretic point
of view on bounded treewidth concern the possibilities for extending this "pro-
gram." For example, (1.4) raises the possibility of general automata-theoretic
methods for proving well-quasiordering results (such as the graph minor theorem
for bounded treewidth) by arguments that counterpose the parsing operations,
and the operations defining the order.

It would also be interesting to know if some analogue of (1.4) holds in the large
universe. It is conceivable that study of the information flow across bounded size
cutsets for lower ideals F may provide an avenue for well-quasiordering results
in the more general setting.
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Graph Grammars, Monadic Second-Order Log.

And The Theory Of Graph Minors

Bruno COURCELLE

ABSTRACT. We survey the relationships between the descriptions of sets of
graphs by formulas of monadic second-order logic, by context-free
hyperedge and vertex replacement graph grammars and by forbidden
minors.

Introduction

Sets of graphs can be specified in different ways: by characteristic graph properties
(in particular by forbidden minors or forbidden subgraphs), by recursive formation
rules called graph grammars, and by reduction, i.e., roughly speaking, by formation
rules used in the reverse direction.

A vast project consists in comparing these various types of specifications at a
general level, and of course in the framework of precise definitions. One may expect
to obtain results of the following form: for every graph property expressible in a
certain logical language, there exists a grammar of a certain type that generates the
(finite) graphs satisfying this property and only them, or vice versa. It is of course
desirable to have effective constructions, i.e., to have algorithms that build grammars
from logical formulas or vice versa. In this paper, we survey the main results in this
direction that concern the relationships between several descriptions of sets of graphs:
(i) by characteristic properties expressed in monadic second-order (MS) logic, (ii) by
context-free graph grammars, and (iii) by forbidden minors. Some of these results
also provide effective constructions of efficient graph algorithms.

We now review the main notions and results. In Section 1, we introduce a set IF
of graph operations, making it possible to define graphs from smaller graphs,
typically by gluing two graphs at specified vertices. A graph expression is a well-
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formed algebraic expression built with the operations of IF and nullary symbols
denoting basic graphs. It evaluates to a unique graph: we say that the expression
defines or denotes this graph. Graph expressions offer linear notation for the graphs
they define, but also tree-structurings of these graphs since every well-formed
expression is in some sense a tree. These tree-structurings correspond closely to tree-
decompositions; see (1.1).

In Section 2, we define graph grammars as systems of mutually recursive
equations defining sets of graphs, of which one takes least solutions. These equations
are written with set union, the operations of F and nullary symbols denoting fixed
graphs. For example, the set of series-parallel graphs, characterized as the least set of
graphs containing the one-edge graph e and closed under two operations called series-
and parallel-composition, respectively denoted by * and //, is thus the least solution
of the equation S = (el U S*S U S//S, that we consider as a grammar with three
formation rules.

These grammars will be called HR grammars; they define the HR sets of graphs
(HR stands for "Hyperedge Replacement" and refers to an equivalent definition
formulated in terms of rewritings of hypergraphs). They have a limited generative
power: the HR sets of graphs have bounded tree-width (this follows from (1.1) and the
fact that a grammar must be finitely written). A positive counterpart is that they
generate graphs together with graph expressions denoting them, and hence with tree-
decompositions of these graphs. This fact is interesting because many graph
properties (in particular those expressible in monadic second-order logic, see (3.2)) and
many functions on graphs (see Section 7) can be tested or computed efficiently on
graphs given with amee-decompositions of bounded width.

In Section 3, we explain how a graph can be represented by a logical structure. It
follows that every logical language, the formulas of which are meaningful in the
structure representing a graph, can be used to write formally properties of this graph.
Monadic second-order logic (MS logic), namely the extension of first-order logic with
quantified variables denoting sets of elements of the domain, is both useful (because
many basic graph properties can be expressed in this language) and manageable in the
sense that several general complexity and decidability results hold: see (3.2), (3.4),
(6.2) and (6.4). Theorem (3.4), stating that the intersection of an HR set of graphs
and the set of graphs satisfying an MS property is HR is a powerful tool for
constructing new HR grammars from the ones generating the sets listed in (2.3).

In Section 4, we examine what MS logic and HR grammars can bring to the
theory of excluded minors. Theorem (4. 1) state- that the minor-closed sets of graphs
of bounded tree-width can be described by HR grammars. We also explain how the
minimal forbidden minors can be effectively constructed in certain cases by an
algorithm that uses HR grammars and MS logic.

In Section 5 we introduce new graph operations, that are in some sense more
powerful than those of Section 1. In particular, we introduce an operation that adds to
a graph, "in a single stroke", all edges linking a vertex with label a and a vertex with
label b. Hence, this new operation (together with a few auxiliary ones) constructs a
graph as a gluing of cliques and complete bipartite graphs as opposed to a gluing of
single edges as do the operations of IF. Systems of equations written with these



GRAPH GRAMMARS, MONADIC SECOND-ORDER LOGIC, AND GRAPH MINORS 567

operations give rise to the class of VR grammars (where VR stands for "Vertex
Replacement" and refers to an alternative definition in terms of graph rewriting).
These grammars are strictly more powerful than the HR ones. In particular, they can
generate the sets of all cliques and of all complete bipartite graphs, whereas the HR
grammars cannot.

The minor-closed sets of graphs of bounded tree-width can be described by HR
grammars by (4.1). It would be nice to have a grammatical description of those of
unbounded tree-width, and VR grammars might appear as good candidates.
Unfortunately, they are no good at all for this purpose: if a set of graphs generated by
a VR grammar is minor-closed, then it is HR, and hence has bounded tree-width: see
(5.3).

In Section 6 we define MS 1 logic, a restriction of MS logic, where set variables
cannot denote sets of edges, but only sets of vertices. This logic fits with VR
grammars as well as MS logic does with HR grammars: Theorems (6.2) and (6.4) are
exact counterparts of Theorems (3.2) and (3.4). The MS 1 logic is strictly less
powerful than the MS logic, whereas VR grammars are strictly more powerful than
HR ones. However, for graphs of degree at most some fixed integer k, and for graphs
that do not contain a fixed graph as a minor, MS-logic is no more powerful than
MS I-logic and HR grammars are no less powerful than VR-ones.

Section 7 contains historical remarks, comments on references and some pointers
to further developments.

1. Graph operations and graph expressions.

Graphs are finite and undirected; they may have loops and multiple edges. We
denote by VG the set of vertices of a graph G and by EG its set of edges.

Let C be a fixed countable set of labels. An s-graph (or a graph with a possibly
empty set of C -labeled distinguished vertices called sources) is a pair H = <G,f>
consisting of a graph G (called the underlying graph of H) and a one-to-one mapping
f: C -)-VG , where C is a finite subset of C. We say that f(C) is the set of sources
of H, that fic) is the c-source of H (for c in C), and that c is the label of f(c). A vertex
that is not a source is called an internal vertex. We call C the type of H and denote it
by t(H). We denote by G the class of all s-graphs and by G(C) the class of s-graphs
of type C. (Hence, G(0) is the class of all graphs.) Any two isomorphic graphs or s-
graphs (for the obvious notion of isomorphism preserving source labels) are
considered as equal. In other words, we shall deal with abstract graphs and s-graphs,
i.e., with isomorphism classes of concrete graphs and s-graphs, without being formal
about this. The sources are just distinguished vertices; they are frequently called
"terminals" but we call them "sources" because the word "terminal" has another well-
established meaning in the theory of grammars.

We now define a few operations on s-graphs.

Parallel composition: Let G a G(C) and G' e G(C). Their parallel composition is
the abstract s-graph G//G' in G(CUC) defined as the isomorphism class of a concrete
s-graph K defined as follows. We let H and H' be concrete s-graphs isomorphic to G
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and G' respectively such that VHnVH' = 0 and EHnEH' = 0. We let K be the s-
graph obtained from the union of H and H' by fusing the a-source of H and the a-
source of H' for each a in CfAC'. Note that G//G is not equal to G (except in the
degenerate case where G has no edge and no internal vertex). Parallel composition is
associative and commutative.

Source restriction: Let C be a finite subset of C. We let restC be the mapping on s-
graphs such that restc(<G,f>) = <G,g> where g is the restriction of f to C. Hence
the sources of H having a label not in C exist as vertices of restc(H) but are no
longer sources. They are made internal. The type of restc(H) is thus ¶(H)AC. We
shall use the notations resta and resta,b for rest(al and rest{a,b] respectively.

Source renaming: Let C be a finite subset of C and h be a bijection: C ) C. We
let renh be the mapping : G -) G such that renh(<G,f>) = <G,foh'> where h' is
the bijection: C - C that extends h, being the identity outside of C. It follows that
the type of renh(<G,f>) is h- I (c(<G,f>))U(r(<G,f>)-C).

We let IF denote the set of operations f/, restc, renh.

Remark : We have no operation making an internal vertex into a source. Any two
sources may be distinguished (and designated) by their labels, whereas we have no
way to distinguish (and designate) internal vertices. We do not wish to deal with
nondeterministic operations like: "make any internal vertex of this graph into the a-
source" where a is some label. 0

Basic s-graphs: We let 1B be the set of basic s-graphs. A basic s-graph can be of
three types: (1) the graph a with no edge consisting of a unique vertex that is the a-
source, (2) the graph ab consisting of an edge linking the a-source and the b-source
(where a * b), (3) the graph a-ý consisting of a loop incident with a unique vertex that
is the a-source, where in the three cases, a and b are any members of C (and a * b).

We let 1E be the set of finite, algebraic, well-formed expressions built with F and
lB. We call them graph expressions. The set of those written only with parallel
composition, source restrictions and basic graphs with labels in a finite subset C of C
is denoted by 1E0(C). The set of those written only with parallel composition, source
restrictions, source renamings renh with h: C ) C and basic graphs with labels in
C (where C is a finite subset of C) is denoted by IE(C).

Every expression t in lE evaluates to an s-graph denoted by val(t) and called its
value. We shall say that t defines or denotes val(t). It is clear that every graph with n
vertices is val(t) for some t e IE0(C) where Card(C) < n. For example, the graph



GRAPH GRAMMARS, MONADIC SECOND-ORDER LOGIC, AND GRAPH MINORS 569

is the value of the expression resto(ab // ab // bc // cd // 0 // ad) and also of the
following expression that is written with only three labels, namely a, b, c:

resto(resta,c(ab// ab// bc) // resta,c(cb I b-f// ab )).

It is easy to see that n labels are necessary to define a clique with n vertices. The
following result relates graph expressions and tree-decompositions. Let us recall that a
tree-decomposition of a graph G is a pair (Tif) where T is a tree and f is a mapping
that associates with every node u of T a set of vertices of G such that, (i) every vertex
of G belongs to some f(u), (ii) every nonloop edge of G has its two ends in some f(u)
and (iii) for every vertex x of G, the set of nodes u of T such that x belongs to f(u)
induces a connected subgraph of T. The width of (Ti) is the maximum cardinality of
a set f(u) minus 1, and the iree-width of G is the minimum width of a tree-
decomposition of G. We denote it by twd(G).

(1.1) For every graph G :
(i) twd(G) + 1 = Min (Card(C) / t e E0 (C), val(t) = G).
(ii) twd(G) + I = Min( Card(C) / t r IE(C), val(t) = G}.

Proof sketch: From a graph expression t in IE(C) denoting a graph G, one can
construct a tree-decomposition of G as follows. We make a few preliminary
observations. The syntactic tree of the expression t is a rooted and directed tree, say T,
the nodes of which are labeled by graph operations and basic graphs. Here we let G be
a concrete graph. For every node u of T, we let T/u denote the subtree of T rooted at u
as well as the corresponding graph expression. There corresponds to each such u a
subgraph Gu of G that is isomorphic to val(T/u). If u and v are distinct nodes, then
Gu and Gv are distinct, even if T/u and T/v are isomorphic subtrees. We take T as the
tree of the desired tree-decomposition. The set of vertices f(u) is the set of sources of
the concrete s-graph G,, and (Tf) is the desired tree-decomposition.

Conversely, one can convert as follows a tree-decomposition (Ti) of a concrete
graph G of width k into an expression in IEO(C) that denotes G, where C is chosen of
cardinality k+l. Without loss of generality, we can assume that each node of T is of
degree either I or 3. We choose a root r in the tree T and we direct its edges so that
every node is reachable from r by a directed path. Hence each node of T either has two
successors or no successor (and is a leaf). We color the vertices of G with the
elements of C considered as a set of colors in such a way that no two vertices in a
same set f(u) have the same color. We let c be the coloring mapping (from VG to C).
For each node u of T, we choose a set of edges E(u) having their ends in f(u) and such
that the sets E(u) form a partition of EG. We let H(u) be the concrete subgraph of G
with set of vertices f(u) and set of edges E(u), and K(u) be the concrete s-graph <H(u),
s> where s is the restriction of the mapping c-1 to c(f(u)). For each u we construct an
expression k(u) in 1E0(C) denoting K(u). We also construct an expression g(u) in
IEO(C) by the following induction: if u is a leaf of T, then g(u) is defined as k(u); if u
has successors v and w, we define g(u) as k(u)/Irests(g(v))llrests'(g(w)) where S =
f(u)nf(v) and S' = f(u)nf(w). The expression resto(g(r)) defines G and belongs to

IEo(C). a
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Remarks: This proof actually works for s-graphs, if we define a tree-decomposition
of an s-graph as a tree-decomposition of the underlying graph such that all sources are
in some set f(u). The comparison of assertions (1) and (2) shows that the operations
of the form renh are in some sense superflous. They are actually convenient in the

writing of derived graph operations to be defined below. C

Example : Figure 1 shows the syntactic tree of the expression

t = resto(resta,c(ab #/ ab // bc) #I resta,c(bc // b-/ H ab)

in ]E0((a,b,c)) already considered above, the corresponding tree-decomposition of the

graph val(t), and the graph val(t) itself. The vertices 1,2,3,4 of the graph appear as
sources with respective labels a, b, c, b in the s-graphs defined by the subexpressinns

of t. r3

resto 0

If!
ii (1,31

restac resta,c (1,3) (1.3)

ii ii (1,2,3) (1,4,3)

ab ! b # 11,2) (1,2,3) 14,3) (1.4)

ab bc be ab (1,2} [2,3) (4) (1,4)

Figure 1

Graph expressions can be used as linear notations for graphs. Unfortunately, they
tend to be long and unreadable, even for relatively small graphs. A partial remedy to

that consists of defining new graph operations in terms of those of IF. Hence, graph
expressions written with these new operations will tend to be more concise. We take
as an example the series-composition of graphs with two sources, respectively labeled

by a and b. It can be defined as follows for G and G' in G({a,b)):
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G*G* = resta,b(renh(G) II renh,(G'))

where h maps c to b, and b to c and h' maps c to a and a to c. Let us note that G*G'
is well-defined for any two s-graphs G and G', but we are only interested here in using
the operation * for s-graphs in G({ab}). It follows that the series-parallel graph

a 1._0jb

can be denoted by the expression:

(((ab # ab) * ab) //ab) 0 (ab * (ab /ab // ab))

which is more readable than the one we would obtain by replacing * by its definition.

Here is a formal definition. A derived graph operation is a mapping f: IGn ---, 6
defined by a well-formed expression t written with the operations of F, the nullary
symbols of 1B (that denote basic graphs), and variables xl,...,xn such that each of
them occurs once and only once in t. An algebraic expression t written with the
symbols of F and 1B, and symbols denoting derived graph operations, will be called
an extended graph expression. Its value is an s-graph denoted by val(t), as when t is
in IE.

In many cases, we are only interested in the restriction of a derived operation f to
G(C 1)x...x G(Cn) where Ci,...,Cn are finite subsets of C of interest for the intended
use of f. Note that, for a given operation f and sets C1 .... Cn, there is a unique set C
such that f maps G(C 1)x...x G(Cn) into G(C). We shall say that f has the profile
Cix...xCn---, C. A derived operation has infinitely many profiles. The series-
composition operation * has in particular the profile: (a,b) x {a,b) ---+ {a,b).

2. Hyperedge replacement graph grammars

Before introducing Hyperedge Replacement graph grammars (HR grammars for
short), we consider as an example the set S of series-parallel graphs with two "ends",
formally defined as sources labeled by a and b. Any graph G in S with In edges can be
constructed from in copies of the basic graph au by using in-I times the series and
parallel composition operations defined in Section 1. It follows that S is the least
subset of l({a,b}) satisfying the equation:

S = jab} U S3IS U SOS,

where the binary operations // and 9 on G({a,b}) are extended to sets in a standard
way. that is, S//S' := IG//G' / G e S , G' e S'), SS' := {G*G'/ G e S, G' S' .
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More generally, we shall consider systems of equations. An HR system of equations
is a system r of the form :

r = < S= =p(S1 .... Sn). Sn-=-Pn(Sl ....Sn)>

where each Si is an unknown, intended to denote a subset of G, and each pi is a
polynomial, i.e., a finite expression of the form mlUm2U...Umnk, where ml,...,mk
are monomials. A monomial is either an expression denoting an s-graph or an
expression of the form f(Si1.....Sir) where f is a derived graph operation. An HR

grammar is a pair (r,s) consisting of an HR system and one of its unknowns.

Every HR system r with unknowns S1,...,Sn has a least solution in (T((G))n that
we shall denote by (L(rS 1),...,L(r,Sn)). (We denote by F(G) the power set of G.)
We say that L(T,S) is the set of s-graphs generated by the grammar (r,S) where S is
some Si. A set of graphs is HR iff it is generated by some HR grammar.

A system r as above also has a least solution in the set of extended graph
expressions built with the basic graphs and the derived graph operations used to form
it. We shall denote by (T(r,s 1),...,T(F,Sn)) the n-tuple of sets of extended
expressions forming this least solution. For example, the least set of extended
expressions satisfying the equation defining series-parallel graphs contains in
particular the expressions ab, ab//ab, abeab, ab//(ab//ab), abe(ab/lab).

(2.1) For every HR grammar (r,S), we have : L(,S) = (val(t) / t r T(r,S)}.

This is actually a result of Universal Algebra, It does not depend on the specific
domain of s-graphs nor on the specific graph operations introduced in Section 1. An
analogous statement holds for other notions of graphs and other graph operations, and
the associated systems of equations and graph grammars, and in particular for those
we shall consider in Section 5. See also (12] for a treatment of grammars in a
Universal Algebra setting.

(2.2) Every HR set of s-graphs has bounded tree-width, and its graphs have all their
source labels in a finite subset of C.

Proof : The expressions forming T(F,S) are written with finitely many different
derived graph operations. Each of these operations is itself formed with finitely many
basic graphs and finitely many operations of IF. Hence, by (2.1), every graph G in
L(r,S) is denoted by an expression in IE(C) for some finite set C. Hence, twd(G) <

Card(C)-1 by (1.1), and r(G) is a subset of C. 0

Another consequence of (2.1) is that every graph generated by a HR grammar is
defined by an extended graph expression from which, by the construction of (1.1), a
tree-decomposition of (uniformly) bounded width can be constructed. This fact is
important for algorithmic purposes: see (3.2) and Section 7. It follows also from
(2.2) that the set of all graphs, the set of all planar graphs, the set of all square grids.
and the set of all cliques, just to take a few examples, are not HR. We now list a
number of useful HR sets.
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(2.3) For each integer k, the following sets of graphs are HR:

(i) the set of graphs of tree-width at most k,
(ii) the set of graphs of branch-width at most k,
(iii) the set of graphs of path- width at most k,
(iv) the set of graphs of bandwidth at most k.
(v) the set of k-trees.

Proof : (i) follows from the proof of (1.1). The constructions for the other cases are
not difficult. (Branch-width is a variant of tree-width introduced in [581; path-width is
introduced in [56]; a graph G has bandwidth at most k if there exists a bije~ion h of
VG onto an interval of the set of integers such that I h(x) - h(y) 1 : k for any two

adjacent vertices x and y; see [401 or [63j.) See [541 for k-trees. a

As an example we show the grammar generating the set of graphs of tree-width at
most k. For fixed k, we let C = (co, c I,..., ck}, and C' = (c I..., CkO. The set of
graphs of tree-width at most k is L(r,U), where r is the system consisting of the
following two equations:

U= resto(T), T = T//r U S(T,T,...,T) U B.

This grammar is adapted from (1]: we denote by B the set of s-graphs c, cl/c i, and

c//cicj for all I < i < j < k, where c is the s-graph cl//c2]/c3...//ck, and by S, the
generalized k-ary series-composition, a derived operation defined as follows:

S(xl,x2,...,xk) = restc'(renhl(xl)//renh 2 (x2)//...//renhk(xk))

where hi exchanges co and ci. We illustrate as follows the operation S for k = 3.
The graph G = S(G 1 ,G2 ,G3 ) is shown in Figure 2. 0

We now list the main properties of HR sets of graphs.

(2.4) (i) The union of two HR sets is HR.
(ii) The intersection and the difference of two HR sets is not HR in general.
(iii) The set of all subgraphs and the set of all minors of all graphs of an 11R

set is HR.
(iv) One can decide in polynomial time whether the set L(F,S) generated by a

given HR grammar (6S) is empty.
(v) For every HR grammar (F,S), one can decide whether a given graph

beiongs to L(r,s). There exist grammars (F,S) for which this problem is NP-
compiete.

(vi) Given (r,s), one can decide whether the set L(r,S) is finite. If it is, one
can enumerate it explicitly.

(vii) Every HR set of simple graphs is sparse.
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Figure 2

Proof: (i) and (iv) follow easily from (2.1); (ii) is proved in [16, Prop. (3.6.3)1; (iii)
follows from the main result of [271 but can also be established directly, without
using this difficult theorem; (v) follows from results of [611 and [36]: it is proved in
[61] that the membership problem in sets of graphs generated by a so-called BNLC
grammar is NP, and in [361 that every HR grammar can be translated (via a linear-
time coding of graphs) into a BNLC one; hence, it follows that the membership
problem for HR sets is NP; the set of graphs of cycle bandwidth at most 2 is both
HIR (an HR grammar is constructed in [42, Chap. IV]) and is NP-complete [51,; (vi)
is proved in [42, Chap. IV]. We finally consider (vii). A set of graphs is sparse if the
number of edges is linearly bounded by the number of vertices; since every simple
graph generated by a HR grammar is a partial k-tree, hence is obtained from a k-tree
by the deletion of edges, the result follows from the observation that Card(EG) <
kCard(VG) for every k-tree 0. c
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3. Monadic second-order logic

In this section we explain how graph properties can be expressed in logical
languages, and why monadic second-order logic is of special interest in this respect.

With every finite set C 9 C, we associate a set of relational symbols R(C)
finC, sc/c e C) where inc is binary and Sc is unary. With every graph G in

G(C), we associate the IR(C)-structure 11 Gil :-- <DG, incG, (scG), c> such that:

DG = VG U EG (we assume that VGonEG = 0),
incG(xy) :<=) x [ EG , y [ VG and y is incident with x,
scG(x) : <=4 x is the c-source of G.

It is clear that JIGII is isomorphic to IIG'il iff G = G'.

Every logical formula wp of a logical language expressing properties of R(C)-
structures expresses the property P(p of graphs in G (C) such that Pq(G) :0)

1I G 1- (p, and defines the subset LT of G(C) such that L,9 := [G e G(C) / JlGl
qp ). (The notation JIGll means that the formula (p is true in the structure JIGh .)

For expressing graph properties, first-order logic is rather weak: it expresses only
"local conditions" like conditions on degrees of vertices. Second-order logic where
quantifications on binary relations are possible is too powerful: nothing can be said
about the set of all graphs satisfying a property expressible in second-order logic.
Monadic second-order logic, namely the extension of first-order logic with
quantifications on monadic (unary) relations, i.e., on sets, appears to be both
powerful and manageable. We now introduce this language.

We shall use lower case variables x,y,z,... to denote vertices or edges, and upper
case variables X,Y,Z.... to denote sets of vertices and edges. The atomic formulas are
x = y, x e X, inc(x,y) and sc(x) for c in C. The formulas are formed from atomic
formulas with Boolean connectives /, v, -1, 4, object quantifications 3x, Vy, and
set quantifications 3X, VY. If W is a set of lower and ,uppercase variables, and if C is
a finite subset of C, we denote by X(CW) the set of monadic second-order formulas
the free variables of which are in W, and that do not contain occurrences of the
relation symbols of the form sc if c is not in C.

A property P of graphs in G(C) is monadic second-order (MS) if it is of the form
PqP for some formula (p in X(C,0). A set of graphs L _ G(C) is monadic second-
order (MS) definable if membership in L is a MS property. One says that the
monadic theory of a set of graphs L is decidable if there exists an algorithm deciding
for every MS formula p whether L _ L., i.e., whether all graphs in L satisfy Pq,.

(3.1) (i) The following properties of a graph G are MS:

G is k-connected. (for anyfixed k),
G is a tree,



576 BRUNO COURCELLE

G contains H as a minor (for any fixed H),
G is planar,
"0 has tree-width at most k (for anyfixed k),
"G is Hamiltonian,
"G is k-colorable (for any fixed k),
G i4 a square grid.

(ii) The following properties of a graph G are not MS•

G has bandwidth at most 3,
G has a nontrivial automorphism.

Proof : (i) See [17-19]. Most of these proofs are based on the existence of a
formula qp - ,Z(O,(x,y,X}) such that:

(JlG 11, T, i'X) p iff T andy are two distinct vertices

and X is the set of edges of a path in G linking
x to y.

(We write (IIGII, T, y, x) = pto mean that qp holdstrue in the structure IGo11
when its free variables x, y, X take the respective values x, y, and X with T, y

VGU EG and XR VGU EG.)

(ii) The case of bandwidth at most 3 follows from the main result of [661. The
case of graphs with nontrivial automorphisms can be obtain,4d from a similar result

for labeled graphs proved in [17]. o

The families HR of HR sets of graphs and MS of MS definable sets are
incomparable: the set of planar graphs is in MS but not in HR, whereas the set of
graphs of bandwidth at most 3 is in HR but not in MS. See the end of Section 4 for
a comparison diagram.

At this point, the following problems are quite natural:

Problem 1" How can one decide whether a given graph G satisfies a given MS
formula?

Problem 2 : Can one decide whether all graphs of a (possibly infinite) set L of
(finite) graphs satisfy a given MS formula? Equivalently, is there an algorithm
deciding the monadic theory of L?

For the first problem one can verify in a straightforward (brute force) way whether
a formula holds in the structure II G II, because this structure is finite. The only
interesting question is the complexity of this verification. Quite a lot of NP-complete
graph problems can be expressed by MS formulas: 3-vertex colorability and the
existence of a Hamiltonian circuit are two examples of such. A detailed list can be
found in [2]. There exist efficient algorithms for graphs of bounded tree-width as
stated in the next proposition.
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(3.2) Let (p be an MS formula, let K be a finite set of graph operations, derived
graph operations and basic graphs. For every extended graph expression t written with
K, one can decide in time 0(1 t i) whether the graph val(t) satisfies property P(p.

We refer the reader to [17] for the proof; we only present the main tool, Let f be a
derived graph operation with profile C 1 x... XCm -- C of particular interest. We say
that a finite set of graph properties IF is inductive with respect to the operation f if for
every property P in Z3, there exist properties Pj,i in V such that for all graphs
Gl,...,Gm respectively in [(C1),.... (Cm):

(3.2.1) P(f(G1,...,Gm)) = V Pj, 1(GI) i...APj,m(Gm).
1.j_<k

(We denote by P(G) the Boolean value true if P(G) holds and false otherwise.) In
words this means that the validity of a property P for a graph defined as f(Gl,...,Gm)
where GI,...,Gm are of respective types CI,...,Cm, can be determined from the
knowledge of the validity of some properties of V3 for the graphs GI,...,Gm. It is
proved in [17] that for every MS formula qi, one can find finitely many auxiliary
formulas Pl,.... m such that {Pqp, Pqpl,....P9 ) is inductive with respect to the

given set K. (It should be noted that the construction of wi .. q~m depends on K and
that it is essential that K be finite.) Then, in order to decide whether val(t) satisfies
p, one computes the tuple of Boolean values <Pqf(val(t')),
Pql1(val(')),...,Pp(Val(O))> for all subexpressions t' of t. This can be done in time

0(1 ti) by means of the equalities (3.2.1). (The integer m and the constant of the time
bound depend on the size of the formula and on the width of the tree-composition
associated with the graph expression via a tower of exponentials of height equal to the
number of nested quantifications.)

We now consider the second problem. Seese has proved in [621 that the monadic
theory of the set of all square grids, and of any set of graphs containing infinitely
many square grids as minors, is undecidable. It follows then from [57] and (2.2):

(3.3) If a set of graphs has a decidable monadic theory, then its tree-width is
bounded. Hence, it is a subset of some HR set of graphs.

Theorem (3.4) will state that every HR set of graphs has a decidable monadic
theory. Note that interesting graph theoretic conjectures or theorems can be stated in
logical terms. For instance, if we knew an algorithm deciding the monadic theory of
the set of planar graphs, then this algorithm would prove the 4-color theorem: it
would suffice to run it for the MS formula expressing that a graph is 4-colorable and
wait, perhaps very long, for the answer. Unfortunately (?) no such algorithm exists
by (3.3).

Equalities (3.2.1) also form the basic tool for proving the following theorem:

(3.4) Let C be a finite subset of C, let r be an HR grammar such that L(F) C
G(C) and let p be a formula in Z(C,0). One can construct an HR grammar 179
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generating L(F) n Lqp. One can decide whether JIGh I (p for some graph G in
L(F). The monadic theory of L(F) is decidable.

Proof sketch: See [17] fr the construction of rFp. For every HR grammar F, one
can decide whether L(F') * 0. This test can be applied to FV and says whether there
exists a graph in L(r) such that I I G 1 4p. For deciding the monadic theory of L(D),

note that 11 G 1 (p for every G in L(F) iff L(F-, (p) = , which is decidable. o

This theorem provides us with systematic methods for constructing HR grammars
from others. In particular, the sets of graphs defined as the restrictions of those listed
in (2.3) to graphs satisfying MS properties (typically planarity, Hamiltonicity or
connectedness to take a few examples) are HR, and HR grammars can be constructed
to generate them.

4. Minor-closed sets of graphs

By using the results of Robertson and Seymour (57,59], we show how MS logic
and HR grammars can help to describe minor-closed sets of graphs. We then discuss
the problem of the effective construction of their sets of obstructions. We shall denote
by OBST(L) the set of obstructions of a minor-closed set L, that is, the set of
minimal graphs not in L, where minimality is understood wr.t, minor inclusion.

The Graph Minor Theorem establishes that every minor-closed set of graphs has a
finite set of obstructions (see [59] and the related papers). This is the case in
particular, for every k, of the set of graphs of tree-width at most k. The corresponding
sets of obstructions are known for k = 1,2,3 (see [3]). In principle, these sets can be
computed by the algorithm of [49]. However, this algorithm is intractable, and the
sets of obstructions are still unknown for k _> 4.

(4.1) (i) Every minor-closed set of graphs is MS-definable.
(ii) Every minor-closed set of graphs of bounded tree-width is also HR.

Proof ([19]) : (i) It is an easy exercise to construct, for every fixed graph H, an MS
formula that defines the set of graphs that do not contain H as a minor. The result
then follows from the Graph Minor Theorem.

(ii) If L is minor-closed and has tree-width < k , then L = LflLk, where Lk is the
set of graphs of tree-width at most k. Since Lk is HR and L is MS definable by the

first part, it follows that L is also HR by (3.4). 11

The second assertion of (4.1) yields internal descriptions of minor-closed sets of
graphs of bounded tree-width. We say that they are "internal" because grammars
describe the graphs of some set in terms of smaller graphs belonging to the same set
or to finitely many auxiliary sets, described in the same way. By contrast, forbidden
configurations are external to the sets they characterize.

The proof of (4.1) is effective in the following way: from OBST(L) one can
construct an MS formula 'efining L and also a grammar for L in the case where
OBST(L) contains a planar graph. However, this construction may involve huge
constants. The bound on the tree-width of the set of graphs excluding a planar graph
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as a minor given in [57] has several levels of exponentiation; a smaller one is given
in (60].

No algorithm is known by which one could construct OBST(L) from a
formalized proof that L is minor-closed. In many cases, obstruction sets are
unknown. The following result from [19] gives conditions making it possible to
construct OBST(L) from an MS formula defining L.

(4.2) Let L be a minor-closed set of graphs. From an MS formula 9p defining L, one
can construct an MS formula V defining OBST(L). If in addition, either we know
that L has bounded tree-width, or we know an upper bound on twd(OBST(L)), then
we can construct OBST(L).

Let us recall that the knowledge of an MS formula -W together with the fact that
L is finite, is not sufficient to construct Lv effectively. This can be seen as
follows. From a deterministic Turing machine M given with its initial configuration,
one can construct an MS formula V such that LIV is the set of square grids such that a
terminated computation of M can be written on this grid, with one symbol per
vertex, in such a way that the successive lines of the grid encode the successive
configurations of the unique computation, and this cannot be done on any strictly
smaller grid. Hence, the set LV is empty or consists of a single grid. If one could
compute it from W, one could solve the halting problem for Turing machines.

We sketch the proof. From an upper bound on twd(OBST(L)), one can construct
by (3.4) an HR grammar generating the finite set OBST(L); from assertion (vi) of
(2.4), one can construct OBST(L). If we know that the tree-width of L is finite (we
need not know any upper bound), then, by enumerating all square grids and testing
whether they satisfy (p, one can find the smallest one not in L, whence by [57) a
bound, say k, on twd(L) so that twd(OBST(L)) < k+l, and otie can obtain
OBST(L) as before. This result can also be obtained by the method of Fellows and
Langston [39]. They use effectively given congruences with finitely many classes on
an appropriate algebra of graphs. Every MS definable set of graphs saturates such a
congruence, as proved in [17). This congruence relation can be effectively determined
from a given logical formula; hence, the main theorem cf [39] also yields (4.2), but
the proof we have sketched is simpler.

Theorems (4.1) and (4.2) show that, in order to define a minor-closed set of graphs
of bounded tree-width, it is equivalent to have the obstruction set or an MS formula,
because either of them can be constructed from the other. Both of them can be used to
construct an HR grammar. However, it is not presently known how to construct an
MS formula or the obstruction set from a given grammar, though we have no
theoretical result saying that this is impossible. The result of Fellows and Langston
[38] (see also Van Leeuwen [631) showing that one cannot construct OBST(L) from
a membership algorithm for L does not apply if L is given by a grammar. There may
exist an algorithm that takes an HR grammar F and produces a finite set of graphs
A(F) such that, whenever L(i) is minor-closed the set A(F) is precisely
OBST(L(F)). The existence of such an algorithm, and a fortiori an explicit
construction of it, is an open problem. There exists such an algorithm in the case of
context-free grammars (generating words, i.e., linear, directed, labeled graphs) where
subword inclusion is the relevant restriction of minor inclusion; see [261.
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Here are two examples of minor-closed sets, the obstructions of which are
unknown. Let k-PI (where k is some fixed integer) denote the set of graphs that are
subgraphs of some planar graph with diameter at most k. It is not very hard to prove
that this set is minor-closed and that it does not contain large square grids. Its
definition is not MS, so that we cannot use (4.2) to construct its obstruction set.
There is some equivalent MS definition by (4.1.i), i.e., basically, by the Graph
Minor Theorem, but to write it, one needs to know the obstruction set. This
alternative definition is not known yet and neither is the set OBST(k-PI). (This
example is due to M. Fellows.)

Here is the second example (by R. Thomas): a graph is apex if one can make it
planar by deleting at most one vertex (and the incident edges). It is not hard to prove
that every minor of an apex graph is apex, and to construct an MS formula
characterizing apex graphs. No bound on the tree-width of the graphs of the
obstruction set is known, and all grids are apex. Here again, one cannot apply (4.2),
and the obstruction set of the set of apex graphs is unknown.

An important case is that of graphs of tree-width at most k. There exists an
algorithm for computing the corresponding obstruction sets [49] (this algorithm uses
[391); however it is intractable and the sets are not known for k Ž> 4.

We conclude this section by presenting a diagram comparing the classes of sets of
graphs HR, MS (see Section 3), the class B of sets of graphs of bounded tree-width,
and the class MC of minor-closed sets.

MS

MC

B HII

This diagram shows in particular that BflMS = HRNMS and that BAMC =

HRAMC.

5. Vertex replacement graph grammars

We introduce new graph operations. Systems of recursive equations written with
these operations yield the VR grammars which are strictly more powerful than the
HR ones for generating simple graphs. These new operations will concern simple
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graphs, that is, graphs without loops and multiple edges; these graphs will still be
finite and undirected.

We let 1P be a fixed, countable set of labels. A p-graph (or a simple graph with a
possibly empty set of IP-labeled vertices called ports) is a pair H = <G,w> consisting
of a simple graph G and a partial mapping w: VG -4 P. We say that {v G VG /
w(v) is defined) is the set of ports of H, and that v is a p-port if w(v) = p. Note the
difference with the notion of source: a graph with sources has at most one c-source for
each c r= C but a graph with ports may have several p-ports. As for s-graphs, any two
isomorphic p-graphs are considered as equal.

We denote by IH(P) the set of p-graphs with ports labeled in P where P is a finite
subset of 1P. (If G r IH(P), then every port of G is a p-port for some p e P, but G
may have no q-port for some q in P.) We denote by HI the set of all p-graphs. We
now define a few operations combining p-graphs.

Disjoint union : If G E E1(P) and G' e UI4(P'), we let G G' be the disjoint union of
G and G' (i.e., the union of disjoint copies of G and G'). Clearly, G0BG' r IH(PUP'),
because a p-port in G (resp. in G') remains a p-port in G®G'. This operation is
associative and commutative.

Edge creation : For any two labels a and b in IP, and any graph G in IE, we let
tla,b(G) be the graph in I1 consisting of G augmented with all edges linking an a-port
to a b-port. This definition applies to the case where a = b. We do not create multiple
edges and loops. Hence, an edge linking v to w is actually created only if w # v and
no edge already links v and w. If G has no a-port or no b-port, then no edge is created.

Port redefinition: Let z be a partial mapping: 1? -• IP which is the identity outside
of a finite subset of 1P. We let redefz be the mapping: IH -4 11H such that
redefz(<G,w>) = <G,zow>. Hence, redefz maps 1H (P) into 1H (z(P)) for any finite
subset P of 1P.

Port restriction: For every finite subset P of 1P, we let restp be the mapping on p-

graphs such that restp(<G,w>) = <G,w'> where w' is tne restriction of w to w 1(p).
Hence, the ports of <Gw> having a label not in P exist as vertices of restp(<G,w>)
but are no longer ports. We shall use the notations resta and resta,b for rest (a) and
rest(a,bI respectively, as for the similar operations of IF.

We denote by F' the set of these operations.

Basic p-graphs: For each a in IP, the graph consisting of a single vertex that is the
a-port is a basic graph denoted by a.

These operations and basic p-graphs can be used as those of Section 1 to form
algebraic expressions denoting p-graphs, and a complexity measure of simple graphs
can be defined in a natural way: the complexity of G is the least number of port labels
necessary to form an expression denoting this graph. All cliques are of complexity 1:
the n-clique Kn is the value of the expression rest0(Tla,a(afDaT ... e a)) with n-
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occurrences of a. Infinitely many source labels are necessary to define all cliques with
the operations of IF by (1.1). Hence, these new operations are more powerful than
;hose of F.

Little is known about this new complexity measure (an essentially equivalent
notion is introduced in [65]). In particular, it is not known whether the set of graphs
of complexity at most k is MS definable, whereas the set graphs of tree-width at most
k is by (4.1). (By (1.1), tree-width is the complexity measure on graphs naturally
associated with the operations of IF.) Let us recall that (4.1) rests upon the Graph
Minor Theorem, and that we have no similar tool in the present case.

Systems of equations written with the operations of IF' can be built as those of
Section 2 are built with the operations of F. We obtain the notions of a VR system,
of a VR grammar and of a VR set of p-graphs. (Let us recall that all graphs in a VR
set are simple.)

Example: A diameter-critical graph is a connected simple graph such that the
addition of any edge (that is not parallel to any existing edge) decreases the diameter.
Ore has proved that the diameter-critical graphs with at least three vertices can be
described in terms of chains of cliques (see [47]). A chain of cliques is a graph of the
following form: it consists of n cliques A ,...,.An, with edges between every vertex
of Ai and every vertex of Ai+i for i=1 ... ,n-l, and no edge between Ai and Aj if li-ji
> 2. Such a graph is denoted by [A1,...,An]. The result of [47] states that the
diameter-critical graphs with at least three vertices are the chains of cliques
[A1,...,An] with n > 3 where Al and An are reduced to single vertices. It follows that
the VR grammar (r,U) generates the set of diameter-critical graphs with at least three
vertices, where F is the following system of equations :

U = rest(Olbd(V ( d)) U resto(Tlc,d (W ( d))
V = restb(Ta1b(a ( Kb)) U restb(llc,b (W E Kb))
W = restc(Tlb,c(V E Kc))
Kb = b U Tlbb(b @ Kb)
Kc = c U ilc,c(c ( Kc).

Here are typical examples of VR and nonVR sets of graphs.

(5.1) The following sets of graphs are VR:

(i) every HR set of simple graphs,
(ii) the set if all cliques,
(iii) the set of all complete bipartite graphs.

The following sets of graphs are not VR:

(iv) the set of all planar graphs,
(v) the set of all square grids,
(vi) the set of all chordal graphs.
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Proof : (i) is proved in [36, 281; (iv) and (v) follow from (6.4) below and the fact
that the MS1 theory of these sets is undecidable; (A) is similar by the results of [24).

0

The following proposition lists the main properties of VR sets of graphs. It
should be compared with (2.4) that concerns HR sets similarly.

(5.2) (i) The union of two VR sets is VR.
(ii) The intersection and the difference of two VR sets is not VR in general.
(iii) The set of all induced subgraphs and the set of edge complements of all

graphs of a VR set is VR.
(iv) One can decide in polynomial time whether L(F,S) is empty for any given

VR grammar (ms).
(v) For every VR grammar (F,S) the membership problem in L(F,S) is

decidable.

Proof : For (i), (ii), (iv), the proofs are as for the corresponding assertions in (2.4);
(iii) is a consequence of [34] and [28], and see also [27]; and for (v), see [8] on the

complexity of the membership problem. 0

The borderline between the class of HR sets and that of VR sets that are not HR is
quite well-known:

(5.3) Let L be a VR set of graphs. The following conditions are equivalent:
(i) L is HR,
(ii) L has bounded tree-width,
(iii) L excludes some graph as a minor,
(iv) L excludes some complete bipartite graph Kn,n as a subgraph,
(v) L is sparse.

These conditions are decidable from any VR grammar generating L.

Proof : The implications (i) 4 (ii) A (iii) A (iv) A (v), (ii) 4 (iii) A (iv) A (v) are
evident from previous results. The implication (iii) 4(v) follows from a result by
Mader saying that if G is simple and Card(EG) > 2k.Card(VG), then it contains the
k-clique Kk as a minor (see [52]). Implication (iii)V(ii) 4 (i) is a difficult theorem
proved in [27]. Implication (iv)V(v) 4 (i) and the decidability results are proved in

[251. 0

The equivalence of (i), (ii) and (iii) shows that a minor-closed set of graphs is VR
iff it has bounded tree-width iff it is HR. Hence, the only minor-closed sets of graphs
that we know presently how to describe by graph grammars (either VR or HR) are
those of bounded tree-width.

The following diagram collects some these results. It shows in particular that
VRnB = HR and VRrlMC = HRnMC = BnMC. We denote by VR the class of
VR sets of graphs. See the diagram of Section 4 for the other notation.
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rVR

B HR

6. Monadic second-order logic without edge quantifications

Results similar to (3.2) and (3.4) hold for VR grammars but only for a restricted
form of monadic second-order logic where the variables cannot denote sets of edges.
Rather than to a modification of the logical language, this restriction corresponds to a
modification of the representation of a graph by a logical structure, that we now
describe.

For every finite subset P of 1P, we let R'(P) be the finite set of relational symbols
[adj, Pa / a e P} where adj is binary and Pa is unary.

For every graph G in 11H(P) we let IG I be the IR'(P)-structure <VG, adJG,
(PaG)aEP> where adjG(xy) holds iff there is an edge in G linking x and y, and
PaG(x) holds iff x is an a-port of G. Since all graphs in IH(P) are simple, it is clear
that for any two of them G and G', I G I = IG'I iff G = G'.

The edges are no longer present as elements of the domain of the structure. They
are represented by a basic binary relation. Since in MS logic one cannot quantify over
binary relations, one cannot quantify over sets of edges. (One can actually quantify
over individual edges because "there exists an edge e ..... can be written "there exist
vertices x and y ..... ..

We refer by MS 1 to the monadic second-order logic as a language for expressing
graph properties via the representation of a graph G by the structure I G I.
Hamiltonicity is an example of a property that is expressible in MS but not in MS1 .
However, MS and MS1 have the same expressive power in certain cases, as proved in
[22):

(6.1) The same properties of simple graphs

(i) either that have degree at most some fixed k,
(ii) or that do not contain afixed graph H as a minor,

are expressible in MS and MSI.
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The proof consists in constructing for each k (respectively H) a translation tr:
Z(lR(0),0)--* X(dR'(0),O) such that, for every simple graph G of degree at most k
(respectively that does no,. contain H as a minor):

IG1 {= tr(p) iff JIGO{ i q.

The following theorem is fully analogous to (3.2) (and these two results are
actually two instances of a single one; see [231).

(6.2) Let (p be a MSIformula; let K be a finite set of graph operations from 12',
of derived graph operations constructed with R' and of basic graphs. For every graph
expression t over K. one can decide in time 0 (1 t I) whether the graph vaI(t)
satisfies property Pep.

We have no theorem comparable to (3.3), but only a conjecture.

(6.3) Conjecture: If a set of simple graphs has a decidable MS, theory, then it is
a subset of some VR set.

For working with VR grammars, we have the following result, fully analogous to
(3.4) (and they have a common proof [231).

(6.4) Let P be a finite subset of IP; let r be a VR grammar such that L(F) (

IH1(P), and let 4p be a formula in X(1R'(P),0). One can construct a VR grammar
generating L(T) n' Lp. One can decide whether 1G I G qfor some graph G in L").
The MS, theory of L(W) is decidable.

7. Guide to the literature

Introduction

We have called a graph grammar what should be called morc precisely a context-
free graph grammar. Many notions of (general) graph grammars have been defined,
with different motivations ranging from biology to parallel computing, which
explains the large variety of definitions. The reader will find these definitions in the
proceedings of the four international workshops on graph grammars ([11, 31, 32,
301). Most of the definitions are based on graph-rewriting rules by which, according
to the case, one can replace a vertex, an edge, a hyperedge or a subgraph by a graph.
Some of these grammars can be called context-free by reference to the notion of a
context-free grammar generating a context-free language. This is the case if rewriting
sequences can be represented by derivation trees in such a way that any two sequences
having the same tree produce the same graph. (This means that rewriting steps on
different branches of the tree can be permuted.) It should be noted here that such a tree
defines a tree-structuring of the produced graph, that is not always a tree-
decomposition. Another characteristic property of context-free graph grammars is the
possibility of representing them by systems of mutually recursive definitions. See
Courcelle [15] on the context-freeness of graph grammars. In this paper, we define
graph grammars directly as systems of equations, so that they are necessarily context-
free.
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Graph reduction as a tool for recognizing graphs is presented in [(1. A graph is
recognized as a member of the specified set if it can be reduced to one of finitely many
"accepting graphs" by means of fixed graph-rewriting rules that reduce the sizes of the
graphs to which they apply. This paper establishes that every MS definable set of
graphs of bounded tree-width has a linear membership algorithm.

Section 1

In order to concentrate on the main aspects relevant to the Theory of Graph
Minors, we have restricted our exposition to undirected, unlabeled graphs. The
adaptation to directed and/or labeled graphs is straightforward. Operations on directed,
labeled hypergraphs have been introduced by Bauderon and Courcelle [4, 13, 16].
Other graph operations are used in [1, 23, 25].

The operations of IF are different from those of [4, 13]; they are closer to those of
(1] or [67]. The main difference is that these operations are defined on graphs of all
types. This makes it possible to avoid equipping operations with sorts and simplifies
considerably the prezentation. (This complicates proofs only slightly.) The
equivalence is not hard to establish (the basic ideas for this equivalence are in [271)
and proves that the HR sets are indeed the sets generated by the context-free graph
grammars of [4] or the hyperedge replacement grammars of [42, 43]. That we deal
here with undirected graphs, whereas [4, 42, 431 deal with directed hypergraphs, is a
minor technical detail.

Section 2

Complexity properties of sets of graphs generated by grammars of various types
are discussed in [8, 91. Whereas the set of graphs of cycle bandwidth at most 2 is NP-
complete [51], it can be decided in time O(nk) whether a graph has bandwidth at most
k. See [40]. Conditions ensuring that a graph grammar has a polynomial parsing
algorithm are considered in [9, 50, 64] just to cite a few papers. Efficient algorithms
have been given in [6,48] to construct tree-decompositions. These algorithms can be
considered as parsing algorithms relative to HR grammars generating the sets of
graphs of tree-width at most k.

Section 3

Monadic second-order logic is popular among logicians because it is a relatively
powerful extension of first-order logic enjoying many decidability results. (See the
survey by Gurevich [41]; the central result is the very powerful and difficult result by
Rabin [55].) Its use for characterizing sets of finite and infinite graphs (in the context
of the theory of graph grammars) is the subject of the series of papers [17-23] to
which [15] and the survey [16] can be added. The definitions of these papers which
deal with directed hypergraphs have been simplified and adapted to undirected graphs
in the present paper. Using logical formulas for defining sets of graphs is also fruitful
in the theory of complexity. See the surveys 145] and [47].

Monadic second-order logic can also be used to define transformations from graphs
to graphs (see [21-24]) and functions from graphs to integers, reals, sets of integers
(see [291).
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Theorem (3.2) (established in 1986, see (141) has been proved in a different way
and extended to the so-called Extended Monadic Second-Order logic, making possible
some arithmetical computations, by Arnborg et al. [2]. Other extensions, which
answer questions raised in [51, can be found in (7, 29, 441. The algorithms
constructed from these papers take as inputs tree-decompositions or graph expressions
of the graphs they compute on. The result of (11 improves (3.2) in that the
construction of the tree-decomposition is not necessary, so that the resulting
algorithm is linear. It is not clear yet whether the technique of [I] can be adapted to
the situations of [2, 7, 29, 44].

Section 5

Although VR grammars are more difficult to study than HR ones, they were
introduced earlier. They stem from the NLC grammars ([46, 61, 371) defined in terms
of graph rewritings by which a vertex is replaced by a graph. They are not always
context-free (see [151); the ed-NCE grammars are of the same style but more
powerful. The C-edNCE ones (see [331) are context-free: systems quite similar to VR
systems are introduced in [28] and it is proved that the least solutions of these
systems and the sets generated by C-edNCE grammars coincide. (Let us make a
technical remark: in [28], a vertex may be simultaneously a p-port and q-port where p
and q are different; the equivalence of the VR systems and those of [281 follows from
Lemma 1 of [351.) The definition we gave in terms of VR systems is the simplest
one. However, it comes as the result of quite hard work.

Section 6

It is proved in [10, 35] that if a VR set of graphs has bounded degree, then it is
HR. It follows from (5.3.iii) and (6.1) that the same conditions on a class of simple
graphs, namely, that it has bounded degree or excludes some graph as a minor, have
two different effects: they make MS and MSI equally expressive (for the graphs of
this class) and they make HR and VR grammars equally powerful (for generating
graphs satisfying these conditions). The second of these effects is actually a
consequence of the first and the logical characterizations of the classes HR and VR
given respectively in [271 and [34], which state that a set of graphs is HR (resp. VR)
iff it is the image of a recognizable set of finite trees under a function from trees to
graphs specified by MS formulas (resp. by MSI formulas). These results indicate
how close are the links between monadic second-order logic and context-free graph
grammars.
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Graph reductions, and techniques for
finding minimal forbidden minors

Andrzej Proskurowski

Abstract

Knowing that a class of graphs has a finite set of mini-
mal forbidden minors is one thing, knowing what they are is
another. We present an account of some techniques used to
find small sets of minimal forbidden minors for a few classes
of graphs with treewidth at most 3.

1 Introduction

A finite representation of an infinite class of objects constitutes a
very attractive tool and an elegant result. For graphs, there have
been a number of forbidden substructure characterizations, the most
famous being the Planar Graphs Theorem of Kuratowski:

A graph is planar if and only if it does not contain a
subgraph homeomorphic to either K 5 or K 3,3 .
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Wilf [21] gives an introduction to the notion of obstructions in his
column that introduces work of Rcbertson and Seymour. There, one
can find Kuratowski's theorem stated iii terms of mninor-, Thomassen
[19] attributes it to Harary and Tutte):

A graph is planar if and only if it does not contain a
minor isomorphic to either K5 or K3 ,3.

As a reminder, we state few basic definitions. A graph H is
a minor of a graph G if contracting some edges of a subgraph of
G (minor-taking') would give a graph isomorphic to H (we will
consider only simple graphs, without multiple edges). For a class C
of graphs closed under minor-taking, F is a minimal forbidden minor
if it is not in C, but every minor of F is in C. Henceforth, we will
call the minimal forbidden minors a little loosely obstructions.

For a fixed positive integer k, the complete graph on k vertices,
Kk is a k-tree and every k-tree with n > k vertices can be constructed
from a k-tree with n - 1 vertices by adding to it a vertex adjacent
to all vertices of a subgraph isomorphic to Kk. A graph that can be
embedded in a k!-tree is called partial k-tree, or alternatively, it is
said to have treewidth at, most k.

In the study of graphs with bounded treewidth (partial k-treeq),

there are obvious characterizations for k = 1, 2 by forbidden sub-
graphs homeomorphic to K 3 and K 4 , respectively. Although K5 is
likewise forbidden for k = 3, the set of obstructions for partial 3-trees
is obviously larger. Before discussing the tools used in the discoveries

of that set, we briefly present approaches to determining obstruction
sets for some smaller graph classes.

For partial 1-trees (forests), the completeness of {K 3} as the set

of obstructions follows directly from the definition (the acyclicity of

the graphs).
Partial 2-trees can be recognized by iterating degree 0, 1 and 2

vertex reduction (where a degree 2 vertex is replaced by an edge
incident with its neighbors). A proof of {K 4 } as their obstruction

set follows from considering the reduction rule: An obstruction must
be cubic and biconnected, and end vertices of any edge must have a
common neighbor. K, is the only graph that fits this description.

K4 is also an obstruction for the outerplanar graphs. By the
definition, so is the graph K2,3 . To see that these two graphs con-

stitute the set of obstructions for outerplanar graphs, consider any
plane embedding of a series-parallel non-outerplanar graph. It must
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Figure 1: Reduction rules for recognition of partial 3-trees

have an interior vertex and at least one vertex between its attach-
ments to the cycle constituting the boundary of the exterior mesh in
that embedding, in each direction around that cycle. Such a graph
has a subgraph homeomorphic to K 2.3 and thus has K 2.3 as a mi-
nor. (Thomassen [19] traces this characterization to Chartrand and
Harary.)

In this note, we intend to illustrate the concept of graph reduction
in the search for a complete set of obstructions. For this purpose.
we give a short survey of the different approaches that lead to the
discovery of the set of obstructions for partial 3-trees. We will start
with a presentation of one of the tools (vertex reduction system),
then describe the search for obstructions, and conclude with a brief
description of continued efforts to find a general (constructible) al-
gorithm paradigm for obstruction sets.

2 Vertex reductions for partial k-trees
Recognition of forests by checking the irreducible result of repeated
'pruning of leaves' (removal of degree 1 vertices) and discarding iso-
lated vertices has been taken for granted for a long time. Recognition
of partial 2-trees by, in addition, contracting an edge incident with
a degree 2 vertex has been proposed by Wald and Colbourn [20).
Arnborg and Proskurowski [3] give a complete set of confluent ver-
tex reduction rules for partial 3-trees. (This means that a graph is
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a partial 3-tree if and only if any sequence of applications of these
rules reduces it to the empty graph: if one does. so does any other.)
There. the three reduction rules mentioned above are augmented by
three more reductions of degree 3 vertices (see Figure 1). These
mimic pruning 3-leaves (degree 3 vertices) of an embedding 3-tree,
but also indicate that not all degree 3 vertices in a partial 3-tree are
such 3-leaves.

Independently. the same set of reduction rules was derived 1v
Kajitani et al. [11] who discovered the necessity of certain configu-
rations in 3-connected partial 3-trees following a very similar line of
reasoning.

A fairly natural iniplementation of these rules leads to an O(n log n)
algorithm: Matou~ek and Thomas [15] noticed that the rules can be
modified to yield a linear algorithm.

As these reduction rules constitute an important tool in the inves-
tigations of *small' properties of partial k-trees, the following result
of Lagergren [13] is quite discouraging.

There is no complete set of confluent. vertex reduction
rules that reduce a graph to the empty graph if and only
if the graph is a partial k-tree. for k > 3.

Yet. it turns out that there exist more general graph reduction
systems that decide membership in classes of partial k-trees. Namely,
Arnborg et al. show in [1] that this is the case for any" subclass of
partial k-t rees (fixed k) definable by t he l\onadic Second Order Logic
(MSOL) (cf.. for instance. Courcelle [7]).

For an'y class of graphs of bounded treewidth that (,an be
described by an expression in the MSOL formalism there
is a finite terminating graph rewriting system with the
following property: Repeated applications of the rewrite
rules lead to an irreducible graph that is a member of a
finite accepting set of graphs if and only if the original
graph is a member of the graph class in question.

Such a graph rewriting systern can be implemented as a linear
time (although space intensive) algorithm. As usual, however, con-
structing such a system might be a difficult task, even though the
existence proof (of the above result) is constructive. More impor-
tantly for the subject of this note. such a systeem gives little insight
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5  8

Figure 2: The set of obstructions for partial 3-trees

into construction of the set of obstructions. Yet. it might provide
some computational help, see section 4.

3 Obstructions for partial 3-trees

The sets of obstructions for partial 3-trees and fir planar partial 3-
trees have been discussed independently, even though the former -
in conjunction with the minors form of the Planar Graph Theorem

implies the latter.
El Mallah and Colbourn [101 state the following characterization

of planar partial 3-trees.

A planar graph is a partial 3-tree if and only if it does not
have a minor isomorphic to either Ai6 or M10 in Figure 2.

In their proofs, they exploit the duality between A-Y an( Y-A
reductions (replacing triangie K3 by star K1,3 and vice-versa, re-
spectively) and properties of geometric duals of the graphs defined
with help of these reductions. The proof of a similar result pre-
sented by Dai and Sato [9] is based on Titte's characterization of
planar 3-connected graphs. Both papers rely on the presence of the
lefthand-sides of vertex reduction rules used in recognition of partial
3-trees in edge-contractct planar graphs.

Arnborg, Proskurowski and Corneil chara(, orize the class of par-
tial 3-trees in [4].
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A graph is a partial 3-tree if and only if it does not have

a minor isoniorphic to any Of the graphs in Figure 2.

Their proof depends very heavily on the small complete set of
confluent reduction rules for this class of graphs (see above). The

mirnimality of the investigated minors implies 3-connectivity. and the

reduction rules (and the fact that they are vertex-reducing) imply
that any vertex degree can be only 3 or 4. Investigation of cases
of possible neighborhood configurations of contracted or extracted

edge in any obstruction (those 'configurations' must admit vertex

reductions) comnpletes their proof.
Theirs was just one of several independent investigations that

ended with similar results. The approach based on the same set

of reduction rules for partial 3-trees was used by Borie. Parker and
Tovey [61.

Satvanaravana and Tung [17] do not tise the reduction rules
in their proofs, but they rediscover (in fart) the properties of 3-
connected components of obstructions implied by those reductions.

The flow of their proofs follows a similar path of discovering cu-
bic obstructions, then 4-regular such graphs, and then showing that
minimum vertex degree 3 implies 3-regularity of an obstruction.

A recent paper by Satyanarayana and Politoff [16] gives an al-

ternative proof of the obstruction set for partial 3-trees. In their
discussion of quasi 4-connected graphs (that have no 3-vertex sepa-
rators except for those that separate several degree 3 vertices) they
find that only few graphs are 'responsie' for this property. Namely,
a non-planar quasi 4-connected graph has a K,5 minor or is a ýsmall

graph'. A planar quasi 4-connected graph has Al 6 as a minor or is
some other 'small graph'. These 'small graphs' are M8 and M 10 from
Figure 2, and some partial 3-trees. Since no partial 3-tree, except for
some small ones with only trivial 3-separators, is quasi 4-connected.
every large enough quasi 4-connected graph has a minor from the

set of obstructions for partial 3-trees. Analysis of those small partial
3-trees and the 'small graphs' in their lemmata implies the desired

characterization of partial 3-trees. Although tediously relying on
case analysis, the proofs are somewhat shorter than case analyses in
the previously published proofs.
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4 Other tools for finding obstructions

Graph reduction rules are of some help in constructing the obstruc-
tion set, but they are by no means the only tool available. The
computational power of modern computers and the skill of their pro-
grammers can go a long way in searching for obstructions, especially
among subclasses of partial k-trees, for small values of k. An ex-
ample of such a result is the set of 110 obstructions for graphs with
pathwidth 2 constructed by Kinnersley [121. Similar result concern-
ing acyclic such minors for k = 2, 3 and 4 is presented by Takahashi
et al. [18], who actually provide the (rather long) lists of trees.

Another approach, yet to be implemented, is to construct the
obstruction set using raw computational power for searching a fi-
nite list of graphs among which all such graphs are guaranteed to
be found. Arnborg et al. [5] describe the translation process of a
MSOL formula defining a subclass of bounded treewidth graphs into
a tree automaton. The number of states in the resulting automaton
can be used to determine a bound on the number of vertices in an
obstruction for that class.

Using an encoding of tree decompositions of width k, Lagergren
and Arnborg [14] find a finite congruence in a graph algebra that
defines the class of partial k-trees. Subsequently, they describe how
to obtain the set of irreducibles that contains the obstruction set by a
procedure similar to the construction algorithm for the corresponding
graph reduction system of [1] (cf. Section 2).

Given a graph grammar defining a class of graphs, Courcelle and
Proskurowski [8] use formal linquistic tools to derive another graph
grammar that generates a finite superset of obstructions for the orig-
inal class. Graph grammars, upon which we will not elaborate here.
provide another way of defining classes of graphs with interesting
algorithmic properties.

Using a finite characterization, a class of graphs with bounded
treewidth can be defined by:
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(i) a set of obstructions,
(ii) an MSOL description,
(iii) a graph reduction system.
These have been shown equivalent by Lagergren and Arnborg

[14]. While we have some developed understanding of the concep-
tual relationships between these description methods, constructive
proofs of their equivalence remain still an important research topic.
This is due in part to the potentially gigantic size of any such finite
characterization.

We have chosen a small example of the class of partial 3-trees to

illustrate some of the notions used in discovering the col reponding
obstruction set. Vertex reduction rules used in this process can not

be directly generalized for graphs with larger treewidth, but more
general graph reduction systems might bring some assistance in the
search for minimal fui bidden minors by bounding the set of candidate
graphs.

Disclaimer: It is not within the scope of this note to present a

complete historical and mett. 3dological survey of this extensive and
exciting area. The author readily accepts the blame for omissions of
references to and timing of any independent work.
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An Upper Bound on the Size
of an Obstruction

JENS LAGERGREN

ABSTRACT. We prove constructively that every minor closed family which
is recognized by a finite congruence and has an obstruction set that is of
bounded tree-width has a finite number of obstructions. Our proof gives
a general bound on the size of these obstructions. They cannot have more

than 2 0(cw+Iw') edges where w is the tree-width and c is the index of
the congruence. This general bound is our fu-st main result. It applies in
particular to minor closed families of graphs which are of bounded tree-
width and recognized by a finite congruence.

We define explicitly a finite congruence for graphs of tree-width at most
w, and bound its index. So for graphs of tree-width at most w, the general
bound implies an upper bound on the number of edges in an obstruction.

This bound, which is triply exponential in w", is our second main result.

1. Introduction

In this note, we investigate the relationships between two ways of charac-
terizing a family of graphs. The first is by excluding substructures, and more
precisely minors. The second is by a finite congruence. We introduce a num-
ber of operations that construct new graphs from given graphs. A congruence
is defined as an equivalence relation between graphs such that the operations
induced by the graph operations on the equivalence classes are well defined. A
congruence recognizes, or is a congruence for, a family of graphs F if each of its
classes either contains no graph from F or only graphs from F.

Each minor-closed family of graphs has by the graph minor theorem (GMT),
[7], a finite set of obstructions. It follows from [4] that given the obstructions for
a family F it is possible to construct a congruence for F. Moreover, given the
obstructions an algorithm that decides the congruence (that is, decides whether
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or not two given graphs are congruent) can be constructed. But, the proof of
GMT is non-constructive. From a formalized proof that a family F is minor-
closed one does not know how to construct the obstructions or bound the size of
them. Of course, there are families F with arbitrarily large obstructions. So, a
bound on the size of an obstruction must in some way depend on the family F,
or some characterization of F.

In [51, it wai shown, using the non-constructively proved GMT, that given a
bound on the tree-width for a minor-closed family of graphs F and an algorithm
that decides a congruence for F it is possible to find the obstructions for F.

So, for families F of bounded tree-width there is an algorithm that produces the
obstructions from a congruence. In [6], the same result was proved constructively
without using the Graph Minor Theorem. In this note, we take advantage of
the constructive techniques used there to obtain a general upper bound on the
number of edges in an obstruction. This bound is 20(o'+") where w is the
tree-width and c is the index of the congruence. Actually, the condition that
F is of bounded tree-width can be relaxed. It is enough that there is a bound
w on the tree-width of the obstructions of F. Also, in this case we obtain a
bound 2 0(c"+"w') on the size of an obstruction, but here w is the bound on the

tree-width of the obstructions.
The most interesting family of graphs to apply the above general method to

is that of graphs of tree-width at most w. For w = 1, 2,3, the obstructions have
been known for some time, although found using other techniques, see (2]. In[6],
the first construction of a congruence for graphs of tree-width at most w and the
first algorithm to decide such a congruence appeared. Hence, the first algorithm
to find the obstructions for graphs of tree-width at most tw was obtained. Also,
the results there together with results from [1] showed how to construct a linear
time recognition algorithm for graphs of tree-width at most w.

In this note, we use almost exactly the same construction of a congruence for
graphs of tree-width at most w as in [6]. But, we also obtain an upper bound
on the size of the congruence. This and the general bound, mentioned earlier,
implies an upper bound triply exponential in w4 on the number of edges of an
obstruction for graphs of tree-width at most w.

2. Preliminaries

We consider undirected simple graphs. We denote the vertices of a graph G
by V(G) and the edges by E(G). A graph H is a minor of another graph G
if H can be obtained from G by a sequence of deletions, contractions of edges,
and deletion of isolated vertices. The graph H is a proper minor of G if H is a
minor of G but not equal to G. A minor minimal graph in a set S of graphs is
a graph G such that G is in S but no proper minor of G is. A family of graphs
F is minor closed if G E F and H is isomorphic to a minor of G implies that
H E F. An obstruction for a minor closed family F of graphs is a graph G
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such that G is not in F but every proper minor of G is (and hence G is a minor
minimal graph in the complement of F). A separation of a graph G is a pair of
graphs (GI,G 2) such that V(G 1 )UV(G 2) = V(G), E(GI)U E(G2 ) = E(G), and
E(G 1 ) n E(G 2) = 0. If G is a graph, A C V(G), B C V(G), Z C V(G), and
each path in G from a vertex in A to a vertex in B contains a vertex in Z then
Z is said to be a A, B-separator.

A graph G has tree-width at most w if there is a pair (X, T) such that T is
a tree and X = {Xt}tEv(T) a family of subsets of V(G), called bags, such that:
those nodes t in T whose bags Xt contain a given vertex in G induce a subtree
of T, every pair of adjacent vertices in G share membership of some bag Xt,
every vertex in G is in some bag Xf, and IXsI w + 1 for all t E V(T). Such a
pair (X, T) is called a tree-decomposition of G of width at most w. The family
of partial k-trees is exactly the family of graphs of tree-width at most k (since
we deal with simple graphs). We consider a path to be a connected graph where
exactly two vertices, called endvertices, have degree 1 and the rest degree 2. We
say that a number of paths Pl,... , P1 are totally vertex disjoint if Pi and Pi
have no vertex in common unless i = j. By -, we denote the empty tree, that is,
the tree without vertices and edges. We consider - to be a subtree of every tree.
For every n E , we denote by [n] the set {1,... ,n} (with [0] = 0).

A concrete i-sourced graph is a graph G given together with an injection
SG : [i] --- V(G). The image of SG is called the set of sources of G. An i-sourced
graph is an isomorphism class of a concrete i-sourced graph (an isomorphism of
two concrete i-sourced graphs must take source j of one graph into source j of
the other, for I < j < i). The underlying graph of an i-sourced graph is the
corresponding graph without sources. We identify the family of graphs with the
family of 0-sourced graphs. By a minor of an i-sourced graph we will mean the
obvious generalization of a minor of an ordinary graph with the restriction that
contracting an edge between two sources is not allowed. Hence, a minor of an
i-sourced graph is i-sourced. A tree-decomposition of an i-sourced graph is a
tree-decomposition of its underlying graph as defined above.

Algebras of i-sourced graphs have been defined in [1, 3]. We will consider
the following variant. The algebra M has sorts {go, gl, .... }. The domain corre-
sponding to sort gi is the family Gi of i-sourced graphs. The signature contains
two constant symbols 0 of sort go and e(2) of sort g2. Moreover, for each i E N,
there are unary operation symbols I(0J), for each j E [i], of profile gi-i "-+ gi
and r(') of profile gi ---+ gi- 1 , and one binary operation symbol 1 0() of profile
gi x gi -* gi. For each i E N, we denote this set of operation symbols Di. We de-
note the set of all these operation symbols by L. Corresponding to the constant
symbols there are two constants: 0 M the empty graph and em the edge with
two sources as end-vertices. Corresponding to the operation symbols 1(ij), r(),
and /(1) there are operations on i-sourced graphs l•", r., and//[', respectively.
These operations are defined as follows:

: / : Gi x Gi -- Gi; the parallel composition of two i-sourced graphs.
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It is obtained by fusing corresponding sources of the two i-sourced
graphs and' deleting one edge in a. y pair of multiple edges that may
appear (to make sure the resulting graph is simple). /1V is the special
case of disjoint union of two graphs. I") is associative and commuta-
tive.
: i): Gi-1 -. Gi, for 1 j < i; the lifting of an (i - 1)-sourced

graph to an i-sourced graph by insertion of a new isolated vertex. For
I = j, ... , i - I the l:th source becomes the (1 + l):th source and the

new isolated vertex becomes the j:th source.
4r2 : Gi - Gi-1, i > 1; removes the i:th source from the source set
of an i-sourced graph (but keeps the vertex as a vertex in the graph).

We denote by v the unique homomorphism between the term algebra and M.
That is, if f is an L expression, v(f) is the graph denoted by f, or V(f) is the
value of f.

We denote by M. the subalgebra of M consisting of the sorts go,... gw+l,
corresponding domains Go,..., G,+,, operation symbols

tW+l

S{O, e 2 }U U D,,
0

and the correspondence between operation symbols and operations as above. For
M,, we denote the operation and the unique homomorphism between the term
algebra and M as above. This is justified by the fact that M. is a subalgebra

of M.
By a L, (L) context of argument sort gi, we mean a well-sorted expression over

the operation symbols in L. (L) with at most one variable x of sort gi occurring
at most once. We write a context f[x]. We call the operation associated in the
classical way with a context f[x] its derived operation and denote it by fM(x).
A congruence on M. (M) is an equivalence relation s over objects in M, (M)

such that
: (i) If m s-t m', then for some i both m and mi' belong to Gi.
: (ii) If m - m', where m and m' belongs to Gi then for every L', (L)

context f[x] of argument sort gi, fM(m) ;t% fM(mn')
The equivalence classes of this relation are called congruence classes. The

index of the congruence is its number of congruence classes. A congruence is
finite if for each i it has finitely many congruence classes containing elements
from the domain Gi. A family F of graphs is recognizable over M. if it is the
union of a number of congruence classes of a finite congruence on M,.

3. The general bound

The theorem below follows from GMT.

THEOREM 3.1 (ROBERTSON, SEYMOUR [7]). Every minor-closed family of
graphs has a finite number of obstructions.
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The proof of GMT is non-constructive. Until now, no general methods to
bound the number of obstructions or the size of them has been suggested. It
is a result of this paper that the size of an obstruction can be bounded for cer-
tain restricted minor-closed families; that is, for minor-closed families of graphs
which are recognizable and whose obstructions have bounded tree-width, and,
in particular, for minor-closed families of graphs which are recognizable and of
bounded tree-width. The most interesting and important family that our meth-
ods apply to is that of graphs of tree-width at most w. The proof of the general
bound is for the case of recognizable minor-closed graph families whose obstruc-
tions have bounded tree-width an elementary and constructive proof of (3.1).
For this reason we will not use (3.1) here.

We have omitted the proofs of the following two theorems. The first is easily
proved, and the second is technical but seems to be well known.

THEOREM 3.2. Let G be a graph, A, B C V(G), (X, T) a tree-decomposition
of width at most w of G with A a subset of one bag and B a subset of one
bag. Let Z be a minimum A, B-separator and (GI, G 2) a separation of G such
that V(GI) n V(G 2) = Z, A C V(G 1 ), and B C V(G 2). Then there is a tree-
decomposition of width at most w of G, with A as one bag and Z as one bag.

THEOREM 3.3. Let G be an i-sourced graph with at least one vertex and
r > 1. There is a tree-decomposition (X, T) of G of width at most w where
{ti,... , t,.} C V(T) and Xt, is the set of sources of G iffthere is an L, expression
fi such that v(fl) = G, and f! has subexpressions f2,... , f,. where V(f1 ) has
source ret Xl,, moreover, f, is a subexpression of fi if and only if tj lies on the
unique t 1, ti-path in T.

THEOREM 3.4. Let f[f] be an L. expression, A the source set of v(f[f']),
A' the source set of v(f'), and Z a minimum A, A'-separator in V(f[f']). Then
there are two L, contexts fl[z] and f2[x] such that v(fl[f2[f]]) = V,(f[f']) and
v(f 2[f']]) has source set Z.

Proof. By (3.3), there is a tree-decomposition (X, T) of v(f [f']) with A and
A' as two bags. Since Z is an A, A'-separator in v,(f[f']), there is a separation
(G1,G 2 ) of v(f[f]) such that V(GI) nV(G2) = Z, A C V(GI), and A' C V(G 2 ).
By (3.2), there is a tree-decomposition (X 1 ,T 1 ) of G1 with A and Z as two bags.
Also by (3.2), there is a tree-decomposition (X 2 , T 2) of G 2 with A' and Z as two
bags. Choose a vertex t from T 1 such that Xt = Z and a vertex t' from T 2 such
that Xt, = Z. Let T be the tree obtained taking the disjoint union of T 1 and T 2

and then making t adjacent to t'. Let (X, T) be the tree-decomposition defined
by Xt = X,' for all t E V(T'), and Xt - X 2 for all t E V(T 2). Obviously, (X,T)
is a tree-decomposition of v(f'[f]) where T has three vertices s, s', s" such that
X, = A, X,, = Z, and X,- = A' in that order on a path. Hence, by (3.3), there
exist three L, contexts hi[z], h2f[], and h3 such that: v(h 2[h3]) has source set
X=, = Z, V(h3) has source set X,,, = A', and v(hl[h2[h3j)) = L,(f[f']). Hence
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the theorem is satisfied if we let fjdx) be hi[z] and f 2jx] be h2[xI(1)h 3a where
i= IA'I. 0

LEMMA 3.5. Let a1,... ,a, and a be positive numbers. Let L be a sequence
of length E', a' 1I'=, aj where each element is a set of cardinality at least 1
and at most w. Then for some k, 1 < k < w, there is a subsequence L' of
consecutive elements of L that contains at least aak sets of cardinality k and no
set of cardinality less than k.

Proof. Assume the opposite. Consider the following property:
(P) L' is a subsequence of consecutive elements of L of length

Eat+l-k H aj
i=k j=k

and all its elements are sets of cardinality at least k.
Let L' be a sequence that satisfies (P) with k = I where I is the greatest num-

ber such that for k = I there is a sequence with property (P). For k = 1,

L is a sequence with property (P), and hence 1 > 1. Assume I = w. Since

>iI'+i=', '1 =.= aj = aa•, L' satisfies the theorem for k = w. Hence, we

have reached a contradiction
Assume I < w. By the original assumption that the theorem is false, there are

fewer than aal sets of cardinality 1 in L'. Hence, there are at most aal different

maximal subsequences of consecutive elements of L' without a set of cardinality

1. By a standard average argument, at least one such subsequence contains at
least

_E,, a,-, aj - aai,_,+ a+l- a aj w
i=1+1 j=i+1

sets, all of cardinality at least 1 + 1. But this contradicts the choice of 1. That
is, we know that 1 < I < tw, and both the assumptions I = w and I < w leads to

contradictions. Hence, we have a contradiction to our original assumption that
the theorem is false. 0

We say that a nesting of contexts fl[f2[... [f,]...11 is without repetition if

'(fi[fi+i[... [frA . . ..]) = v(fj,[f+l [...[fr] ...])

implies i = j. Aided by the above lemmas, we can state and prove the following
technical result from which the general bound follows.

THEOREM 3.6. Let ,- be a congruence on M. with index c. If G is a minor
minimal graph in a congruence class and generated by L. then G has fewer than
2r edges where r (c + 1) E' , ci i !+ 1)
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Proof. Assume the opposite, i.e., G has at least 2' edges. The maximal arity
of any operation in M, is 2. Furthermore, edges can only be introduced by
constants and constant symbols are leaves in an L, expression. If we, moreover,
use the facts that G is generated by L, and that any nesting of contexts can
be reduced to one without repetition, we get that there is a context f[z] and a
nesting of contexts fl[... [ff, ... ] without repetition such that f[fI [. . . [fr].. .]]
has G as value. Actually, we can choose this nesting of contexts such that for
each I E [r], fIt[x is either l(i04)(x), r(M)(x), or, for some t, zi(')t. We claim
that at least a fraction (c + 1)-1 of these contexts have sort go,. .. I,- i, or

g.. Assume the opposite. Then there is an I such that fl[...],... ,f ...-]

all have sort gw+,. That implies that for each m E ..0.. ,c}, there is some
t such that ft+,[z] is zj(')t. That is, a(fl[...]),... ,v(fi+,t[ ... ]) all have the
same source set. Since - has index c, there are also m, m" E {0,... , c} such
that v(fl+.[ ... 1) - v(f+m ,[ ... ]) and m < m'. We can draw two conclusions.

First, '(f[fi [... ffi+- I[f:+.' [t... ... f]]) is a proper minor of G, since our origi-
nal nesting was without repetition, and v(fl+m[.. .]) and v(fl+m,[. ...]) have the
same set of sources. Second, v([fl [... fi+m-x [fi+,, [... ] ... 1]) and G belong
to the same congruence class, since v(f'+, [. .. ]) and v(fl+m,[.. .]) do. But this
contradicts the given fact that G is minor minimal in its congruence class. We
conclude that at least a fraction (c + 1)- of the contexts f, [x],..., f,[x] have

sort go,... ,gw•, or gw.
These C'L c-=(j! + 1) context of sort go,... ,g,- and gw among

f [Xj, ..- , f [X]

are important to us for the following reason. They, clearly, imply the existence
of a context h and a nesting of contexts hI[.. . [h,]. .. ] such that: the value of
h[hi. ... ]] is G, s > E~'L1 c'r=i(j! + 1), and if Ai is the source set of v(hi[...])
then I < fAil I< w. We can without loss of generality assume that h1[x],..., h,[x]

minimizes E:..=1 fAil w.r.t. the above conditions.

According to (3.5) (with a = c and ak = (k! + 1)), there is a subsequence
Ai,... ,Am of A 1,... A, that contains at least c(k! + 1) sets of cardinality k
and no set of cardinality less than k. We can without loss of generality assume
that JAjI = IAmI = k. We want to prove that there are at least k totally vertex

disjoint Ai, Am-paths in G. Assume the opposite. Let j be the least number such
that there are k totally vertex disjoint Aj, Am-paths and let P1 ,..., Pk be such
paths satisfying IV(PI)fnAjI = 1. Let Xi E V(P,)fnAi and X = {:l,... ,Xk}.

Let ZI be a minimum Aj- 1 , X-separator in H = v(hj-I[...])-(v(hj[.)-Ai),
We see that IZI[ < k = IXI. Because by Menger's Theorem, if 1ZI[ > k then
there would be k totally vertex disjoint Aj.-. 1 , X-paths in H, and hence k totally
vertex disjoint Aj-1, Am-paths in G which would contradict the choice of j.

Let Z = Z1 U (Aj - X). That [ZII < JX[ and X C Aj imply IZI < 1Aj1.
Furthermore, Z is an Aj_I, Aj+I-separator in G. Because, otherwise there is an

A,- 1, ,Aj+I-path P in G- Z. The path P must contain a vertex from Aj, since
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Aj is an Aj,-.., Aj+l-separator in G. Let v be a vertex on P that belongs to Aj, as
well. Since P is a path in G- Z we have v ý Z, that is, v ý Aj - X. We conclude
that v E X. But then there is, obviously, a subpath of P which is an Aj_ , X-
path in H - Z1 , since V(P) n Z = 0 and Z Cg Z. This contradict the choice of
Z, as a A- 1 , X-separator in H. We conclude that Z is an Ai- 1, Aj+i-separator
in G.

Let Z' be a minimum Aj- 1 , Aj+i-separator in G. Then by (3.4), we can find
two L, contexts gl[x] and 92[X] such that

V(g,[g2[hj+l[... [h.] ... ]]]) = v(hj-_I(... [h.]...])

and v(g2[hj+1. . [h,] ... 3]]) has source set Z'. Hence,

v(hlhl[ ... hi_ 2[g,[g2[hj +i. - [h.] ... 1111...3l) = G.

This contradict the choice of hI[x].... . h.[z], since we get

JZ'J + JAI < E JAil
t~t<, <i<s

from IZ'I _< IZI < IAjI and hi [x),... ,h.[z] were chosen to minimizes this sum.
We conclude that there are k totally vertex disjoint Ai, Am-paths Q1,... Qk
in G. By a standard average argument there is a congruence class C such that
there are (k! + 1) numbers j with the following properties: i < j ! m, Aj
has cardinality k, and v(hj[...3) belongs to C. Since thb, order of the permu-
tatio- group on k elements is k!, there are two such integers j and j' such
that: i < j < j' < m, and Q, contains the I:th source of v(hj[...]) and
the /:th ,ource of v(hj,[... ]). Let H-' = v(hj[... 1) - (ai(hj,[. ...]) - Ai,). If
we delete all edges in E(H) - Uý.=.E(Qi) from G and contract. all the edges
in Uo.=.E(Q1 ), then we obtain v(h[hl[... hj-l.[hi,[... ]] ... f]). Since h[hl[... ]] is
without repetition this is a proper minor of G. Also, v(hj[... 1) and v(hu[. .. ])
are- congruent, so v(h[hf[...hjl fhj,[[...1].. .f) is congruent to G. Thr.t is,
u(hthl[... hj-p[hj,[...3]... 1]) is both congruent to G ai;d a minor of G. We have
once again reached a contradiction, but this time to our original assumption that
the theorem is false. This finishes the proof. 0

The above theorem implies the general bound, our first main result, below.

THEOREM 3.7. Let F be a minor-closed family of graphs recognized by a
congruence -- on M, with index c whose obstructions are of tree-width at most
w. If G is an obstruction for F then G has fewer than 2r edges where r =

(c + 1) EZ'=,cHn =1(j! + 1).

Proof. The obstructions of F have tree-width at ntrost w. Hence, they are
generated by L.. Also, each obstruction for F must, naturally, be a minor
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minimal gr-ph in the congruence class that it belongs to. Hence, the, general
bound above follows from (3.6). 0

In particular, if the family F has tree-width at most w then the obstructions
Lave tree-width aý most w + 1. Hence we can apply the above theorem.

4. Graphs of tree-width at most w

In this section, we will construct a finite congruence on Mk for graphs of
tree-width at most w. Also, a bound doubly exponential in 0(k 4) on its index
will be obtained. The bound on the index of the congruence together with the
general bound, from the previous section, are the most important ingredients in
the proof of our second main result below.

THEOREM 4.8. If G is an obstruction for graphs of tree-width at most w then
;E(G)j is at most triply exponential in 0(w 4 )

Proof. According to (4.14), yrt to be stated ani proved, there is a congruence
on M,+, of size doubly exponential in O(w4 ) for graphs of tree-width at most w.
Also, as easily proved, the obstructions for tree-width at most w have tree-width
at most w + 1. Thu; the general bound, (3.7), implies that each obstruction has
at moEt a number of edges that is triply exponential in O(w 4). 0

4.1. Encodings of tree-decompositions of i-sourced graphs. In this
subsection, we introduce encodings of tree-decompositions of i-sourced graphs.
'rhese encodings will be used to define the congruence for graphs of tree-width
at most w. The most important property of this congruence is that 6 iven two i-
sourced graphs G1 and G2 it is possible to determine from tW- congruence classes
of GI and G 2 whether or not Gil/'G 2 has tree-width at most w. Of course,
similar statements hold for r(' and j•ti), as well, but I(') is more interesting to
us. The reason for this is that r')(G) and l1+l")(G) always has the same tree-
width as G, while the tree-width oi Gij1,)G2 is not determined by the tree-width
of G, and the tree-width of G2.

By definition, if the i-sourced graph Gj1 ')G2 has tree-width at most w, there
is a tree-decomposition (X, T) of G 1 1jG 2. The tree-decomposition (X,T) can
be made into a tree-decomposition (X1, T) of GI by letting X' be the '%rily

{xt,: X, r) V(GI)j X1 belongs to X}.

In the same way we can find a tree-decomposition (X 2 , T) of G2 by letting X 2

be the family

{X2 = X, 0 V(G 2)!X, beligs to X}.
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These two tree-decompositions (X', T) and (X 2 , T) can obviously be fitted to-
gether to form a tree-decomposition of GI'•4G 2 by taking

{Xt = X, uX 21X belongs to X' and X2 to X 2 1

as the family of bags and T as the tree. Of course, the tree-decomposition we get
is just (X,T). The important observation here is, however, that if G,1 Z)G 2 has
tree-width at most w, then we can always find a tree-decomposition of G, and
one of G2 that can be fitted together to form a tree-decomposition of G1I'"G 2.
That is, the set of all tree-decompositions of width at most w of an i-sourced
graph G, and the set of all tree-decompositions of width at most w of an i-
sourced graph G2 completely determine whether GI$'"'G 2 has tree-width at
most w. This makes the set of all tree-decompositions of width at most w of
an i-sourced graph G look like a good candidate to determine the congruence
class of G. However, if we do not refine this approach, it gives us a congruence
with infinite index. If there existed only finitely many tree-decompositions of i-
sourced graphs this definition would suffice, but since there actually are infinitely
many it does not.

Our refinement can ; ',iitively be thought of as using finitely many encodings
of tree-decompositions in:,.ead of tree-decompositions. Three factors cause the
existence of infinitely many tree-decompositions. First, there are infinitely many
possible bags. We will avoid this by replacing each bag by a number and a set;
the number of non-sources in the bag and the set of all source numbers of the
sources in the bag. Since the sources are the only vertices that can appear in
the two graphs that we are taking the parallel composition of, this is enough
information to determine whether or not two tree-decompositions can be fitted
together. We call the tree-decomposition-like structure obtained by replacing
bags in this way an i-profile.

For any integer i we define an i-profile to be a triple (Z, Y, T) where T is a
tree, Z is a family of numbers, and Y is a family of subsets of [i] where both Z
and Y are indexed by the vertices of T. If T' is a subtree of T then the profile

Q{z, It E V (T-)), f t1t E V(7-)},TV)

is called the profile induced by I' and denoted (Z, Y, T)[T']. Of course, for any
i-profile, the i-profile induced by the c is the i-profile (0, 0, C). We will frequently
refer to vertices of T as vertices of (Z, Y, T). The width of a profile (Z, Y, T) is
the maximum of z, + IY I- 1 where t is any vertex in T. If (X,T) is a tree-
decomposition of an i-sourced graph G then the G profile of (X, T) is the i-profile
(Z, Y, T) where the members of Z and Y are defined by

zt = IXt - SG([i])I and Y= {iISG(i) E Xt}

respectively. That is, zt is the number of non-sources in Xt, and Yt is the set of
source numbers of sources of G belonging to Xt. We call Y# the source bag for
t. The set of sources of an i-profile (Z, Y, T) is defined to be UtEV(T)Yt. This is
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a slight abuse of terminology, since the set of sources of an i-sourced graph G
is SG([ij), not [i]. Clearly, by using i-profiles instead of tree-decompositions we
have achieved what we wanted; there is a bounded number of possible zt and Y,
when t varies over all vertices in all i-profiles.

Second, a tree in a tree-decomposition can have an unbounded number of
leaves. But to obtain a tree-decomposition of GIl.)."G 2 , it is enough to fit to-
gether a subtree of the tree T 1 of a tree-decomposition of G1 with a subtree of
the tree T 2 of a tree-decomposition of G2. As long as for each source number j,
there is some node t1 in T1 such that Xj, contains the source with number j of
G1 that is merged with some node t2 in T 2 such that Xj, contains the source
with number j in G2, we will obtain a tree-decomposition of GilibG 2. In par-
ticular, if Xt, contains all sources of G, and Xt, all sources of G2 , it is enough
to fit together t1 and t2 . That is, to identify t1 and t 2 , call the vertex obtained
t, and set zt = zt, + zt2 and Yg = Yt, (hence yt = YtI U14 2 ).

This leads us to the following definitions. A kernel of an i-profile (Z, Y, T) is a
minimal subtree K of T such that: for each j in [i] there is a vertex t in K such
that j E Yt. If (X, T) is a tree-decomposition of an i-sourced graph G, (Z, Y, T)
the G profile of (X, T), and K a kernel of (Z, Y, T), then we also say that K is
a G kernel of (X, T).

We will call an i-profile (Z, Y, T) singular if there is a vertex t such that
[i] C Yt. Notice that unless (Z, Y, T) is singular, there is a unique kernel K of
(Z, Y, T). Let us prove this. Observe, since (Z, Y, T) is the i-profile of a tree-
decomposition, the set of vertices in T whose source bags contain a given source
j E [i] induce a subtree of T. Assume that there are two kernels K and K' of
(Z, Y, T). If K and K' have a non-empty common subtree K" then clearly K"
is a kernel, as well. Since K and K' are minimal, we get K = K" = K'. If K
and K' do not intersect, let P be a path with one endvertex in K and the other
in K' and no internal vertex in K or in K'. By the above observation, for each
vertex t on P, [i] C Yt, a contradiction. This concludes the proof.

In a similar way, one can prove that if there is a kernel which contains exactly
one vertex then all kernels contains exactly one vertex. We conclude that an
i-profile either has a unique kernel or each of its kernels contains exactly one
vertex.

DEFINITION 4.9. Let (X, T) be a tree-decomposition of an i-sourced graph G,
(Z, Y, T) the G profile of (X, T), and K a kernel of (Z, Y, T). Then the i-profile
(Z, Y, T)[K] is an encoding of (X, T) with respect to G.

We also say that (Z, Y, T)[K] is the encoding of (X, T) with respect to G and
K. Notice, if (X,T) is a tree-decomposition of width at most w and E is an
encoding of (X, T) then the width of E is at most w. Whenever we say that E
is an encoding of (X, T) with respect to G, we actually mean also that (X, T)
is a tree-decomposition of G of width at most w. Also, when we say that E
is an encoding of (X, T) with respect to a kernel K and G, we actually mean
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also that: (X, T) is a tree-decomposition of G of width at most w and K is a G
kernel of (X, T). We say that (Z, Y, K) is an i-sourced encoding if (Z, Y, K) is an
encoding of a tree-decomposition (X, T), of an i-sourced graph G, with respect
to G. As easily seen, this is equivalent to (Z, Y, K) has source set [i] and width
at most w, and the set of vertices in K whose source bags contain a given source
j E [i] induce a subtree of K. Clearly, if I is a leaf in an i-sourced encoding E
then there is some ) E [ij in the source bag of I that is not in any other source
bag in E. Hence, there are at most i leaves in an i-sourced encoding.

We call the i-sourced encoding (Z, Y, T) where T has one single vertex, say,
t, zt = 0, and Yt = [i] the minimum singular i-sourced encoding. We call (0, 0, C)
the empty encoding; it is the only 0-sourced encoding.

Third, a path in the tree of a tree-decomposition can have unbounded length.
To solve this problem, we introduce an equivalence relation, -D, between en-
codings (this is not our congruence). That two encodings are equivalent un-
der -D should intuitively be interpreted as that they are encodings of two
tree-decompositions that are equally hard to fit together with any third tree-
decomposition. To be able to define -D we first introduce subdivisions of en-
codings and a quasi-order <D. That E <D F should intuitively be interpreted
as that E is an encoding of a tree-decomposition that can be fitted together with
any tree-decomposition that can be fitted together with the tree-decomposition
that F is an encoding of. The quasi-order <D and the equivalence relation 'D

are defined below. In (4.3), we actually solve this third problem by showing that:
In each equivalence class of -D there is at least one "non-redundant encoding";
and that a path in a tree of a non-redundant encoding has bounded length. This
gives us a bound on the number of i-sourced non-redundant encodings and the
number of equivalence classes of "D.

DEFINITION 4.10. Let (Z, Y, K) be an encoding, e an edge in K, and t a non-
leaf vertex incident to e. Then (Z', Y', K') is said to be a subdivision of (Z, Y, K),
with respect to e and t if the following conditions are satisfied:

"* the tree K' is obtained by inserting a new vertex t' on the edge e
"* z/ =z, and Y1= Y, for all vertices s E V(K)
" z = zt and Y, =Yt

The reason for not allowing t to be a leaf is that we want a subdivision of an
encoding to be an encoding. If there is a sequence of encodings E1 ,..., E,+,
such that Ei+1 is a subdivision of E, then we also say that E,+l is a subdivision
of El.

An i-sourced encoding (Z, Y, K) is said to be directly dominated (<DD) by
another i-sourced encoding (Z', Y', K') if there is an isomorphism f from K to
K' such that for each vertex t in K, Yt CZ Y,( and zt < z'(t). The isomorphism f
is said to be an isomorphism of the direct dominance (Z, Y, K) <DD (Z', Y', K').
We say that f respects sources if Y1 = Y' for all vertices t in K. An i-
sourced encoding E is said to be dominated (51D) by another i-sourced encoding
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F if there is a subdivision E' of E and a subdivision F' of F such that E' is
directly dominated by F'. Two encodings that directly dominate each other are
considered to be equal. We consider the empty encoding to directly dominate
the empty encoding.

Let E 1 7... , E, be a sequence of encodings where E1+j is a subdivision of
Ei with respect to (ti,,t) and ti. Let F1 be an encoding such that f, is an
isomorphism from the tree of E, to the tree of Fl. Then, the subdivision of F1
with respect to (f,(ti), fi(t',)) and fi(t1), call it F2, has a tree isomorphic to the
tree of E 2. Moreover, if El >DD F1 (El <DD F1 ) and f, is an isomorphism of
this direct dominance then E 2 ->DD F2 (E2 <DD F2 ).

We can, naturally, continue this process recursively and, for each I < i < r- 1,
let F+,j be the subdivision of Fi with respect to (fi(ti), fi(tV)) and f.,(i) where fi
is an isomorphism from the tree of Ej to the tree of Fg. The encoding F,. is said to
be a subdivision of F1 according to the El to E,. scheme (the isomorphism f, is
assumed to be clear from the context). Nc•tice, the encoding E, has, obviously, a
tree isomorphic to the tree of F,. Moreover, if El >DD F 1 (El _•DD F1 ) and we
in each step choose fi to be an isomorphism of the direct dominance E1 ->DD F,
(Ei <_DD F.), then E, >DD F, (E, <DD Fr). Similar statements hold if the
tree of F, is isomorphic to a subtree of the tree of El, or if the tree of E, is
isomorphic to a subtree of the tree of Fl.

As easily seen, -<D is reflexive. Actually, _<D is transitive as well and, hence, a
quasi-order. We will not prove this. But it follows, basically, from the transitivity
of _<DD and the fact that two different subdivisions of an encoding always have
a common subdivision.

THEOREM 4.11. <_D is a quasi-order.

Given <D we can define, as always when given a quasi-order, an equivalence
relation -D; E -D F if and only if E <D F and F _<D E. (Remember, this
is not the congruence relation that we are aiming to define.) Define C(G), the
set of encodings, of an i-sourced graph G to be the set of all encodings of all
tree-decompositions of width at most w of G, i.e.

C(G) = {EIE is an encoding of (X,T) w.r.t. G}.

The following lemma is easily proved. We have omitted the proof.

LEMMA 4.12. C(G) = {E'IE' is a subdivision of some E E C(G)}

For any set C of encodings we define ý to be the closure of C upwards w. r. t.
:5D, that is,

"C {E'IE' is an encoding of width at most w and E' >_D E for some E E C}.



614 JENS LAGERGREN

4.2. The congruence relation -- We are ready to define our congruence
relation, which we denote by

DEFINITION 4.13. G1 C G 2 iff C(Gi) = C(G2 ).

We will spend this and the next subsection proving the following theorem.

THFoRr'M 4.14. For -very r E M the relation - is a finite congruence on Mr

for graphs of tree-width at most w. Moreover if r > w, the index of -• is at most
doubly exponential in 0(r 4 ).

In the next subsection, (4.3), the index of ,, will be dealt with, see (4.23).

The rest of this subsection is used to prove that - actually is a congruence, that
is, (4.15) below. The theorem above, (4.14), follows immediately from (4.15)
and (4.23).

LEMMA 4.15. For every r E N the relation -,, is a congruence relation on Mr
for graphs of tree-width at most w.

It is trivial to see that a graph has tree-width at most w if C(G) is non-

empty. Hence, if - is a congruence then it is a congruence on Mr for graphs
of tree-width at most w. To prove that -, actually, is a congruence we need to
show that it is stable with respect to the operations/I', A"tj, and r'). That is,
that the congruence class of the result of an operation is uniquely determined by
the congruence class of the argument (or the arguments) to the operation. To
show that this is true we shall define three operations on sets of encodings: EDO),
P(j), and p('). The operations are defined so that each of them will correspond
to exactly one of the graph operations: E(D corresponds to 0), AO'j) to 10-),

and p(W to r,). Of course, 00) is a precise formulation of the vaguely defined
operation previously referred to as fitting together.

Then a number of lemmas (4.16)-(4.22) are stated, which together imply that
is a congruence on Mr, that is, (4.15). Let us, for example, prove using

these lemmas that the congruence class of Gl(3.)G'l is uniquely determined by
the congruence classes of G, and G'1. The important lemmas about •i) and
V0 are (4.16) and (4.20). They say that C(GI(WG') = C(G)e(')C(G') and

C(G)®("C(G') = C(G)e(OC(G') for any two i-sourced graphs G and G'. Now,
assume that G1 ,- G' and G2 - G', that is, C(G1 ) = C(G') and G(G 2) =

C(G'). Then

C(G 1I(C 2 ) = C(G1 )V")C(G 2 ) = C(=1)s)C(G2 )
C(G')V")C(GC) = C(G')(D(.)C(G2 ) = C(G'II()G').

Hence C(G 1 (WG2 ) , C(GjI]G2), that is, - is stable with respect to l(W. The
proofs that -, is stable with respect to Ij5ij and r() are analogous.

We start by defining the operations E)i), and pM) as operations on

encodings, but we will use them as opezvtions on sets of encodings, as well; the
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value of the operation applied to a set C is defined to be the union of the values
of the operation applied to the members of C.

Let (Z, Y, K) and (Z', Y', K') be two i-sourced encodings such that there is
an isomorphism f from K to K'. Then (Z, Y, K) and (Z', Y', K') are said to
be compatible because of f if for each j E [i] there is a vertex t in K such
that i E Y nY " If (Z, Y, K) and (Z', Y', K') are compatible because of
f then +(f, (Z,Y, K), (Z', Y', K')) is defined to be the i-profile (Z", Y", K)
where z"' = zt + z'(t) and Y" = Yt U Y'(0" For any pair of i-sourced en-
codings (Z, Y, K) and (Z', Y', K'), we define (Z, Y, K)e(('(Z', Y', K') as fol-
lows: E E (Z, Y, K)(9')(Z', Y', K') if and only if either (i) E, (Z, Y, K), and
(Z', Y', K') all are the empty encoding or (ii) (Z, Y, K) and (Z',Y', K') are
compatible because of an isomorphism f, +(f, (Z, Y, K), (Z', Y', K')) has width
< w and E = +(f, (Z, Y, K), (Z', Y', K'))[K"] where K" is a kernel of

+(f, (Z, Y, K), (Z', Y', K')).

Let (Z,Y,T) be an i-profile. Then (Z',Y',T) is said to be (Z,Y,T) with i
forgotten if for all vertices t in T: z' = zt + [Y, n {i}I and YI' = Yt - {i}. Let F
be an i-sourced encoding; then E E p()(F) if and only if F' is F with i forgotten
and either F' is singular and E is the minimum singular (i - 1)-sourced encoding
or E = F'[K] where K is a kernel of F'.

Let F be an (i - 1)-sourced encoding. Then (Z, Y, T) is said to be F with
sources renamed from j if (Z, Y, T) can be obtained from F by increasing the
source number by one for all the sources j,... , i - 1, that is, source r becomes
source r+1. Let F be an (i-1)-sourced encoding. We define A0-1) by considering
two cases. If i = 1, and hence also j = 1, then E E A('')((Z, Y, K)) if and
only if (Z, Y, K) is the empty encoding and E is the minimum singular 1-sourced
encoding. Ifi > 1, then E E A("')((Z, Y, K)) iff E can be obtained from (Z, Y, K)
by renaming the sources from j and then either

"* setting Y, = Yt U {j} for some vertex t in T; or
"* adding two new vertices t' and t" to T; making t' adjacent to some vertex

t in T; making t" adjacent to t'; and setting zg, = z,,, = 0, Yt, = 0, and
If,, = {j}

LEMMA 4.16. If G, and G2 are two i-sourced graphs then

C(GII(G 2) = C(GI)V)C(G2).

Proof Assume that (Z, Y, K) E C(GI0')G2 ). Let (Z, Y, K) be an encoding
of (X, T) with respect to G1//l)G 2. Then (X4, T) where X' = X, n V(Gi) is a
tree-decomposition of Gi with K as a Gi kernel. Let (Z', VI, K) be the encoding
of (X', T) with respect to K and Gi, and f be the identity mapping on V(K).
Then K is the kernel of +(f, (Z 1 , Y ,K), (Z 2 , y 2 , K)) and

(Z, Y, K) = +(f, (Z 1 , Y', K), (Z 2 , y2, K))[AI] E (Z 1 , Y', K)(D()(Z 2 , y2, K),
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ze.
(Z, Y, K) E

Assume that (Z, Y, K) E C(G1 )E')C(G2). Then there is a tree-decomposition
(X', T7) of Gi with (Z', Y, K') as an encoding with respect to G such that

(Z, Y, K) = +(f, (Z1, Y1 , KJ), (Z 2 , y 2 , K 2))[K].

We can without loss of generality assume that sources with corresponding source
numbers in G, and G2 are identical, that V(T 1 ) n V(T 2) = V(K), and that f is
the identity mapping on V(K). Let T = T' U T 2 and let X be defined by

X1 UX? iftEV(K)
Xt = I • if t E V(T 1 ) - V(K)

X9 if t E V(T 2) - V(K)

then (X, T) is a tree-decomposition of G, I/WG2, Since K is a

+(f, (Z' Y', K '), (Z2, Y2, K 2 ))

kernel, K is a GI 4G 2 kernel of (X,T), as well. The encoding of (X,T) with
respect to K and GllV2)G2 is (Z, Y, K), i.e. (Z, Y, K) E C(G1 l')G 2). Cl

LEMMA 4.17. If G is an i-sourced graph then C(r?)(G)) = p")(C(G)).

Proof. Assume E E C(r. (G)). Let E be an encoding of a tree-decomposition
(X, T) with respect to a kernel K and r,)(G). Let (Z, Y, T) be the r(2(G) profile
of (X, T) and (Z', Y', T) the G profile of (X, T). Clearly, (Z, Y, T) is (Z, Y', T)
with i forgotten. We consider the two cases: (Z, Y, T) is not singular and (Z, Y, T)
is singular. First, if (Z, Y, T) is not singular then neither is (Z', Y', T) and hence
both have unique kernels and, as easily seen, the G kernel K' of (X, T) satisfies
K C K'. By definition (Z', Y', T)[K'] belongs to C(G). Let F be (Z', Y', T)[K']
with i forgotten. Since the following hold K is a (Z, Y, T) kernel, (Z, Y, T) is
(Z',Y',T) with i forgotten, and K C K' we get that K is an F kernel, as
well. Hence E = F[K] E p(')(C(G)) as was to be proved. Second, if (Z, Y, T) is
singular then E is a singular (i - 1)-sourced encoding. Now choose a minimal
subtree K' of T' such that some vertex s in K' satisfies [i - 11 C Y.' and some
vertex s' in K' satisfies i E Y,',. It follows from the properties of encodings that
K' is a G kernel of (Z', Y', T). Thus (Z', Y', T)[K'] belongs to C(G). Let F be
(Z', Y', T)[K'] with i forgotten. Since F is singular, the minimum singular [i-I]-
sourced encoding belongs to p(')(C(G)) and hence we get that E E p(')(C(G))
as was to be proved.

Assume that E E p(')(C(G)). Let E E p"')(F) where F is an encoding of a
tree-decomposition (X,T) with respect to a kernel K and G. Let (Z,Y,T) be
the G profile of (X,T) and (Z',Y',T) be (Z,Y,T) with i forgotten. Clearly,
(Z', Y', T) is the rI)(C(G)) profile of (X, T). If E = F'[K'] where F' is F
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with i forgotten and K' is a kernel of F', then K' is an r".(C(G)) kernel of
(Z',Y',T). Hence E is the encoding of (X,T) with respect to K' and rl)(G),
that is, E E C(rm (G)). If E is a singular (i- l)-sourced encoding then (Z', Y', T)
is singular. Hence, there is some other tree-decomposition (X', T') of G where
some bag X' is exactly the source set of r(')(G). Thus, t is a r("(G) kernel of
(X', T'). The encoding of (X', T') with respect to t and r(.V(G) is the singular
i-sourced encoding which is dominated by E. Hence E E C(r?)(G)). 03

We have omitted the proof of the next lemma, since it, like the last lemma,
consist of rather technical verification.

LEMMA 4.18. If G is an i-sourced graph then C(l,',`)(G)) = AP'-(C(G))

That an encoding E is directly dominated by another encoding F and an
isomo.?hism of this direct dominance respects sources is denoted E•=DD F. Let
G be an i-sourced graph. Assume that (Z, Y, K) E C(G) and (Z', Y', K') are
i-sourced encodings such that (Z, Y, K) _<DD (Z', Y', K'). Then there is an i-
sourced encoding F E C(G) such that F•DD (Z', Y', K'). Let us prove this. Let
f be an isomorphism of the direct dominance (Z, Y, K) <DD (Z', Y', K'). Let
(X, T) be a tree-decomposition that has (Z, Y, K) as an encoding with respect
to G. Define another tree-decomposition (X', T) of G by: X' = X, U SG(YI(,))
for all t E V(K) and X' = Xt for all t E V(T) - V(K). It is easy to see that K
is a G kernel of (X', T). Moreover, if F is the encoding of (X', T) with respect
to G and K then F E C(G) and F<DD (Z', Y', K'). The encoding F is said to
be obtained by augmenting (Z, Y, K) with the sources of (Z', Y', K'). Notice, if
F=<DD E, then any encoding compatible with E is also compatible with F.

LEMMA 4.19. If E!-DD E' then Ag"')(E') C A('.!)(E) and p(')(E') C p(')(E).
Furthermore, every encoding F compatible with E' is compatible with E, and
E'q(')F C E(D('F.

Proof. We only give the proof for p('). The proofs of the statements regarding
(D() and A(,,') are analogous.

Let B be E with i forgotten and B' be E' with i forgotten. It is easy to see
that any B kernel K is an B' kernel, as well, and that B[K] •DD B'[K]. Also,
B is a singular i-profile iff B' is. Hence, p('(E') g p(i)(E). E0

LEMMA 4.20. Let G, and G2 be two i-sourced graphs then

C(Gj)e(')C(G2) = C(G 1)e(")C(G2).

Proof It is easy to see that C(G1 )e)"C(G2) C C(G1 )e)(DC(G2 ). Also, since
V') is commutative, we only have to show that for any set of encodings C that
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is closed under subdivision C(Gi)("')C C C(G1)e'"C to be able to conclude
that the lemma holds.

Assume that F E C(G1)O"(dC, and let F E EIi°)'E 2 where El E C(Gi) and
E 2 EE C. Then there is an encoding D1 E C(GI) such that D, <D El. Let DYj
and ,E- be subdivisions of D1 and El, respectively, such that Vi SDD E'. Let
E2 be the subdivision of E2 according to the E, to El scheme. Let DY,' be D,
augmented with the sources of El. By (4.12) and the properties of augmented
encodings, D'" E C(G1 ) and DI'<DD El. By (4.19), E'ED(")E2 C_ ,)V',
Moreover, since F subdivided according to the E1 to E' scheme belongs to
E'IOE , we have F E E'Ie('E'. Hence, F E D'")E2 Cg C(G1 )@')C. 0

LEMMA 4.21. If G is an i-sourced graph then p(')(C(G)) = p"s)(C(G)).

Proof. Clearly, p(')(C(G)) ; p()(C(G)) holds, since p(i) is monotone. Assume
that F E p(')(C(G)), and let F E p(')(E) where D E C(G) and E >D D. Let
E' and D' be subdivisions of E and D, respectively, such that D' •DD E'.
Let V' be D' augmented with the sources of E'. By (4.12) and the properties
of augmented encodings, DX' E C(G1) and D"<DD E'. By (4.19), p(')(E') g
p()(D"). Moreover, since F subdivided according to the E to E' scheme belongs
to p"i)(E'), F E p(')(D"). Hence, F E p(')(C(G)). "

We have omitted the proof of the next lemma, since it is analogous to the
proof of the last lemma.

LEMMA 4.22. If G is an i-sourced graph then A('-)(C(G)) = A•"•(C(G)).

4.3. The index of ,-. In this subsection, we will give an upper bound on
the index of our congruence relation -. We start by defining non-redundant
profiles. Directly after the definition, their importance is motivated. A profile
(Z, Y, T) is said to be redundant if there are vertices t and t' in T such that the
unique path P from t to t' in T satisfies:

"* zt <_ z. <• zt, and Yt = Y. = Yt, for all vertices s in P,
"* all internal vertices in P have degree 2 in T
"* P has at least one internal vertex.

The internal vertices in a path P satisfying these three conditions are called
redundant. By shortcutting redundant vertices we mean: deleting the internal
vertices in a path to, ... ,t, where t1 ,... , are redundant, and then making
to and t, adjacent.

The interesting thing about non-redundancy is that each equivalence class of
"-D that contains i-sourced encodings contains at least one non-redundant such.
This is because, if we shortcut some redundant vertices in an encoding E then
the resulting encoding is, clearly, equivalent to E under -D. So, we can always
obtain a non-redundant encoding from the equivalence class that E belongs to
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by recursively shortcutting redundant vertices until no more remains. Hence, if
b is a bound on the number of non-redundant i-sourced encodings then it is a
bound on the number of equivalence classes under -D that contains i-sourced
encodings, as well. So, 26 is a bound on the number of congruence classes with
elements from the domain G,, of our congruence - for graphs of tree-width at
most w. The rest of this section will be used to show, the way indicated above,
that the number of equivalence classes of -D containing i-sourced encodings is
at most 20(is 1+i2 " Iogw). This is stated in the last lemma of this subsection,
(4.28). But, we already conclude the following from it.

LEMMA 4.23. If r > w then -• has at most 220(,,4) congruence classes contain-
ing graphs from the domains Go,... , Gr.

If (Z, Y, T) is a profile such that T is a path, and Yt = Yt, holds for all vertices t
and t' in T then (Z, Y, T) is called a source homogeneous path profile. If (Z, Y, P)
is a source homogeneous path profile and t a vertex in P such that zt > zt, for
all other vertices t' in P or zt < zt, for all other vertices t' in P then t is said to
be an extreme vertex for (Z, Y, P).

LEMMA 4.24. Every non-redundant source homogeneous path profile (Z, Y, P)
with more than two vertices has an extreme vertex.

Proof. Assume that P = vj,... , vm. Let A = {u E V(P)Jzu :_ zu, for all u' E
V(P)} and B = {u E V(P)Izu > z, , for all u' E V(P)}. Assume that the lemma
is false. That is JAI, IBI > 2. Notice, both A and B are non-empty. Let ul,... , ul
be the vertices of A U B in the order that they appear in P. Assume that there
is an i E [I - 1] such that ui and ui+l both belong to the same set, say, A. Then
the following holds.

If there is a vertex Uk E B after u,+1 in P then the internal vertices of the
subpath of P between ui and uk are redundant and we have at least one such
vertex-u i +i. If there is a vertex Uk E B before ui in P then the internal vertices
of the subpath of P between uk and ui+, are redundant and we have at least
one such vertex-ui. The case when ui and uj+ 1 both belong to B is completely
analogous.

Hence, if ul belongs to A then U4 belongs to B, and if ul belongs to B then
u4 belongs to A. In both cases, the internal vertices of the path between ul and
U4 are redundant and both u2 and U3 are such vertices. 0

LEMMA 4.25. Let (Z, Y, P) be a non-redundant source homogeneous path pro-
file with more than two vertices and an extreme endvertex v. Then also the single
neighbor of v is an extreme vertex.

Proof. Assume that P = vi,... , Vm, where v = v1 . If z,,, > z,, for all i E [ml
then z,,, < z,, must hold for all i E [m]. Let A = {vjIz,,, < z., for all j E [m]};
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since vA is the last vertex in P that belongs to A, and k i 2 it follows that

v2 .... , Vk -I are redundant. The case when zI < zV, for all i E [in] is analogous.
0

Equipped with this lemma it is easy to prove, by induction, that if (Z, Y, P)
is a non-redundant source homogeneous path profile of width at most w with an
extreme endvertex then P has at most w + 2 vertices. By (4.24), we can break
any non-redundant source homogeneous path profile into two such, both with an

extreme endvertex. This gives the following theorem.

THEOREM 4.26. If (Z, Y, P) is a non-redundant source homogeneous path pro-
file of width at most w then P has at most 2w + 3 vertices.

We shall now bound the size of the tree of a non-redundant i-sourced encoding
(Z, Y, K) by a constant, depending on w and i. First a bound on the diameter of
K, that is, the length of a maximum length subpath P of T is obtained. Clearly,
the maximum length subpath P is a path between two leaves. Let us assume
that (Z, Y, K) has k leaves. The number of boundary edges (that is, edges (s, t)
such that Y, 0 Yt) in P can not exceed 2(i - k) + 2. Let us prove this. Direct
each edge (s, t) of P so that P becomes a directed path. Mark a directed edge
(s, t) with a - if there is some source j that appears in the source set of its tail
but not in the source set of its head, that is, j E Y, - Yt. Mark a directed edge
(s, t) with a + if it is not marked - and there is some source j that appears in
the source set of its head but not in the source set of its tail, that is, j E Yt -Y,.
The fact that (Z, Y, K) is an encoding implies the following two observations.
First, each source can contribute to at most two marks, since a source belongs
to the source bags for a set of vertices that induce a subtree of K. Second, with
each leaf in K except the two endvertices of P, we can associate one source that
will not contribute to any mark. Different sources for different leaves. This is
because, for each leaf I in K, there is at least one source that belong to the source
bag of 1, but not to any other source bag in (Z, Y, K). Hence, except for the first
and last edge we have at most 2(i - k) marks to use. Since each boundary edge
must have a mark, there are at most 2(i - k) + 2 boundary edges.

We can also see that except for the two endvertices of P there are at most
2(i - k) + 1 maximal source homogeneous subpaths of P. Since the encoding
moreover is non-redundant, (4.26) tells us that each such path has at most 2w+3
vertices. So, P has at most (2(i-k)+ 1)(2w + 3)+ 2 vertices. Hence, we can pick

a vertex v such that no path from v to a leaf has more than (i-k)(2w+3)+w+2
vertices except from v. So, K has at most k((i - k)(2w + 3) + w + 2) + 1 vertices.
That is, we have at most O(i 2w) vertices.

Thus we have proved the following theorem.

THEOREM 4.27. If (Z, Y, K) is a non-redundant i-sourced encoding then K
has at most O(i 2w) vertices.
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The number of trees with at most n vertices is 0(4n). There are clearly at
most 2' different source sets and at most w + 1 possible z-values to associated
with vertices in an encoding. Hence, for some c the number of non-redundant
i-sourced encodings is at most (2'(w+ 1))c'2u4•2w, which is 2 O(i3 w+i2w 1ogw). As
noted above, this implies the following theorem.

LEMMA 4.28. -D has at most 2 0(i3 W+i2 w logw) equivalence classes containing
i-sourced encodings.

5. Conclusions

It is interesting to note that we have only used what is equivalent to a bounded
number of inductive definitions to prove that there is a finite number of obstruc-
tions for the family of graphs of tree-width at most w. It is known to be necessary
and sufficient to use an arbitrarily large finite number of iterations of inductive
definitions to prove bounded GMT (stating that the family of graphs of bounded
tree-width is well-quasi-ordered under minor taking). Bounded GMT is easily
seen to imply that there is a finite number of obstructions for the family of graphs
of tree-width at most w. We conclude that bounded GMT, in a metamathemat-
ical sense, is the stronger of these two theorems.

For the case of graphs of tree-width at most 1, at most 2, and at most 3 the
obstruction sets are known. They have size 1, 1 and 4, respectively, see [2]. We
conclude that the bounds we obtain here are not sharp.
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An obstruction-based approach to layout
optimization

MICHAEL A. LANGSTON

ABSTRACT. Fast obstruction tests have potential as practical VLSI design

tools. In this brief review, ongoing efforts to develop such tests are dis-

cussed. The emphasis is on providing compact layouts for circuits under

representative metrics such as pathwidth and cutwidth.

1. Background

A(P-complete graph width problems arise at the heart of a number of VLSI
layout styles. Well-known examples include pathwidth [12] (aka gate matrix
layout) and cutwidth [7] (aka min cut linear arrangement). Accordingly, vast
assortments of heuristic algorithms have been propose, - icliver approximate
but not-necessarily-optimal solutions.

It is not at all clear, ikwever, that optimality must be sacrificed for the

sake of A/P-completeness. Many of these problems can be solved in low-order
polynomial time whenever the width is fixed [5].

Pathwidth, for example, can in principle be decided in 0(n 2 ) time for any

fixed width using a finite set of minor tests. Cutwidth, also amenable to this

approach, can be decided analogously for any fixed width with a finite number

of immersion tests.

Remarkably, these results rely on nonconstructive techniques [13, 141. That is,

the promised sets are not provided in the proof of polynomial-time complexity.

All that is guaranteed is that each set contains a finite number of elements,

henceforth termed obstructions, and that testing for each obstruction can be
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layout number number K4 ... pathwidth
instance of nets of gates present two

1 5 7 yes no
2 7 9 yes no
3 8 8 yes no
4 8 8 yes no
5 8 9 yes no
6 11 10 yes no
7 17 16 yes no
8 5 5 no yes
9 5 8 no yes
10 6 6 no yes
11 6 6 no yes
12 8 8 no yes

TABLE 1. Sample circuits from the literature

accomplished in polynomial time. Constructivization strateg;-s have recently
been proposed [6], out even these cannot provide complete obstruction sets.

How then doeF one translate tihe knowledge of such "technically efficient"
methods into anything resembling a practical algorithm? In this brief survey,
we discuss ongoing efforts to resolve this foundational (ie-stion. exploring the
noti,'n that not all obstructions are equally important.

2. Pathwidth

For every fixed k, the family of graphs with pathwidtb at most k is minor-
closed. But only sketchy information is known about pathwidth obstructions
and their underlying structure [8]. One obstruction exists for pathwidth zero.
Two obstructions suffice for pathwidth one. For pathwidth two, 110 obstructions
make up the sc(.. For pathwidth three, at least 122 million obstructions exist.

Recognizing such a rapid growth rate, we began this effort by studying lay-
outs for real circuits from the literature. (Circuits are modeled as graphs, with
vertices corresponding tj nets and edges representing net incompatibilities.) In-
terestingly, every instance we could find had the property that, if the pathwidth
exceeded k, then the instance contained as a minor Kk+2, an obstruction to
pathwidth k. A dozen such instances are listed in Table 1, where we show the
situation for k = 2.

Therefore, despite the immense number of possible obstructions for even mod-
est values of k, it seems plausible that Kk+2 alone is an excellent discriminator
for deciding wiether a circuit has pathwidth V. To explore this possibility be-
ginning with k = 2, we have generated great numbers of instances at random.
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number of number of graphs graphs without obstruction
vertices graphs with pathwidth f pathwidth
in graph generated obstruction two or less three or more

6 .000 40 960 0
7 1000 141 857 2
8 1000 271 711 18
9 1000 532 454 14
10 1000 757 221 22
11 1000 880 95 25
12 1000 975 17 8
13 1000 992 6 2
14 1000 1000 0 0

TABLE 2. Typical effectiveness of K4 test

(Of cours • e make no pretense that a randomly generated graph is particularly
likely to represent a useful circuit. Rather, we only wish to gather as much
data as possible.) For each instance, we performed the easy K4 topological test
of [9] first, thereby eliminating non-series-parallel graphs (and, presumably, al-
most all graphs with pathwidth exceeding two). For those instances without K.1.
we used the dynamic programming formulation of [4] to find an optimal path
decomposition.

Sample results are displayed in Table 2. In this particular set of experiments,
each edge was chosen with probability 1/3. We observe that the single obstruc-
tion K4 was able to screen out instances with pathwidth three or more roughly
98% of the time.

Although these empirical results are encouraging, one must be cautious not
to attach too much significance to them. They rely in part on the fact that
real circuits are not arbitrarily sparse. In particular, the bigger, more tree-like
obstructions tend to occur only in the presence of a1(4 minor unless the edge
probability is exceedingly small. (It has been observed that, if one can make the
edge probability arbitrarily small and the number of vertices arbitrarily large,
then any tree can be made more likely than any clique of size three or more in
a random graph.)

In order to account for more relatively dense obstructions, we have developed
a practical, linear-time test for K4 and the five other obstructions depicted below,

The improvement obtained with this method is illustrated in Table 3.
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number of number of graphs graphs without obstruction
vertices graphs with pathwidth pathwidth
in graph generated obstruction two or less three or more

6 1000 40 960 0
7 1000 143 857 0
8 1000 289 711 0
9 1000 545 454 1
10 1000 778 221 1
11 1000 904 95 1
12 1000 982 17 1
13 1000 994 6 0
14 1000 1000 1 0 0

TABLE 3. Effectiveness of six-obstruction test

These tests may be attractive from a practical standpoint because series-
parallel circuits occur frequently (a restriction to series-parallel connections is
common in the design of CMOS cells 115]). Even circuits that are not series-
parallel are often decomposable into series-parallel subcircuits, for which path-
width two layouts can be useful.

Testing for other complete graphs is a next logical step. An O(n 2 )-time K5

minor test has recently been reported in [10). We are hopeful that this algorithm
or methods based on it may prove practical to implement and run.

3. Cutwidth

For every fixed k, the family of graphs with cutwidth at most k is immersion-
closed. Even less is known about cutwidth obstructions. Two obstructions exist
for cutwidth zero. Two suffice for cutwidth one as well. For cutwidth two, sixteen
obstructions are needed. And for cutwidth three, eighty-five obstructions are
known, although many more are thought likely to exist.

Again, complete graphs are obstructions. Based on this and our experience
with pathwidth, we have considered fast tests to determine whether a complete
graph is immersed in an arbitrary graph. Testing for K, and K2 are of course
trivial. Testing for K3 is easy: K3 is immersed in any graph of order three or
more unless the graph is a tree with no pair of multiple edges incident on a
common vertex.

The first really difficult test is that for K4. Unlike the aforementioned simple
K4 topological test, no genuinely practical test was previously known for deciding
whether K4 is immersed in a graph. (For graphs of maximum degree three.
topological containment is equivalent to minor containment, but only sufficient
and not necessary for immersion containment.) It is possible in principle to use
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the method sketched in [16] to obtain a tree decomposition of width two, and
then to use the dynamic programming formulation of [13] oil the decomposition.
Although this two step procedure runs in 0(n) time, the resultant constant of
proT)ortionality is prohibitively high.

One problem is that multiple edges cannot be ignored, making immersion
tests much more "slippery" than minor tests. Thus we have developed a linear-
time K4 test from scratch [2], which we now sketch. Our method requires the
following three technical lemmas.

(3.1) K4 is immersed in G if and only if it is immersed in some three-edge-
connected component of G.

(3.2) Each three-edge-connected component of a series-parallel graph is series-
parallel.

(3.3) Any series-parallel graph contains at least two vertices with at most two
neighbors.

Our K4 test, algorithm immerse, proceeds in three steps. We first invoke
algorithm decompose, which finds a series-parallel decomposition of G if any
exist. If decompose is successful, we next invoke algorithm components, which
breaks G into three-edge-connected components. Finally, we invoke algorithm
test on each component until either a K4 is encountered or all components have
been eliminated (3.1).

Algorithm test is the heart of our method, and is described in the pidgin
Algol that follows. Its input is series-parallel (3.2). We proceed by examining
vertices with at most two neighbors (3.3). At each iteration, some such vertex is
selected. The vertex is deleted (after deleting or lifting its incident edges) if we
can determine that it is not contained in every copy of K4 should K4 be present.
Otherwise, the vertex is marked. We assume all vertices are initially unmarked.
As the algorithm progresses, a vertex may be marked then later unmarked again
as its neighborhood changes.

algorithm test
delete all but three copies of edges incident on vertices with one neighbor
if any articulation point has degree seven or more

then report "yes" and halt
while there are unmarked vertices with fewer than three neighbors do

if there are fewer than four vertices
then report "no" and halt

while there is a vertex v with exactly one neighbor w do
delete v and every copy of the edge vw
unmark w if it is marked
end while
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if there is an unmarked vertex v with exactly two neighbors u and w
then

assume the multiplicity of uv is no less than that of vw
if u or v is an articulation point

then
lift all possible pairs of edges uv and vw.
delete any remaining copies of uv, and delete v

els__e

if there is only one copy of edge vw
then

lift uv and vw
delete any remaining copies of uv
delete v
if the degree of u exceeds three

then report "yes" and halt
else unmark u if it is marked
end if

else mark v
end if

end if
end if

end while
if there is a vertex with degree five or more

then report "yes" and halt
end test

(3.4) Algorithm immerse runs in 0(n) time and correctly decides whether K 4 is
immersed in an input graph.

This algorithm is fast, reasonably simple to code, and easy to modify if one
wants to locate a model of an immersed K4 when any exist. It may also serve to
simplify other obstruction tests, because all other obstructions (and any input
graph that fails the test) must be series-parallel. In addition to cutwidth, a
variety of other load factor problems can be decided by finite sets of immersion
tests that include K 4 .

4. Related Efforts

On a more general front, new approaches of undetermined practical potential
offer asymptotic improvements over the 0(n 2 ) method of [13]. These include an
0(n log 2 n) pathwidth scheme [31, an 0(n log n) tree decomposition algorithm
[111, and an 0(n) graph rewriting technique [1]. It will be interesting to see how
well these and other new ideas can make the transition from theory to practice.
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Decomposing 3-Connected Graphs

COLLETTE R. COULLARD DONALD K. WAGNER

ABSTRACT. This note describes ongoing work by the authors on the
decomposition of 3-connected graphs. Section 1 describes the history of
the problem and our progress to date. Section 2 outlines our current
approach. Section 3 discusses applications of this work.

1. History and Progress

Cunningham and Edmonds [5J proved a generalization of Tutte's theorem
(Chapter 11 of [10]) that a 2-connected graph G has a unique minimal decom-
position into graphs, each of which is either 3-connected, a bond, or a polygon.
They define the notion of a good split, and first prove that G has a unique
minimal decomposition into graphs, none of which has a good split, and second
prove that the graphs that do not have a good split are precisely 3-connected
graphs, bonds and polygons.

Coullard, Gardner, and Wagner [31 proved an analogue of the first result
above for 3-connected graphs, and an analogue of the second for minimally 3-
connected graphs. Following the basic strategy of Cunningham and Edmonds,
they defined an appropriate notion of good split. They proved first that if G is a
3-connected graph, then G has a unique minimal decomposition into graphs none
of which has a good split. Then they proved that the minimally 3-connected
graphs that do not have a good split are precisely cyclically 4-connected graphs,
twirls, and wheels. Thus, it follows that if G is a minimally 3-connected graph,
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then G has a unique minimal decomposition into graphs, each of which is either
cyclically 4-connected, a twirl or a wheel.

Robertson and Shih also have a unique decomposition for 3-connected graphs;
their work is unpublished. Their decomposition is different from ours in that
the objects obtained in the decomposition are allowed to be hypergraphs, some
edges of which are incident to three vertices.

The result of Coullard et al falls short of a complete analog of the Thtte
uniqueness result for general 3-connected graphs. We still hope to find that
complete analog, as described in the following section.

2. Proposed Approach

As pointed out in the previous section, Coullard et al have a unique decom-
position for 3-connected graphs. The reason this result falls short is that we
have not been able to completely describe the general graphs with no good split,
according to the definition of good split that yields the unique decomposition.
That seemed to be the next step. Now we are taking a different approach.

In order to describe the new approach, we must give a little background. A
split of a graph can be defined many ways; indeed, one of the main contributions
of [3] is a definition that does yield a unique decomposition. In [31, a split is
defined as a special tripartition of the edge set of the graph. (For brevity, the
precise definition is omitted here.) These are called edge splits. An alternate
approach is to define a split as a special pair of subsets of the vertices of the
graph, the union of which is the entire vertex set. (Again, we omit the detailed
definition.) These are called vertex splits. Vertex splits are introduced in the lat-
ter part of [3], where it is shown that vertex splits and edge splits are equivalent
for the class of minimally 3-connected graphs. Then we proceed to characterize
the minimally 3-connected graphs with no good vertex splits.

Recently we have been able to characterize the 3-connected graphs with no
good vertex splits, extending the above result to general graphs. Thus, if vertex
splits and edge splits were equivalent for general graphs, we would have the
desired analog of the Tutte uniqueness result.

Unfortunately, vertex splits and edge splits are not equivalent for general
graphs. Thus, a unique decomposition that uses good vertex splits, instead of
good edge splits must be defined. There are several possibilities to be investi-
gated.
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3. Applications

While direct applications of the unique decomposition of 3-connected graphs
seem unlikely, the uniqueness issue has enjoyed enough interest in the past (see
for example [1], [5], [61, [7], [10]) that researchers in the area consider it impor-
tant in its own right. On the other hand, decomposing graphs (not necessarily
uniquely) has played an important role in optimization for quite some time.
(see [2], [4], [8], [9]) We intend to continue our thrust in the direction of finding
decomposition-based solution techniques for optimization problems on graphs.

REFERENCES

1. R.E. Bixby, Composition and decomposition of matroids and related topics.
Ph.D. thesis, Cornell University, 1972.

2. G. Cornuejols, D. Naddef and W.R. Pulleyblank, "Halin graphs and the
traveling salesman problem." Mathematical Programming 26 (1983), 287-294.

3. C.R. Coullard, L.L. Gardner, and D.K. Wagner, "Decomposition of 3-connected
graphs," 1990, to appear in Combinatorica.

4. C.R. Coullard and W.R. Pulleyblank, "On Cycle Cones and Polyhedra,"
Linear Algebra and Its Applications 114/115 (1989), 613-640.

5. W.H. Cunningham and J. Edmonds, "A combinatorial decomposition theory,"
Canadian Journal of Mathematics 32 (1980), 734-765.

6. J.E. Hopcroft and R.E. Tarjan, "Dividing a graph into triconnected compo-
nents," SIAM Journal on Computing 2 (1973), 135-158.

7. S. MacLane, "A structural characterization of planar combinatorial graphs,"
Duke Mathematics Journal 3 (1937), 460-472.

8. A. Rajan, Algorithmic implications of connectivity and related topics in ma-
troid theory, Ph.D. thesis, Northwestern University, 1986.

9. K. Truemper, "A decomposition theory for matroids, I. General results,"
Journal of Combinatorial Theory (B) 39 (1985), 43-76.

10. W.T. Tutte, Connectivity in Graphs, University of Toronto Press, Toronto,
1966.

Northwestern University
e-mail address: coullard@iems.nwu.edu

Office of Naval Research
e-mail address: dwagner@ocnr-lhq.navy.mil



C. 4temporary Mathematics
Volume 147, 1993

Graph Planarity and Related Topics

A.K. KELMANS

ABSTRACT. We describe different results on graphs containing or avoid-
ing subdivisions of some special graphs, and in particular, different re-
finements of Kuratowski's planarity criterion for 3-connected and quasi 4-
connected graphs. Some results on non-separating circuits in a graph are
presented. In particular some more refinements of Kuratowski's theorem

and graph planarity criteria in terms of non-separating circuits are given
for 3-connected and quasi 4-connected graphs. An ear-like decomposition

for quasi 4-connected graphs is described similar to that of for 3-connected
graphs, and is shown to be a very useful tool for investigating graph pla-

narity and some other problems for quasi 4-connected graphs. Refinements

of different kinds are given for Whitney's graph planarity criterion. Some
results on Dirac's conjecture and Barnette's conjecture are also presented.

CONTENTS

1. Introduction

2. The main concepts and notation

3. Some classical results

4. Simple reductions of the graph planarity problem

5. Subdivisions of K 5, K3 ,3 , and L in a graph

6. Subdivisions of K3,3 in a 3-connected graph with some edges
not subdivided

7. A vertex in a matroid and the corresponding notion and dual
notion for graphs
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8. More about non-separating circuits in a graph

9. Triangle and 3-cut reductions of the graph planarity problem

10. Subdivisions of K, M, and N in quasi 4-connected graphs

11. An ear-like decomposition for quasi 4-connected graphs

12. Non-separating circuits in quasi 4-connected graphs

13. Some refinements of Whitney's planarity criterion

14. On Dirac's conjecture

15. On Barnette's conjecture
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1. Introduction

Graph planarity theory is one of the classical fields of graph theory [4, 6, 131.
It is a part of theory of graph embeddings into surfaces of different types. Whit-
ney's planarity criterion illustrates the interconnection between graph planarity
theory and matroid theory [551. MacLane's criterion gives an interpretation

of graph planarity in terms of linear algebra. Kuratowski's planarity crite-
rion shows that this theory is also a natural part of graph minors theory [381.
Steinitz's theorem shows the interconnection between planar graphs and con-
vex polytopes in 3-dimensional space [11]. In the 60's W.T. Tutte found very
interesting and important results concerning graph planarity and related top-
ics [49, 51, 52, 501. Many interesting results in this direction were found
since then by D.S. Archdeacon, D.W. Barnette, R.E. Bixby, W.H. Cunning-
ham, G.A. Dirac, J. Edmonds, J.-C. Fournier, B. Griinbaum, L. Lovfisz, F.
Jaeger, H. Jung, N. Robertson, P. Seymour, C. Thomassen, W.T. Tutte, (e.g.
[1, 3, 5, 8, 9, 10, 14, 15, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 53]) and
many others. In the 70's by considering the above mentioned problems from the
point of view of matroid theory, we rediscovered some of Tutte's results (with
different proofs) and found some more results in this direction. We also found
simple proofs, natural generalizations and strengthenings of the classical results
of Kuratowski and Whitney on planarity and circuit isomorphism of graphs,
some results on Dirac's and Barnette's conjectures, etc.

The main part of this paper is an outline of some results on graph planarity

and related topics which have been obtained by the author. Some of these results
have never been published and some have only been published in Russian. The
results described in the paper show different directions in which this classical
Lheory can be naturally developed.
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2. The main concepts and notation

All the concepts about graphs and matroids used but not defined here can be
found in [4, 6, 13, 55].

We consider undirected graphs which may have loops and parallel edges. A
graph without loops or parallel edges is called a simple graph. The sets of vertices
and edges of a graph G are denoted by V(G) and E(G), respectively.

Given a set X of edges of G let G \ X and GIX denote the graph obtained
from G by deleting and contracting the edges in X, respectively. For a subgraph
F of G we write G/F instead of G/E(F).

A graph G is called 2-connected if G has no loops and at least two vertices,
for LV(G)I = 2 G has at least two parallel edges, and for IV(G)t Ž 3 the graph
obtained from G by deleting any vertex is connected. A graph G is called k-
connected, k > 3, if G is simple, IV(G)I :> k + 1, and the graph obtained from
G by deleting any k - 1 vertices is connected. Sometimes it is convenient to
treat the loop as a 2-connected graph and the graph with two vertices and three
parallel edges as a 3-connected graph.

Let Kn denote the complete graph with n vertices and Kn,m denote the com-
plete bipartite graph with two parts of n and m vertices. Let L denote the graph

consisting of two disjoint triangles connected by three disjoint edges so that L is
the cubic (3-connected) simple graph on 6 vertices distinct from K3,3 (see Fig.
1).

L KA

FIGURE 1. The cubic simple graphs on 6 vertices.

For i E {0, 1, 2, 3}, and n > 1, we denote by K3,n the graph obtained from
K3,, by adding i edges between the vertices of a 3-vertex part of K3,n (and so
K3°,. = K3,-).

A circuit-graph is a connected graph with each vertex of degree 2 - it is
sometimes called a polygon. A cocircuit-graph is a connected graph with two
vertices and some (parallel) edges - it is sometimes called a bond.

A wheel is a graph obtained from a circuit-graph by adding a new vertex and
all edges between the new vertex and the vertices of the circuit.
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Paths and circuits in a graph will be assumed to be non-self-intersecting. A
path P will be assumed to have at least two vertices and will sometimes be
denoted by xPy to identify x and y as the end-vertices of P. If P has exactly
one edge then x and y are the end-vertices of the edge. A vertex of xPy distinct
from x and y is an inner vertex of P. A path P of G is called a thread of G if all
inner vertices of P are of degree 2 and the end-vertices are of degree : 2 in G.
A thread with no inner vertices (i.e. with one edge) is an edge-thread. Given a
path xPy and a circuit C in G, we call xPy a path-chord of C if PnC = {x,y}.
A path-chord of C with one edge is an edge-chord of C.

A set C of circuits of G is called independent if for every nonempty subset
A of C the symmetric difference of the circuits in A is not empty. A maximal
independent set of circuits of G is called a cycle basis of G. It is easy to see
that every cycle basis of G has IE(G)I - IV(G)I + c(G) circuits where c(G) is the
number of components of G.

A set X of edges of a graph G is called an edge cut of G if G \ X has more
components than G. An edge cut of G minimal under inclusion is called a
cocircuit of G. Associated with each vertex in G is a vertex star which is the set
of edges in G incident to that vertex. A set S of vertices of a graph G is called
a vertex cut of G if G \ S has more components than G.

A graph G is called planar if there exists an embedding of G into the sphere
(or into the plane) such that the vertices are points and the edges are segments
of Jordan curves, a vertex is an end-vertex of an edge if and only if the corre-
sponding point is an end-point of the corresponding segment, and any common
point of two segments corresponds to a common end-vertex of the corresponding
two edges of G.

A face-circuit of a planar graph embedded into the sphere is a circuit which
bounds a face of the embedded graph.

A graph F is called a subdivision of G, written F = TopG, if F can be
obtained from G by subdividing some edges of G, i.e. by a sequence of operations
of replacing an edge e = (x, y) of G by a path xPy having exactly two vertices
Ix, y} in common with the current graph.

The topological length or top length lG(P) of a path (a circuit) P in G is the
number of inner vertices (respectively, vertices) of P of degree at least 3 in G.

Given two disjoint graphs G1 and G2 , a graph G is called a 2-sum of G, and
G2 if G is obtained from G1 and G2 by identifying an edge el from G1 and an
edge e2 from G2 with a new edge e and by deleting the new edge e from the
resulting graph.

A graph G is combinatorial dual to G* if there exists a one-to-one mapping
e : E(G) -, E(G*) of the edge set of G onto the edge set of G* such that C is a
circuit of G if and only if e(C) is a cocircuit of G*.

Given a matroid M let E(M) -- E, C(M), and C*(M) denote the ground set,
the set of circuits, and the set of cocircuits of M, respectively. Given X C E(M)
let M \ X and MIX denote the matroids obtained from M by deleting and
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contracting X, respectively, which means that they are defined o,, the ground
set E \ X and C(M \ X) = {C: C C E\ X,C E C(M)}, and C*(M/X) = {C*:
C* C E\ X,C* E C*(M)}.

Given x, y E E(M) we write xCy (xC*y) if x = y or there is a circuit (re-
spectively, a cocircuit) of M which contains both x and y. It is easy to see that
xCy ý= xC*y and that C is an equivalence relation. The equivalence classes

under C are called the components of M. A matroid is connected if it has
one component. A partition (X 1 , X 2 ) of E(M) is called a k-separation of M if
IX,1 , JX21 _> k and p(Xi) + p(XI) _< p(M) + k - 1 where p is the rank function
of M. A matroid is k-connected if it has no i-separation for I < k. It is easy
to see that M is k-connected if and only if M* is k-connected. We are only
concerned with the cases k < 3. It is easy to show that (1) every matroid is
1-connected, (2) a matroid is 2-connected if and only if it is connected, (3) a
graph with no isolated vertices and with at least two edges is 2-connected if and
only if its circuit matroid is connected, and (4) a simple graph with at least 4
edges is 3-connected if and only if its circuit matroid is 3-connected.

A matroid is binary if ICfnC*I is even for all C E C(M) and C* E C'(M).

3. Some classical results

The following three planarity criteria are classical.

3.1. Kuratowski's planarity criterion [3&,
A graph C is planar if and only if it does not contain a subdivision of K 5 or

K3- 3 (see 1 2).

K K

FIGURE 2. The Kuratowski graphs.

3.2. Whitney's planarity criterion [561
A graph G is planar if and orly if it has a combinatorial dual graph G*.

3.3. MacLane's planarity criterion [36]
A graph G is planar if and only if it has a cycle basis such that each edge of

G belongs to at most two circuits of the basis.
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4. Simple reductions of the graph planarity problem

It is well-known and is easy to show that the graph planarity problem can be
refined by simple reductions described in 4.1, 4.2, and 4.3.

4.1 A graph is planar if and only if each of its components is planar.

Therefore we may consider connected graphs.

4.2. A connected graph is planar if and only if each of its blocks is planar.

Therefore we may consider 2-connected graphs.
Let a 2-connected graph G have a vertex 2-cut X = {x 1 , x2} so that G =

F1 U F2 and F1 n F2 = X. Let Gi, i = 1,2, be obtained from F, by adding a new
edge ej = (xI,x 2 ) so that G is the 2-sum of G1 with the specified edge e and
G2 witi the specified edge e2 (see Fig. 3).

G G1  G2

FIGURE 3.

4.3. A 2-connected graph G is planar if and r nly i, G, and G2 are planar.

Therefore 3-connected graphs can be considered as the main bricks in the
graph planarity problem, Also 3-connected planar graphs are of special interest
because ,f the following reason. It is very easy to see that

4.4. The skeleton-graph of a convex polytope ir 3-dimensional space is a pla-
nar graph.

One can easily prove (by using linear programming arguments) that

4.5. For all k > 1 the skeleton-graph of a convex polytope in k-dimensional
space is a k-connected graph.

Therefore
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4.6. The skeleton-graph of a convex polytope in 3-dimensional space is a pla-
nar 3-connected graph.

It turns out that the reverse is also true. Steinitz's theorem says [31 that

4.7. A graph is the skeleton-graph of a convex polytope in 3-dilvenszonal space
if and only if it is planar and 3-connected.

5. Subdivisions of K5 , K3,3 , and L in a graph

It is well-known that K5 and K3,3 play different roles in Kuratowski's pla-
narity criterion; namely, it is easy to prove that [12, 541:

5.1. A 3-connected graph G distinct from K5 is planar if and only if it does
not contain a subdivision of K 3,3.

Given a graph F and an edge e = (x, y) of F, let T(F, e) denote the set
of graphs obtained from F by subdividing e (once) and adding a new edge
p = (m, s) connecting the "middle point" m of e with the "middle point" s of
some other edge of F or with a vertex s of F distinct from x and y. The proof of
5.1 follows immediately from Kuratowski's planarity criterion and the fact that
if F is Ks then any graph in T(F. e) contains a subdivision of K3,3.

Moreover, a recursive description can be given of 2-connected non-planar
graphs which contain no TopK3 ,3 (and consequently contain TopKs). A two-pole
is a graph with two distinguished pole-vertices as follows. A two-pole is planar
if the graph obtained from it by adding a new edge between the poles is planar.
A K,-two-pole is obtained from K& by distinguishing any two pole-vertices and
by deleting the edge connecting the poles. It is easy to prove that [16, 54]:

5.2. A 2-connected non-planar graph contains no subdivision of K3.3 if and
only if it can be obtained recursively from K5 by replacing an edge by either a
planar two-pole or a K,5-two-pole.

In other words

5.2'. A 2-connected graph contains no subdivision of K3,3 if and only if it can
be obtained by 2-sums from planar graphs and K5 .

The last result can be generalized. Let us consider Kn, n > 5, instead of K 5 ,
and H(Kn 1) instead of K3,3 where H(K,,-i) is obtained from Kn- 1 by adding
a new edge between the "middles" of two noi,-incident edges so that H(K 4) is
K3,3 . We say that G is n-planar if it contains no subdivision of Kn or H (K.- 1).
Thus 5-planar means planar. Then it is easy to give a recursive description of
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non-n-planar graphs containing no subdivision of If(K,_ 1) similar to that of in
5.2. [16J:

5.3. Let n > 5. A 2-connected non-n-planar graph contains no subdivision of
H(K-0 1 ) (and so it contains TopK,J) if and only if it can be obtained recursively

from Kn by replacing an edge by either an n-planar two-pole or the K&,-two-pole.

In other words

5.3'. Let n > 5. A 2-connected graph contains no subdivision of H(K,,_I) if
and only if it can be obtained by 2-sums from n-planar graphs and Kn.

This splitting effect has been described in a much more general case (not only
for graphs but also for matroids) by P. Seymour in his paper on decomposition

of regular matroids [40J.
It is easy to prove that "almost" all 3-connected g:aphs contain two disjoint

circuits. More precisely [7, 34] (see also [35]. page 377--379)

5.4. A 3-connected graph G with at least 6 vertices has no two disjoint circuits
if and only if G is either a wheel or K1.3 for i E {0, 1, 2, 31 and n > 3.

By Menger's theorem a 3-connected graph contains TopL if and only if it
contains two disjoint circuits. Therefore we have from 5.4:

5.5. A S-connected graph G with at least 6 vertices does not contain TopL if
and only if G is a wheel or K ,, for i E {O, 1, 2,3} and n > 3.

From 5.5 we have:

5.6. A 3-connected graph G with at least 6 vertices contains neither TopL
nor TopK3 ,3 if and only if G is a wheel.

From 5.5 it is easy to obtain a description of 2-connected graphs which con-
tain no TopL. This description is similar to that of 5.2' and 5.3'.

5.7. A 2-connected graph contains no TopL if and only if it can be obtained by

2-sums from circuit-graphs, cocircuit-graphs, wheels, K 5 and K' i E {0, 1, 2.31

and n > 3.
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6. Subdivisions of K 3,3 in a 3-connected graph with some edges not

subdivided

It turns out that some deeper strengthenings of Kuratowski's planarity crite-

rion can be obtained for 3-connected graphs.

Let F = K 3 ,3 and let e E E(F). Then it is easy to see that any graph in

T(F, e) has a new subdivision F' of K 3 ,3 such that it contains the new edge

p = (in, s), and one of the two edges (x, m) and (y, m) (obtained from e = (x. y)

by dividing it by the middle point m in two parts) as a thread of F'. From this

fact it follows immediately that

6.1. A non-planar 3-connected graph G distinct from K5 contains a TopK3 ,3
at least one edge-thread.

In 1975 we proved that a stronger result is true:

6.2. A non-planar 3-connected graph G distinct from K 5 contains a TopK3 .3
with at least two edge-thread.

The following construction shows that the above statement is not true if we

replace "two edges not subdivided " by "four edges not subdivided"; it gives
infinitely many non-planar 3-connected graphs which have no TopK 3 ,3 having

four edge-threads. To replace a cubic vertex x in G by a triangle means to

construct a new graph G' from G by adding a new edge connecting the "middles"

of some two edges with a common end-vertex x. Let G be a cubic non-planar

3-connected graph and let GA be the graph obtained from G by replacing every
vertex of G by a triangle. Obviously G`A is also a non-planar 3-connected graph

G distinct from K 5 . By 5.1, GA contains TopKa, 3 . Since TopK3 ,3 does not

have a triangle, in every subgraph H = TopK3 ,3 of G at least one of any two
incident edges is subdivided. Therefore any subset of edge-threads of H induces

a matching and so at most three threads of H are edges.

A natural conjecture arises about the existence of TopK 3 ,3 with three edge-

threads in any non-planar 3-connected graph G distinct from K 5 . This conjec-

ture was published in 1981 in [21]. Later we proved this conjecture by using

ear-decompositions of 3-connected graphs (presented at the Moscow Seminar on
Discrete Mathematics in December, 1981, published in [22], see also [23]). Thus

we have the following strengthening of Kuratowski's planarity criterion:

6.3. A 3-connected graph G distinct from K 5 is non-planar if and only if

it has a special subdivision of K 3 ,3 , namely a TopK 3,3 with three three disjoint
edge-threads (or, in other words it has a circuit with three crossing edge-chords).

In [46] C. Thomassen used a similar approach to prove the above conjecture.
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7. A vertex in a matroid and the corresponding notion and dual
notion for graphs

It turns out that it is natural to consider the planarity problem for 3-connected
graphs (and also some other graph-theoretical problems and results) from the
point of view of matroid theory [17, 18, 19]. We introduce the concept of a
vertex in a matroid. This concept is helpful not only in that it facilitates un-
derstanding and obtaining simple proofs of certain classical results but also in
that it reveals new knowledge about 3-connected graphs. Thus, consideration
of a vertex in the matroid which is dual to the ccle matroid of a graph leads
to the very natural and very useful concept of a non-separating circuit of a graph.

Given a connected matroid M a cocircuit C* of M is called a vertex or a
non-separating cocircuit of M if M \ C* is also a connected matroid. Let A"* (M)
denote the list of non-separating cocircuits of M.

By matroid duality, we have a notion of a covertex. Given a connected matroid
M a circuit C of M is called a covertex or a non-separating circuit of M if M/C
is also a connected matroid. Let Af(M) denote the list of non-separating circuits
of M.

(Compare: A point x of a convex set S is an extreme point of S if S \ x is
also a convex set ).

A graph is cyclically connected if the circuit matroid of the graph is connected,
i.e. if any two edges belong to a common circuit. It is easy to see that a graph G
with at least two edges is cyclically connected if and only if the graph obtained
from G by deleting all isolated vertices is 2-connected.

Now we have the notions of a non-separating cocircuit and a non-separating
circuit of a the cycle matroid of a graph. Given a cyclically connected graph G
a cocircuit (i.e. a minimal edge cut) C* of G is called a matroid vertex or a
non-separating cocircuit of G if G \ C* is also a cyclically connected graph. Let
V* (G) denote the list of non-separating cocircuits of G.

Given a cyclically connected graph G a circuit (more exactly the edge set of
a circuit) C of G is called a covertex or a non-separating circuit of G if G/C
is also a cyclically connected graph. A separating circuit of G is a circuit of G
which is not non-separating. Let Pf(G) denote the list of non-separating circuits
of G.

It is easy to see that

7.1. A non-separating cocircuit of G is a vertex star of G.

For 3-connected graphs the reverse is obviously true.

7.2. If G is 3-connected then the list .If*(G) of non-separating cocircuits of
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G is exactly the list S(G) of vertex stars of G.

A graph G is uniquely defined by its set S(G) of vertex stars, and the set
.Af*(G) of non-separating cocircuits of G is uniquely defined by the list C(G) of
the edge sets of circuits of G. Therefore we proved [17, 18] the following well-
known circuit isomorphism theorem for 3-connected graphs due to Whitney [57]:

7.3. Let G be a 3-connected graph, G' be a graph without isolated vertices.,and
e : E(G) -- E(G)' be a one-to-one mapping of the edge set of G onto the edge
set of G' such that C is a circuit of G if and only if e(C) is a circuit of G'. Then
G and G' are isomorphic and there exists an isomorphism of G onto G' which
induces e.

P. Seymour informed me recently that J. Edmonds told him the same simple
proof of the above theorem in 1976. Some simple proofs of Whitney's circuit
isomorphism theorem for 2-connected graphs can be found in [29, 30, 48].

By using the notions of a non-separating circuit and a non-separating cocircuit
of a graph, it is also very easy to prove [17, 18] the following theorem of Whitney
on unique embedding of 3-connected planar graphs into the sphere.

Indeed let Ge be any embedding of a 3-connected planar graph G into the
sphere. Let G* be the embedded graph geometrically dual to Ge. Then Ge and
G* have dual matroids and so the list A/(G) of non-separating circuits of Ge cor-
responds to the list A(* (G*) of non-separating cocircuits of G*. It is easy to see
that if Ge is 3-connected then G* is also 3-connected, and that any face-circuit
of Ge corresponds to a vertex star of G* and vice versa. By 7.2, the list f* (G*)
of non-separating cocircuits of G* is exactly the list S(G:) of vertex stars of G*-
Therefore we have :

7.4. Let G be 3-connected and let Ge be any embedding of a 3-connected
planar graph G into the sphere. Then the list F(Ge) of circuits-faces of Ge is
exactly the list .AJ(G) of non-separating circuits of Ge.

We say that a planar graph is uniquely embedded in the sphere if every em-
bedding of the graph in the sphere has the same set of circuits-faces. From 7.4
we have the following theorem of Whitney [58]:

7.5. A 3-connected planar graph is uniquely embedded in the sphere.

From 7.4 we also have the following theorem of W.T. Tutte [50]:

7.6. Every edge of a 3-connected planar graph belongs to exactly two non-
separating circuits.
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By Menger's theorem, for every edge e = (x, y) of a 3-connected graph G
there exist two paths xR'y and xS'y in G \ e having exactly two vertices x and
y in common, or, equivalently, there exist two circuits R = R' U e and S = S U e
of G containing only {e, x, y} in common. A circuit C of G is an (R, e)-circuit
if R n C = {e, x, y}; and so S is an (R, e)-circuit of G. Obviously for any (R, e)-
circuit C of G there exists a block B e(C) of GIR containing (R U C)/R. Let
be (C) denote the number of edges of the block Be(C) of G/IR. We say that an
(R, e)-circuit Q is extremal if be (Q) > b' (C) for any (R, e)-circuit C of G. It is
not difficult to prove [17, 19] that

7.7. An extremal (R, e)-circuit of a 3-connected graph G is a non-separating
circuit of G (distinct from R).

Let Q be an extremal (R, e)-circuit of G. Obviously R is a (Q, e)-circuit of G.
Therefore by the same reason as above there exists an extremal (Q, e)-circuit,
say P, of G. By 7.7, P is a non-separating circuit of G distinct from Q.

Therefore we have another proof of the following theorem due to Tutte [50):

7.8. Let G be a 3-connected graph and let e = (x,y) bean edge of G. Then
(a) e = (x, y) I elongs to at least two non-separating circuits,

moreover
(b) there exist two non-separating circuits P and Q of G such that P n Q

{x,e,y}.

Theorem 7.8(a) is a particular case of 8.2 below.
The above idea to consider a circuit which is extremal in a sense can be usEd

to find some special subgraphs in a graph (see, for example, 8.7-8.9 and 12.4
below).

Note that from 7.2 we have the obvious "dual" result:

7.8*. Every edge of a 3-connected graph belongs to exactly two non-separating
cocircuits.

Now we can formulate a graph planarity criterion in terms of non-separating
circuits:

7.9. Let G be a 3-connected graph. The following two conditions are equiva-
lent:

(a) G is a planar graph, and
(b) every edge of G belongs to exactly two non-separating circuits.

In [17, 19] a simple proof of this graph planarity criterion is given which
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does not use any known planarity criteria. As was noticed in [17] the planarity
criterion 7.9 can also be obtained easily from 7.6 and 8.6 below due to W.T.
Tutte [50] and MacLane's planarity criterion 3.3 [36].

Direct proofs are also given [17] that (b) is equivalent to the conditions (c)
and (d) below:

(c) G does not contain a subdivision of K 5 or K 3.3, (see 3.1), and
(d) G has a combinatorial dual graph G* (see 3.2).

Thus other proofs of Kuratowski's planarity criterion and Whitney's planarity
criterion were found which are based on the criterion 7.9.

7.10. Here is a simple proof [17] of Whitney's planarity criterion for 3-
connected graphs [561 (actually a proof of (b) #ý (d)) based on 7.9.

If G is planar then it has a geometrically dual graph G', and obviously G
and G' are combinatorial dual graphs. Let us prove that if G is 3-connected,
and there exists a graph G* which is combinatorial dual to G then G is planar.
Obviously the list KV(G) of non-separating circuits of G corresponds to the list
Afi*(G*) of non-separating cocircuits of G*. By 7.1, a non-separating cocircuit
of G* is a vertex star of G*. Therefore each edge of G belongs to at most
two non-separating circuits. By 7.8, each edge of G belongs to at least two
non-separating circuits. Therefore each edge of G belongs to exactly two non-
separating circuits. By 7.9, G is planar. Thus we proved Whitney's planarity
criterion 3.2 for 3-connected graphs.

A direct proof of (b) =*. (c) is outlined in 8.8, 8.10, and 8.11 below. Three

non-separating circuits with a common edge in a 3-connected graph G can be
used to find a subdivision of K5 or K3,3 in G [171 which gives a direct proof
(c) =: (b).

The above idea to concider circuits having some extremal properties was also
used to find some results for matroids. Let P and Q are distinct circuits of a
matroid M. We say that Q does not separate P , writing QnsP, if there exists a
component of M/Q containing P \ Q. Let us denote this component by Bp(Q).
Put Cp(M) = {C E C(M): CnsP, C $ P}. For Q, R E Cp(M) we write Q >-P R
if Bp(Q) n R = 0. This relation has the following property [17].

7.11. Let P E C(M), and let Q, R,S E Cp(M). If Q >-P R and R >-P S,
then Q >-" S (i.e. the relation >-P is transitive).

Therefore we can introduce the concept of the -,P-equivalence relation and
the concept of a >-P-minimal equivalence class of circuits in Cp(M). By using
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these concepts we proved in 1978 the following generalization of theorem 7.8 for
matroids.

7.12. Every element of a 3-connected binary matroid with at least 4 elements
belongs to at least two non-separating circuits.

Uniform matroids show that the above statement is not true for an arbitrary
matroid. This theorem is a particular case of 8.2m below.

Proposition 7.8* can be reformulated as follows: If a 3-connected matroid M
is a circuit matroid of a graph, then every element of M belongs to exactly two
non-separating cocircuits of M. We proved that for binary matroids the reverse
is also true.

7.13. A 3-connected binary matroid M is a circuit matroid of a graph if and
only if every element of M belongs to exactly two non-separating cocircuits of M.

The scheme of the proof of 7.13. is similar to that of for 7.8 [17, 191.
Recently W.H. Cunningham drew my attention on the paper [5] due to R.E.

Bixby and W.H. Cunningham where theorems 7.12. and 7.13. were proved
in another way (by using some concepts and results due to W.T. Tutte [51,
52]). They also investigated for a binary matroid M the properties of so-called
avoidance graph of components of M\C where C is a circuit of M. By using these
results they gave a recursive procedure for testing a matroid for 3-connectivity.

8. More about non-separating circuits in a graph

Here are some other results on non-separating circuits of a graph found in
[17, 18].

For k > 3, a subdivision of the k-bond (i.e. the graph with two vertices and k
parallel edges) is called a k-necklace; it has exactly two vertices of degree k > 3
which are c-,lled•o -, -,c &ices of the k-n, dlcc. %ind k threads connecting
the essential vertices. A subgraph N of G is a proper k-necklace of G if each
thread of N is also a thread of G.

8.1. Let G be a 2-connected graph distinct from a circuit and a k-necklace,
k > 3. Then

(a) if G has no proper 3-necklaces then G has at least two non-separating
circuits whose intersection is either empty or a path,

(b) if G has no non-separating circuits then it has at least two proper 3-
necklaces with distinct pairs of essential vertices,
and consequently,

(c) if G has exactly one proper 3-necklace then it has at least one non-
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separating circuit,

(d) if G has exactly one non-separating circuit then it has at least one proper

3-necklace.

It is easy to see that these results are sharp. The proof (8.7 and 8.8 in [171) of

the above theorem provides polynomial algorithms for solving the correspond-
ing problems. The corresponding dual (in the matroid sense) theorem is also

given (8.8* in [17]). The analogous result was also proved for connected binary
matroids. Theorem 8.1(b) was proved in another way in [45].

Since any forest with at least one edge has at least two vertices of degree 1,

we have from 7.2 the following obvious fact:

8.2*. Let G be 3-connected. If A C E(G) includes no circuit, then there exist
two non-separating cocircuits of G each of which has exactly one common edge

with A. Morenver if IA! > 2 then there exist two non-separating cocircuits P and
Q of G and two edges p and q in A such that An P =p and An Q = q.

It turns out that the "dual result" is also true, namely [17]:

8.2. Let G be 3-connected. If A C E(G) includes no cocircuit (i.e. G\A

is connected), then there exist two non-separating circuits of G each of which
has exactly one common edge with A. Moreover if JAI _> 2 then there exist two

non-separating circuits P and Q of G and two distinct edges p and q in A such

that AfDP=p andAfAQ = q.

Note that 7.8(a) is i particular case of the above theorem.

The result analogous to 8.2* and 8.2 is not true for an arbitrary matroid but

is true for a binary matroid:

8.2m. Let M be a binary 3-connected matroid with at least 4 elements. If
A is an independent set of M, then there exist two non-separating cocircuits of

G each of which has exactly one common element with A. Moreover if JAI > 2
then there exist two non-separating cocircuits P and Q of M and two distinct

elements p and q in A such that A n P = p and A n Q = q.

Note that 7.12 is a particular case of the above theorem.

It is easy to see that in a 2-connected graph whose edges are colored in two
colors (so that no color class is empty) there exist at least two two-colored vertex

stars. Therefore we have from 7.2 the following simple fact:

8.3*. In a 3-connected graph with two-colored edges there exist at least two
two-colored non-separating cocircuit.
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It turns out that again the "dual result" is also true, namely [171:

8.3. In a 3-connected graph with two-colored edges there exist at least two
two-colored non-separating circuits.

Again the result analogous to 8.3* and 8.3 is not true for an arbitrary matroid
but is true for a 3-connected binary matroid with at least 4 elements.

P. Seymour noted that 8.3 can be obtained from 8.2 and 8.3* as follows.
Let G be a 3-connected graph with two-colored edges. By 8.3*, there exists a
two-colored non-separating cocircuit C* of G. Let A be the edges of C* in color
one. Let A be the edges of C* in color one. Since A is a proper subset of the
cocircuit C*, it includes no cocircuit of G. By 8.2, there are two non-separating
circuits, say C, and C2 , each with exactly one edge in A. Since jCj fn C* $ 1,
we have C. rl C* \ A # 0, and so the non-separating circuits C, and C2 are
two-colored.

Non-separating circuits can be used to characterize subdivisions of 3-connected
graphs. Two edges a and b of G are said to be .K-equivalent if there exists a se-
quence a = eoClejC2...ek- I Ckek = b such that e0 , ... , ek are edges and C 1, ...Ck
are non-separating circuits of G and ej,ej+j E Cj+ji = 0, 1,..., k- 1. One can
prove [171:

8.4. Let G be a graph distinct from a circuit and from a 3-necklace. Then C
is a subdivision of a 3-connected graph if and only if every two edges of C are
N-equivalent.

The result analogous to 8.4 also holds for binary matroids.
Whitney's circuit isomorphism theorem 7.3 can be strengthened by replacing

in the theorem the set of all circuits by the set of non-separating circuits of a
3-connected graph, namely [17, 183:

8.5. Let G be a 3-connected graph, G' be a graph without isolated vertices,
and e : E(G) -- E(G') be a one-to-one mapping such that C is a non-separating
circuit of G if and only if e(C) is a non-separating circuit of G'. Then G and
G' are isomorphic and there exists an isomorphism of G onto G' which induces e.

An outline of some results on refinements, strengthenings, and generalizations
of Whitney's circuit isomorphism theorem can be found in [25, 291.

Theorem 8.5. can be generalized to binary matroids:

8.5m. Let M be a 3-connected binary matroid, M' be a binary matroid, and
e : E(M) ---+ E(M') be a one-to-one mapping such that C is a non-separating
circuit of M if and only if e(C) is a non-separating circuit of M'. Then e is an
isomorphism of M onto M' (and so C is a circuit of M if and only if e(C) is a
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circuit of M').

From 8.5 we have the following theorem due to W.T. Tutte [50]:

8.6. A 3-connected graph G has an independent set of IE(G)t - JV(G)I + 1 of
non-separating circuits (which is a cycle basis of G).

In 1980 a referee drew my attention to a remarkable paper [50] W.T. Tutte
published many years before. In this paper a concept of a non-separating circuit
of a graph (a so-called peripheral circuit) was introduced for another reason and
theorems 7.6, 7.8, and 8.6 were proved in another way (see (2.3), (2.5), (3.1)
and (3.2) in [50]). Different results on non-separating circuits of a graph can
also be found, for example, in [32, 45, 47]. Recently C. Thomassen obtained
interesting results [47] showing that non-separating circuits of a graph play an
essential role in embeddings of a graph not only into the sphere but also into
orientable 2-dimensional surfaces.

Consider a pair (F, D) where F is a graph and D is a circuit of F. We
say that (H, C) is a subdivision of (F, D), (H, C) = Top(F, D), if H is a sub-
division of F and C is a circuit of H which is the corresponding subdivision
of D in F. Let Y(G) denote the set of pairs (H, C) such that H is a sub-
graph of G, and (H, C) = Top(F, D). Suppose that F is a 2-connected graph
and D is a non-separating circuit of F. Then there exists a block B(H, C) of
GIC containing H/C. Let b(F, C) denote the number of edges of the block
B(F, C). A pair (R, Q) from .F(G) is called extremal if b(R, Q) >_ b(H, C) for ev-
ery (H, C) E F(G). Givepui (H, C) E ýF(G), let A(H, C) denote the set of vertices
in C which are of degree at least 3 in H. If all vertices of D are of degree at least
3 in F then [V(D)I = IA(H,C)I for every (H,C) E F(G). Given a circuit T in
G and 4-vertex subset X = {x1,x 2 ,x 3 ,x 4 } of T ( the vertices in X are listed

along the circuit), we say that T is an almost non-separating circuit of G with
respect to X if G \ V(T) is connected, T has at most two chord-edges with both

end-vertices in X, and any such edge-chord is either (xI, x 3 ) or (x2, x 4 ). We can
prove:

8.7. Suppose that G is a 3-connected graph, F is a 2-connected graph, G has
a subgraph TopF, and D is a non-separating circuit of F which has three or four
vertices and each of these vertices is of degree 3 in F. Let (R, Q) be an extremal
pair from .F(G). Then

(a) if D has three vertices then Q is a non-separating circuit of G,
(b) if D has four vertices then Q is an almost non-separating circuit of G

with respect to A(R, Q).

New from 5.1 and 8.7 we have the following refinement of Kuratowski's pla-
narity criterion 3.1 [171:



652 A. K. KELMANS

8.8. A 3-connected graph G distinct from K5 is non-planar if and only if it
contains a subgraph R = TopK3,3 such that one of its circuits Q of top length 4
is an almost non-separating circuit of G with respect to A(R, Q).

From 5.5 and 8.7 we have:

8.9. Let G be a 3-connected graph with at least 6 vertices distinct from a wheel
and from K3,n, i E {0, 1, 2,3} andn > 3. Then G contains a subgraph R = TopL
such that one of its circuits with top length three is a non-separating circuit of G.

We can also prove the following [17]:

8.10. Let G be a 3-connected graph, let R = TopK 3,3 be a subgraph of G, and
let Q be a circuit of R such that it is of top length 4 in R and it is an almost
non-separating circuit of G with respect to A(R, Q). Then each edge of C belongs
to at least three non-separating circuits of G.

From 8.8 and 8.10 we have [17]:

8.11. Let G be a 3-connected graph. If G contains a subdivision of Ks5 or K3.3
then G has at least four edges belonging to at least three non-separating circuits
of G.

9. Triangle and 3-cut reductions of the graph planarity problem

In 4.1, 4.2, and 4.3 three simple reductions for the graph planarity problem
are described. Reductions 4.2 and 4.3 use vertex 1 and 2-cuts of the graph,
respectively. The natural question arises [24, 261 whether it is possible to do
some more steps in this direction, namely to use vertex 3-cuts, 4-cuts and so on
for deeper reductions of the problem.

A vertex 3-cut X of G is called non-essential if G \ X consists of exactly
two components one of which is an isolated vertex, and essential otherwise. For
example, each vertex 3-cut of K3,3 is essential. A 3-connected graph is called
inner 4-connected if it has no essential 3-cut.

Consider a 3-connected graph G which has a vertex 3-cut X = {X 1 , x2 , x 3 } so
that G = F, U F2 and F1 n F2 = X. Let Gi, i = 1, 2, be obtained from F, by
adding a new vertex vi and three new edges (vi, x3 ), j = 1, 2, 3 (see Fig. 4).

Note that this splitting operation can be used to obtain a decomposition of
3-connected graphs similar to that we have for 2-connected graphs.

9.1. A 3-connected graph G is planar if and only if G, and G2 are planar.
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G G1 G2

FIGURE 4.

The proof is easy [26] as follows. Since G is 3-connected, for any vertex y of
F1 \ X there are three disjoint paths PI, P2, and P3 from y to X in G (%rtually
in F1 ). Then the subgraph F2 U P1 U P2 U P3 of G is a subdivision of G2. By
the same reason G has a subgraph which is a subdivision of G1. Therefore if G
is planar then both G, and G2 are planar. Conversely if G1 and G2 are planar
then G is also planar because two equal triangles T and T' in the plane with the
vertex sets {xI, x2 ,x 3} and Ix', 4 x'}, respectively, can be identified by the
operations of moving and reflecting the plane such that the vertices xi and x'

coincide, i = 1, 2,3.
Note that two equal squares S and S' in the plane with the vertices labeled

along the boundaries {X1 , x2 , x 3 , X4} and {x', x', x', x'}, respectively, cannot be
identified by the operations of moving and reflecting the plane such that the
vertices xi and x' coincide, i = 1, 2, 3, 4. Therefore if we replace in the above
proposition "the vertex 3-cut X" by "a vertex 4-cut" then the planarity of G,

and G 2 do not imply the planarity of G. Thus the pkinarity problem for 3-
connected graphs can be reduced to the problem for inner 4-connected graphs.
But a "4-cut" reduction of the problem (if any) seems to be not as natural as

the previous reductions.
Note that some other problems on disjoint paths i.. a graph can 'be reduced to

the problem for inner 4-connected graphs because at most one path from a set
of disjoint paths can go through a vertex 3-cut and come back (see for example
12.4).

Moreover we can get rid of triangles when considering the planarity problem

for inner 4-connected graphs. Suppose that an inner 4-connected graph G con-
tains a triangle T with vertex set {tI, t 2 , t3 }. If G has a cubic vertex v adjacent
to t1 , t 2 , t 3 only then put G' = G \ E(T). If G has no such cubic vertex then let

G' be obtained from G by replacing the triangle T by a star, namely by delet-
ing the edges of T and by adding a new vertex v and three new edges (v, tj),

j = 1,2,3. Clearly the planarity of G' implies the planarity of G. Suppose that

G is inner 4-connected and planar. Then if T is a face of G then G' is also
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planar. Otherwise since G is 3-connected, by 7.8, T is a separating ci:cuit of
G. Since G has no parallel edges, V(T) is a vertex 3-cut of G. Since C is inner
4-connected, it has no essential 3-cut. Therefore I V(T) is not an essential 3-cut o"
G and so there exists a cubic vertex v of G adjacent to t1 , t 2 , t 3 Then obviously
G' is planar. Thus we proved that [261:

9.2. An inner 4-connected graph G is planar if and only if C' z• planar.

A graphs G is called quasi 4-connected if G iN 3-connected and has no essential
3-cut or triangle. Let Q denote the class of quasi 4-connected graphs. Note that
the class of cubic quasi 4-connected graphs is exactly the class of so called cubic
cyclically 4-connected -rfphs. The class Q of quasi 4-connected graphs turns out
to be a very natural class of graphs and some results about this class may be
interesting in their own right.

By 9.1 and 9.2, a planarity problem for an arbitrary graph can be easily re-
duced to the same problem for quasi 4-connected graphs. Thus quasi 4-connected
graphs are, even more than 3-connected graphs the essential bricks for the pla-
narity problem.

10. Subdivisions of K, M, and N in quasi 4-connected graphs

Let K be the skeleto,. of the 3-dimc-isional cube, N be obtained from K
by adding a main diagonal of the 3-dimensional cube, and Mk denotes the so
called Mjbius k-ladder or Wagner's qraph, i.e. Mk is the 2k-circuit with k main
diagonals, k > 4. Thus M 4 = M ij a a twisted cube (see Fig. 5). Obviously:

K M N

FIGURE 5.

10.1. K and M are qua.si 4-connected graphs.

By 5.4, any quasi 4-connecte6 graph contains two disjoint ,'ircuits of length
at least 4. Thus by using Menger's theorem, we have [24, 261:

10.2. Any quasi 4-connected graph contains a subdivision of K or M (so that
K and M are minimal quas -connected graphs).
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"Almost all" quasi 4-connected graphs turn out to contain a subdivision of

K. More precisely [24, 26]:

10.3. A quasi 4-connected graph G does not contain a TopK (and conse-

quently contains a Tapl ) if and only if G is either a M6bius k ladder, k > 4.

or the Petersen graph, or is obtained from the Petersen graph by contracting an

edge.

It turns out that a number of results described above can be refined for quasi

4-connected graphs. For instance, the following refinement of Kuratowski's pla-

narity criterion for quasi 4-connected graphs can be proved [24, 26].

10.4. A quasi 4-connected graph G is planar if and only if it does not contain

a subdivision of Al or N.

As we mentioned before K 5 and K 3 .3 play different roles in Kuratowski's the-

orem (see 5.1 and 5.2). It turns out that the graphs Ml and N also play different

roles in the above theorem, i.e. "almost all" non-planar quasi 4-connected graphs

contain a subdivision of Al, namely [24, 26]:

10.5. A non-planar quasi 4-connected graph G does not contain a TopAf (and

consequently contains a TopN) if and only if G is a bipartite graph and one of

its parts consists of four vertices.

From 10.3 and 10.5 we have:

10.6. A quasi 4-connected graph G does not contain a TopAl (and so it con-

tains a TopK) if and only if G is either planar or a bipartite graph such that
one of its parts consists of four vertices.

Note that the statements 10.2, 10.3, and 10.5 on quasi 4-connected graphs

are similar, rcspectively, to the statements 5.6, 5.5, and 5.1 on 3-connected

graphs.

11. An ear-like decomposition for quasi 4-connected graphs

The class Q of quasi 4-connected graphs admits a good constructive descrip-

tion, namely, there exists an ear-like decomposition of quasi 4-connected graphs

[24, 261. In order to describe this decomposition we need some more definitions.

Given a path P in G let as before IG(P) denote the number of inner vertices of

P which are of degree at least 3 in G. We define IG(X, y) = min{lG(XPy) : xPy

is a path of G }. Thus IG(x, y) can be treated as the topological distance between
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the vertices x and y in G. Two distinct vertices are top adjacent if they are on
topological distance 0.

Let T denote the set of pairs (G, F) of graphs such that F is a path with the
end-vertices x and y, G n F = {x, y} and lG(x, y) > 2; we say that G' C G F is
obtained from G by operation T (see Fig. 6). If in addition x and y are vertices
of degree 2 in G then the set of such pairs (G, F) in T is denoted by %"; we say
that G' = G U F is obi Lined from G operation H.

Let X denote the s(t of pairs (G, F) of graphs such that F consists of two
disjoint paths xlP l y, and x 2 P2y 2 , G n F = {xlyl,x2,yY} and G has a 3-

necklace with three inner disjoint paths a with x= xi, i 1,2,
and Y = aY2Y2YlYlYob, where Y and XV are threads of G for i = 1,2 and
j = 0, 1, 2; we say that G' = G U F is obtained from G by operation X (see Fig.
6).

Let y denote the set of pairs (G, F) of graphs such that F consists of three
inner disjoint paths xPlyl, xP 2 Y2 and XP 3y 3 with a single common vertex X (and

so F = TopK1 ,3 ), GnF = {Y1,Y2,Y3}, IG(Y,,Yj) = 1 for any yi - yj, G has

no vertex top adjacent to each yi, and at least one of the vertices yl, Y2, Y3 is of

degree 2 and at least one of them is of degree at least 3 in G (and so there exists

a circuit in G of top length 4 or 5 containing al] yi's); we say that G' = G U F

is obtained from G by operation Y (see Fig. 6).

64WY

T X Y

FIGURE 6. Operations T, X, and Y.

In Fig. 6 the degree of every "white" vertex in G is at least the degree in the

figure, every "solid" edge in the figure is a thread or a subthread in G, and the

"dashed" lines are the threads of F.

Let C = T U X U Y. A sequence D = (Go;T l,...,TTk) of subgraphs of G is

called a F- sequence of G if for all i C {0_., k - 1} we have (Gi, Ti+ ) E £ where

G, = Gi 1 U T, . If in addition Gk = G then D is called an £-decomposition of

the graph G.
We proved the following decomposition theorem for quasi 4-connected graphs

(presented at the Tbilisi Workshop on Discrete Mathematics in 1977) [24, 261:
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11.1. Let G be a subdivision of a quasi 4-connected graph, and let F be
a graph without parallel edges or triangles and with every vertex of degree at
least 3. Suppose that G contains a subgraph TopF. Then there exists an C-
decomposition D = (Go;T ... , Tk) of G such that, setting Gj = Go UT 1 u .. .u T,
fori = 1,... ,Ik:

(a) Go/E = TopF for some circuit free edge subset E of E(Go) (in partic-
ular if F is cubic then Go = TopF), and

(b) if Gi is a subdivision of a quasi 4-connected graph, then so are all
Gj+ ,... Gk.

Our proof of this theorem provides a polynomial time algorithm for finding
the corresponding 8-decomposition of a graph or revealing that the graph has
no such decomposition (and therefore is not a subdivision of a quasi 4-connected
graph). The algorithm is recursive. The C-decomposition of the current subgraph
have to be rebuilded sometimes to make it possible to enlarge the subgraph.

P. Seymour informed me recently that N. Robertson presented a version of
the above theorem at the Rome conference in 1972, but did not publish it yet.

The decomposition theorem 11.1 is a very useful tool for investigating the
class of quasi 4-connected graphs. We found different strengthenings of this the-
orem which guarantee the existence of an C-decomposition with some special
properties. A strengthened version of theorem 11.1 was used to find some re-
sults analogous to the circuit isomorphism theorem due to H. Whitney [26, 29].
One of these strengthenings shows that we can get reed of operation Y, but
the algorithm of finding such C-decomposition becomes more complicated (more
complicated rebuildings of the current C-sequence are required), and in this case
we cannot guarantee some useful properties of an C-decomposition.

Let C' = T U X. A sequence D = (Go; TI, ..., 7T) of subgraphs of G is called
a C'- sequence of G if for all i E {O,...,k - 1} we have (G,,Ti+±) E C' where
Gi = GiU- I Ti. If in addition Gk = G then D is called an C'-decomposition of
the graph G.

11.1' Let G be a subdivision of a quasi 4-connected graph, and let F be a
graph without parallel edges or triangles and with every vertex of degree at least 3.
Suppose that G contains a subgraph TopF. Then there exists an C'-decomposition
D = (Go; T1, ..., Tk) of G such that, setting Gi = GoUTltU.... UT, fori= 1,... , k:

(a) Go/E = TopF for some circuit free edge subset E of E(Go) (in partic-
ular if F is cubic then Go = TopF), and

(b) if Gi is a subdivision of a quasi 4-connected graph, then so are all
Gi+,, .... Gk.

From 10.1, 10.2, and 11.1' we have [24, 26]:

11.2 Let G be a subdivision of a quasi 4-connected graph, and let K be the
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skeleton-graph of the 3-dimensional cube and M be the Mdbius 4-ladder (see Fig
5). Then G can be obtained from K or Al by a sequence of operations T or X
so that any intermediate graph is also quasi 4-connected. Moreover G can be
obtained by these operations r-om any cubic graph F without parallel edges or
triangles if G contains a subdivision of F.

As we have already mentioned the class of cubic quasi 4-connected graphs is
exactly the class of cubic cyclically 4-connected graphs. Therefore we have, in
particular[24, 26]:

11.3. Let G be a subdivision of a cubic cyclically 4-connected graph, and let
F be a simple cubic graph without triangles. Suppose that G contains a subgraph
TopF. Then there exists an &-decomposition D = (GO;Ti, ...,Tk) of G such that,
setting Gi = Go U Ti U ... U T for i = 1 ... , k:

(a) Go = TopF,
(b) (Gi, Tj+1) E Ti, and
(c) if Gi is a subdivision of a cubic cyclically 4-connected graph, then so are

all Gi+ .... , Gk.

From 10.1, 10.2, and 11.1 (or 11.1') we have:

11.4. Let G be a subdivision of a cubic cyclically 4-connected graph. Then
G can be obtained from K or M by a sequence of operations H, so that any
intermediate graph is also cubic cyclically 4-connected. Moreover G can be ob-
tained by these operations from any simple cubic graph F without triangles if G
contains a subdivision of F.

This theorem was proved before in [16].
The decomposition theorem 11.1' enables us to give the following simple

proof of the above refinement 10.4 of Kuratowski's planarity criterion for quasi
4-connected graphs. Let us consider the class C of non-planar quasi 4-connected
graphs, and let G E £. Then by 5.1, G contains a subdivision of K3,3. By
11.1', G can be obtained from K 3,3 by operations T or X. Let us apply each
of these t,,,o operations to K3,3 . The ope:ation T gives the graph M, and the
operation X gives the graph N (see Fig. 7). (As to operation Y when applied to
K3,3 it gives the graph S (see Fig. 7) which can also be obtained from K3,3 by
two operations T.) Therefore any non-planar quasi 4-connected graph contains
a subdivision of M or N. Thus we proved 10.4. Moreover we proved that

11.5. Any non-planar quasi 4-connected graph can be obtained from M or N
by a sequence of operations T or X.
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M N S

FIGURE 7. Applying operations T, X, and Y to K 3 ,3 .

12. Non-separating circuits in quasi 4-connected graphs

The planarity criterion 7.13 can also be refined for quasi 4-connected graphs.
Let us rewrite 7.13 as follows:

12.0. Suppose that G is 3-connected. Then
(a) if G is planar then EACH edge of G belongs to exactly two non-separating

circuits, and
(b) if G is non-planar then there EXISTS an edge of G belonging to at least

three non-separating circuits.

Now we have for quasi 4-connected graphs [28]:

12.1. Let G be a quasi 4-connected graph or a 4-connected graph. If G is non-
planar then EACH edge of G belongs to at least three non-separating circuits.

To illustrate this result let us consider a 4-connected triangulation T of fhe
plane. Then by 12.0 (a), EACH edge of T belongs to exactly two non-separating
circuits which are triangles. Now let us add one more edge between non-adjacent
vertices of G. Then the resulting graph G' is non-planar and 4-connected. By
12.1, EACH edge of G belongs to at least three non-separating circuits. There-
fore the local action (adding to G only one edge) results in a global effect.

Theorem 12.1 follows easily from the following stronger result [28]. Con-
sider a 3-connected graph G which has a vertex 3-cut X = {xi, x 2 , X3} so that
G :/F 1 U F2 and F1 n F2 = X (see Fig. 4). Given an edge subset A of F1, we
say that A is cut off by a vertex 3-cut X in G.

12.2. Let G be a 3-connected non-planar graph, and let e = (x, y) be an edge
of G. Suppose that G has no essential 3-cut which cut e off. Then e belongs to
exactly two non-separating circuits if and only if e belongs to exactly two trian-
gles and one of the end-vertices of e is of degree 3 in G.
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The planarity criterion 8.8 (which is a refinement of Kuratowski's planarity
criterion) can also be refined for quasi 4-connected graphs [26, 28]:

12.3. Let G be a non-planar quasi 4-connected graph. Then for any non-
separating circuit C of G there exists H = TopK 3,3 in G such that C is a circuit
of H with top length 4 in H.

Note that 12.1 for quasi 4-connected graph also follows immediately from
7.12, 8.10, and 12.3.

Theorem 8.7 can be used to obtain different results on some special subgraphs
with non-separating circuits of a quasi 4-connected graph similar to 8.8 and 8.9
for 3-connected graphs. Here is an example of these results.

12.4. Any quasi 4-connected graph G contains a subgraph H such that H is
either TopK or TopM and some top length 4 circuit of H is a non-separating
circuit of G.

Theorem 12.3 follows easily from the following criterion of existence of two
disjoint -nd crossing path-chords of a circuit in a 3-connected graph (found in
1979 and published in [20]). Consider a 3-connected graph G which has a vertex
3-cut X = {x1 , X2, X3} so that G = F1 UF 2 and F1 nF 2 = X. Let G1 be obtained
from F, by adding a new vertex v, and three new edges (vi, xj), j = 1, 2,3 (see
Fig. 4). Let C be a circuit of length at least 4 in the subgraph F1 of G, so that
C is also a circuit of G, and C is cut of by X in G. It is clear that C has two dis-
joint and crossing path-chords in G if and only if C has two disjoint and crossing
path-chords in G1. Therefore we can consider the corresponding refined problem.

12.5. Let G be a 3-connected graph and C be a circuit of G of at least four
vertices. Suppose that G has no essential vertex 3-cut which cut C off. Then
C does not have two disjoint and crossing path-chords in G if and only if G is
planar and C is a face-circuit of G.

In [39, 41, 42, 44] a criterion was given for the existence of two disjoint paths
in a graph G between two pairs of vertices , say, xi, Yi and x2 , y2. This result
follows easily from 12.4 if we add to G four artificial edges (xI,x 2 ), (x2, y),

(Y1, Y2), (y2, xi) and apply criterion 12.4 to the resulting graph G' with the ar-
tificial 4-circuit C = (X 1 , X2, Y1 , Y2 , x1 ). By means of 12.5 it is easy to prove the

following [20]:

12.6. Let G be an inner 4-connected graph. Then the following conditions
are equivalent:



GRAPH PLANARITY AND RELATED TOPICS 661

(a) G is a maximal planar graph (i.e. a triangulation of the sphere) or a
non-planar graph,

(b) any circuit C of G with at least four vertices has two crossing chords-
paths in G,

(c) any non-separating circuit of G of at least 4 edges is a circuit of top
length 4 in a subgraph H = TopK3,3 of G,

(d) for any two disjoint edges el and e2 of G there exists a subgraph H =
TopK4 in G and two disjoint threads T1 and T2 of H such that el E T,
and e2 e T2,

(e) for any two disjoint edges el and e2 of G there exists a subgraph H =

TopK 4 in G and two disjoint threads T, and T2 of H such that el = T,

and e2 E T2 ,
(f) for any two distinct pairs {x 1 ,yl} and {x2,Y2} of vertices of G there

exist two disjoint paths xiPlyl and x 2 P2y 2 in G.

The equivalence (a) #: (f) above is a strengthening of Jung's theorem on
4-connected graphs [15] (a simpler proof of Jung's theorem was given by C.
Thomassen [44]). I have been recently informed that some of the results on
inner 4-connected graphs described here have been found independently by N.

Robertson [37].

13. Some refinements of Whitney's planarity criterion

Now the question arises whether it is possible to find some natural refine-
ments, strengthenings or generalizations of Whitney's planarity criterion [56]
(see 3.2) and related results. Whitney's criterion is based on the concept of a

combinatorial or matroid duality of graphs.
We recall that two graphs G and G* are called combinatorial dual or matroid

dual if there exists a one-to-one mapping e : E(G) ---* E(G*) of the edge set of
G onto the edge set of G* such that C is a circuit of G if and only if e(C) is a
cocircuit of G*. The correspondence e : E(G) -+ E(G*) will be called a circuit
duality of G onto G*.

The concept of circuit duality can be generalized in different directions [30,
31]. Let A be an algorithm which for any finite set E of elements and for any
set C C 2 E of subsets of E gives a set of subsets of E: A(E,C) C 2E. Given a
graph G, put A(G) = A(E(G),C(G)) and A*(G) = A(E(G),C*(G)).

We say that G is A-dual (A-semi-dual) to G* if there exists a one-to-one map-
ping e : E(G) -- E(G*) of the edge set of G onto the edge set of G* such that
A E A(G) <-* e(A) c A*(G*) (respectively, A E A(G) => e(A) G A*(G*)).

A circuit of G without edge-chords is called a hole of G. In other words a
circuit A of G is a hole of G if either A is a loop or G/A has the same set of
loops as G. Now the notion of a cohole (which is matroid dual to a hole) can be
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defined. A cocircuit A of G is a cohole of G if either A is a coloop (an isthmus)
or G \ A has the same set of coloops as G. If A(G) is the set of holes of G, then
A*(G) is the set of coholes of G. Thus we get the concepts of hole duality and
hole semi-duality of graphs. We can prove [30]:

13.1. Let G be a graph without parallel edges. Then G is hole dual to G* if
and cnly if G is circuit dual to G*.

Therefore we have the following refinement of Whitney's planarity criterion.

13.1'. A graph G without parallel edges is planar if and only if there exists a
graph G* which is hole Lal to G.

If A(G) = JV(G) (the list of -on-separating circuits of G) then we have the
concepts of K-duality and .K-stnz -fuality of graphs. One can prove [31]:

13.2. Let G be a 3-connected graph. Then G is K-semi-dual to G* if and
only if G is circuit dual to G*.

Therefore we have the following refinement of Whitney's planarity criterion
for 3-connected graphs.

13.2'. A 3-connected graph G is planar if and only if there exists a graph G*
which is K-semi-dual to G.

If A(G) = C(G) (the list of the edge sets of circuits of G) then we have the
original concept of circuit duality and also the concept of circuit semi-duality of
graphs. The following is true [31]:

13.3. Let G be a 3-connected graph. Then G is circuit semi-dual to G* if and
only if G is circuit dual to G*.

It is not difficult to prove the following statement for matroids. We say
that M is semi-isomorphic to M' if there exists a one-to-one correspondence
e : E(M) - E(M') of the ground set of a matroid M the ground set of a ma-
troid M' such that A E C(M) =* e(A) C C(M') where C(M) is the set of circuits
of M. A circuit of a matroid M is Hamiltonian if it contains a base of M.

13.4. Let M be a matroid. There exists a matroid semi-isomorphic but not
isomorphic to M if and only if M has no Hamiltonian circuit.

From 13.3 and 13.4 we have the following refinement of Whitney's planarity
criterion.
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13.5. Let G be a 3-connected or Hamiltonian graph. Then G is planar if and
only if there exists a graph G* which is circuit semi-dual to G.

If A(G) = C"(G) (the set of the cocircuits of G) then we have the concept of
cocircuit duality (which is the same as circuit duality), and also the concept of
cocircuit semi-duality of graphs. The following can be proved [31]:

13.6. Let G be a 3-connected graph, and let every non-separating circuit of
G contain a vertex of degree 3 in G. Then G is cocircuit semi-dual to G" if and
only if G is cocircuit dual (or circuit dual) to G*.

From 13.4 and 13.6 we have:

13.7. Let a graph G have at least one of the following properties: (pl) G is a
3-connected graph G and every non-separating circuit of G contoins a vertex of
degree 3, and (p2) G has a Hamiltonian cocircuit. Then G is planar if and only
if it has a cocircuit semi-dual graph.

Note that 13.6. and 13.7. hold in particular for a cubic graph.
It turns out that in general the theorem analogous to 13.3 is not true for

cocircuit semi-duality of graphs. The following theorem can be proved [31].

13.8. Let G be a triangulation of the projective plane and GP be the graph
geometrically dual to G in the projective plane. Let e : E(G) - E(GP) be the
corresponding one-to-one edge mapping. Then G is 3-connected, e is a cocircuit
semi-duality of G onto GP, and e is not a circuit duality of G onto GP.

From 13.4 and 13.8 we have:

13.9. A triangulation of the projective plane has no Hamiltonian cocircuit.

14. On Dirac's conjecture

We know that an n-vertex triangulation T of the plane has exactly 3n - 6
edges. If we add to T a new edge between non-adjacent vertices, then obviously
the resulting graph V has 3n - 5 edges and is non-planar. Therefore by Kura-
towski's theorem T' contains ToppK 5 or TopK 3,3. It is easy to prove that if T'
has no parallel edges then it contains TopK5 . Dirac conjectured [8] that

14.1. For n > 3, any simple undirected graph G with n vertices and at least
3n - 5 edges contains TopK5 .
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C. Thomassen proved [431 that

14.2. For n > 5, any simple undirected graph G with n vertices and at least
4n - 10 edges contains TopK5 .

We investigate properties of a minimum counterexample to the Dirac conjec-
ture (if any). Obviously the conjecture is true when n = 5. Let D be a simple
graph such that

(a) D has exactly 31V(D)I - 5 edges,
(b) D has no TopK5 , and
(c) if F is a proper subgraph of D with at least 31V(F)I - 5 edges, then F

has TopK 5.

We proved that (presented at the Moscow Seminar on Discrete Mathematics
in 1979) [22]:

14.3. Any such graph D has the following properties:

(a) D is 5-connected,
(b) for every vertex x of D the subgraph induced by the set of vertices ad-

jacent to x consists of components which are either isolated vertices or
paths,

(c) D contains no subgraph isomorphic to K 4 , K3,3, L or K' where K' is
obtained from K4 by replacing an edge by a 2-edge path,

(d) D has at least 13 vertices, and
(e) D has at least 10 vertices of degree 5, and if D has exactly 10 vertices

of degree 5 then all the other vertices of D are of degree 6.

Recently A. K6zdy and P. McGuinness rediscovered 14.3.(a) and proved the
following additional property of the graph D by using 5-connectedness of D (an-
nounced at the Seattle Graph Minors conference, July 1991):

14.4. D docs not coatain a subgraph obtained from K4 by deleting an edge.
In other words the neighborhood of every vertex of D consists of components of
at most 2 vertices.

15. On Barnette's conjecture

The well-known conjecture of Barnette claims t2] that

B3 . Any planar, cubic, bipartite, and 3-connected graph is Hamiltonian.

If we replace in Barnette's conjecture 3-connected by cyclically 4-connected
then we obtain a weaker conjecture:
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B 4. Any planar, cubic, bipartite, cyclically 4-connected graph is Hamiltonian.

It turns out that if B 3 or B4 is true, then a much stronger result would be
also true, namely [27]:

15.1. Suppose that B3 or B 4 is true. Let G be a graph which satisfies the
hypotheses of the corresponding true conjecture. Then for any face-circuit C of
G and for any two edges x and y of C there exists a Hamiltonian circuit of G
which contains x and avoids y, and also there exists a Hamiltonian circuit of G
which contains both x and y.

By using the approach developed in [27] we proved that

15.2. The two conjectures B 3 and 134 are equivalent.

Acknowledgment. I am thankful to Paul Seymour for a very careful reading
of the paper and very useful remarks.
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EXCLUDING A GRAPH WITH ONE CROSSING

NEIL ROBERTSON AND PAUL SEYMOUR

ABSTRACT. Let H be a graph with cý,ssing number < 1. We prove that for

some integer 1', every graph with no minor isomorphic to H may be constructed
by 0-, 1-, 2- and 3-sums, starting from planar graphs and graphs of tree-width
< N. We also find the 41 minor-minimal graphs with crossing number > 2.

1. INTRODUCTION

K. Wagner [13] and D. W. Hall [31 proved that a graph has no K 3 ,3 minor if
and only if it can be constructed by 0-, 1- and 2-sums (defined below), starting
from planar graphs and copies of K5. (All graphs in this paper are finit,. H
is a minor of G if H can be obtained from a subgraph of G by contracting
edges.) Wagner [121 also proved that a graph has no K5 minor if and only if it
can be constructed by 0-, 1-, 2- and 3-sums, starting from planar graphs and
copies 4f the four-rung M6bius ladder. It turns out that there is a cause for the
similarity of these two theorems, namAy, that K 5 -id K3, 3 both can be drawn
in tlie plane w:th one crossing. We shall see that the same sort of structure is
pr duced by the exclusion of any graph with crossing number one.

In earlier papers we investigated the structure produced by the exclusion
of a graph with crossing number zero, that is, a planar graph. Let us ....
tree-decomposition of a graph G is a pair (T, (Xt : t E V(T))), where T is a tree
and (Xt : t E V(T)) is a family of subsets of V(T), such that

(i) V(G) = U(Xt : t E V(T)), and for every edge e of G there exists
t E V(i') such that Xt contair.2 both ends of e, and

(ii) if t, t', t" E V(T) and t' lies on the path of T between t and t" then
X, r, Xt,, C_ Xt,.
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We say G has tree-width < N if a tree-decomposition (T, (Xt : t C V(T))) of G
exists such that tXtI < N + 1 for all t E V(T). It was shown in [4] (see also [103
for a better proof) that
(1.1) For any planar graph H, there is an integer N > 0 such that every graph
with no minor isomorphic to H has tree-width < N.

Of course, this theorem is not so exact as the theorems of Hall anid Wagner
above, because the structure it provides is necessary but not sufficient for the
exclusion of H, while Hall's and Wagner's theorem give structure that is nec-
essary and sufficient for the exclusion of the minor. On the other hand. (1.1)
is best possible in another sense, because for any non-planar graph H there is
no integer N as in (1.1). In that :•ense, bounded tree-width is the structure
resulting from the exclusion of a planar graph as a minor. Our objective in this
paper is to describe the structure resulting from the exclusion of a graph with
crossing number 1 (or more precisely, of a minor of such a graph).

To describe this structure we need "k-sums". A separation of a graph G is
a pair (A, B) of subgraphs of G with A U B = G and E(A n B) = 0. and its
order is 1V(A n B)I. Let (A, B) be a separation of G, of order k. Let A' be

obtained from A by adding (') new edges to A joining every pair of vertices
in V(A n B), and let B+ be obtained from B similarly. We say that G is the
k-sum of A+ and B>. For example, the graphs which can be obtained from
copies of K 1 and K 2 by repeated 1-sums are the trees. and if we permit 0-sums
as well we obtain the forests. If G is the k-surn of A' and B+, and A+ and B"

are both isomorphic to proper minors of G (every minor of G is proper except
G itself) we say that G is the proper k-surn of A+ and B+. W'e shall only need
0-. 1-. 2- and 3-sums.

Let us say that a graph H is singly-crossing if H is isomorphic to a minor
of a graph H' which can be drawn in the sphere with < 1 crossing. (Unlike
being planar, having crossing number < 1 is a property not always inherited by
minors.) Our main result is the following.

(1.2) For any singly-crossing graph H there is an integer N > 0 such that every
graph with no minor isomorphic to H may be obtained by proper 0-, 1-, 2- and
3-sums, starting from planar graphs and graphs of tree-width < N.

(1.2) is a consequence of the following.

(1.3) For any singly-crossing graph H there is an integer N > 0 such that ever~y
graph with no minor isomorphic to H is either

(i) the proper 0-, 1-, 2- or 3-sum of two graphs, or

(ii) planar, or

(iii) of tree-width < N.

Proof of (1.2), assuming (1.3). Let N be as in (1.3). then we claim that (1.2)
is satisfied. Let G be a graph with no minor isomorphic to H. We prove. by
induction on 1V(G)] + -E(G)I. that G may be constricted as in (1.2). If G is
the proper 0-, L-. 2- or 3-sum of G1 and G2 say. then G, and G2 have no minor
isoulorphic to H because G, and( G2 arc thlirnselves isomorphic to minors of G.
From the inductive hypothesis, G, and (I;2, ard ,enc C. can I e 01)1ained in

the required way. We assun', then (hat G is not the proper 0-. 1-. 2- or .1-suni
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of two graphs. By (1.3), either G is planar or it has tree-width < N, and in
either case it satisfies the theorem. E

It remains then to prove (1.3), and that is the objective of the next section.
Let us observe that (1.2) is indeed best possible in the sense we specified,

that for any non-singly-crossing graph H there is no integer A" as in (1.2). Let
G' be a 4-connected planar triangulation with large tree-width, and let a, b, c
and b, c, d be the vertices of two regions with a common edge. Add an edge
with ends a, d forming G. Then G is non-planar and has large tree-width, and
cannot be expressed as the proper 0-, 1-, 2- )r 3-sum of two graphs (since G
is 4-connected), and so does not have the structure specified in (1.2). On the
other hand, G has no minor isomorphic to H, since G has crossing number 1
and H is non-singly-crossing. Thus, there is no N so that (1.2) holds.

2. THE MAIN' PROOF

We shall see that (1.3) follows rather easily from results about tangles in the
Graph Minors series. A tangle in G of order 0 is a set 7 of separations of G,
each of order < 0, such that

(i) if (A, B) is a separation of order < 0 then T contains one of (ya, B),
(B,A)

(ii) if (A1 , B 1 ), (A 2 , B 2 ), (A 3 , B 3 ) E T then A I U A2 u A 3 : G
(iii) if (A, B) c T then V(A) : V(G).

Tangles were introduced in [6].
Let G be a non-null connected planar graph drawn in a sphere E. Let K be

another graph drawn in E such that
(i) V(G) _ V(K) and every edge of K has one end in V(G) and the other

in V(K) - V(G)

(ii) every region of G (regions are open discs) contains a unique vertex of
K

(iii) no edge of G (edges are open line segments) intersects the drawing of
K

(iv) for each v E V(G), the edges of G and of K incident with v alternate
in their cyclic order around v.

Such a graph K is called a radial graph of G.
Now let G be a connected planar graph drawn in E with E(G) 5 0, and let

K be a radial graph of G. Let T be a tangle in G of order 0. If C is a circuit of
K with [E(C) < 20, we define ins(C) to be the unique closed disc A bounded
by C with

(G n A,, G n E - A) E T,

where GnA denotes tile subgraph of G drawn in A. (For X C E. X denotes the
closure of X.) If W is a closed walk of K of length < 20 we define ins(W) to
be the union of ins(C), taken over all circuits C of K', together with all points
of the drawing of K', where K' is the subgraph of K formed by the vertices
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and edges in W. If u, v E V(G) we define

0 if u-v
d(u,v)= k if u 7 v and there is a closed walk W of K of length <20 withu, v E ins(W), and the shortest such walk has length 2k

0 otherwise.

We call d the metric of T. (It is indeed a metric, incidentally.) It does not
depend on the choice of K, and every connected planar graph G with E(G) # (
has a radial graph, and so d is determined by G, as drawn in 5. and by T.

If G' is a subgraph of G, a G'-path in G is a path in G with distinct ends.
both in V(G'), and with no other vertex or edge in G'. We need the following
two lemmas.
(2.1) For any singly-crossing graph H there is an integer N1 > 0 with the
following property. Let G' be a subgraph of a graph G, and let there be a G'-
path with ends u, v. Let G' be planar and connected, drawn in a sphere, and
let T be a tangle in G' with metric d. If d(u, v) >_ N, then G has a minor
isomorphic to H.
(2.2) For any singly-crossing graph H there is art integer N2 >_ 0 with the
following property. Let G' be a subgraph of a graph G. and let there be two
disjoint G'-paths with ends ul, v, and u 2, v2 respectively. Let G' be planar and
connected, drawn in a sphere, and let T be a tangle in G' of order > N2 . Let
C be a circuit of G' bounding a region, with U1 , U2. L 1. V2 E V(C) in order. Let
there be no (A,B) e T of order< 3 with {ul,v1,u 2 ,v 2} C_ V(A). Then G has
a minor isomorphic to H.

The proofs of (2.1) and (2.2) are similar, and much like the proofs of [5.
section 9] or [7, theorems (4.4) and (4.5)], and we omit the details.

A drawing G in a sphere E is rigid if for every F C E homeomorphic to a
circle, meeting the drawing only in vertices and with IF n V(G)I < 2. there is
a closed disc A C E bounded by F such that either

(i) G is drawn entirely in E - A, or
(ii) IF nl V(G)j = 2 and G n A is a path with ends in F.

Proof of (1.3). Let N 1,N 2 satisfy (2.1), (2.2) respectively. We may assume that
N1 Ž 12 and is even. Let 0 = 12N, + 12 + max(4N, + 3. N2). Let N be such
that every graph with tree-width > N has a subgraph G' such that

(i) G' is planar, and has a rigid drawing in a sphere, and
(ii) G' has a tangle of order 0.

This is possible by (1.1). Indeed, we may choose G' to be a subdivision of
a large piece of the hexagonal lattice, since such graphs have tangles of large
order.

We claim that N satisfies the theorem. For let G be a graph with no minor
isomorphic to H, and that is not expressible as the proper 0-. 1-. 2- or 3-sum
of two graphs. We may assume that G has tree-width > N. for otherwise it
satisfies the theorem. By the choice of N. G has a subgraph G' with a rigid
drawing in a sphere E, and G' has a tangle T of order 0. Since 0 > 2. it follows
that E(G') # 0 and the metric of T is defined, d say.
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(1) d(u, v) < N1 for all u, v E V(G') such that some G'-path m G has ends u,
V.

For otherwise G has a minor isomorphic to H. by (2.1), a contradiction.
(2) There is no connected subgraph G" of G', with a tangle T" of order >

0 - 1(N, - 12, such that
(i) there ur' two disjoint G" -paths in G with ends ul, v, and u2, v2 respec-

tively
(ii) there is a circuit C of G" bounding a region of G", with u1 , U2 .v 1 , v 2 E

V(C) in order
(iii) there is no (A, B) E T" of order < 3 with {u1, Viuv 2,} C 1V(A).

For otherwise G has a minor isomorphic to H by (2.2), since 0- 12N 1 - 12 > N 2,
a contradiction.

Since G cannot be expressed as the proper 0-, 1-, 2- or 3-sum of two graphs,
it follows easily that
(3) There is no separation (A, B) of G of order < 3 such that A, B both have

circuits and V(A), V(B) $ V(G).
By (1), (2) and [8, theorem (10.1)], it follows that there exists a family

((Ai, Bi) : i E I) of separations of G, a family (Ai : i E I) of closed discs in E,
and a function a with domain

X = U(V(Ai n Bi): i E I)

satisfying the following:
(i) for each i E I, (Ai, Bi) has order < 3, and (A, n G', Bi n G') E T

(ii) G = U(Ai : i G I), and Ai 9 Bj for all distinct i, j E I
(iii) for each i E I and v E V(Ai n B), ck(v) E bd(Ai)
(iv) for distinct i,j E I, if x E Ai n A, then x = a(v) for some v E

V(A, n A,)
(v) a(u) 5 a(v) for distinct u, v E X.

(4) For each I E I, Ai may be drawn in Ai so that each v E V(A, n B,) is
represented by a(v).

By (i), (Ai n G', Bi n G') E T, and so Bi n G' has a circuit, by [6, theorem
(2.10)1; and V(Ai n G') 34 V(G') since (Ai n G', Bi n G') E T. By (3), either
V(B 2 ) = V(G) or Ai has no circuit, and in either case the claim follows.

For each i E I, take a drawing of Ai in Ai as in (4); then we obtain a drawing
of G in E, and so G is planar, as required. I

3. EXCLUDED MINORS

A second natural question about singly-crossing graphs is, what are the
minor-minimal graphs that are not singly-crossing? In a conversation with
T. B16hme and R. Thomas, during the conference of this Proceedings, we were
surprised to observe that this question can be solved very easily using known re-
sults, and it seems worthwhile to record the answer here. We need the following
three lemmas.
(3.1) [1] A graph G can be drawn in the projective plane if and only if it has
none of 35 specific graphs (say H1,..., H35) as a minor.
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(3.2) [2,111 If G is a graph which can be drawn in the projective plane E, then
the following are equivalent:

(i) some drawing of G in E is not 3-representative
(ii) every drawing of G in E is not 3-representative
(iii) G has one of 6 specific graphs (say H36,,..., H 4 1) as a minor.

1H36,..., H 4 1 are the six graphs different from K 4 ,4 minus one edge, that can
be obtained by YA and AY exchaiiges starting from K6 . See [9]. A drawing
in E is 3-representative if every non-null-homotopic simple closed curve in E
which meets the drawing only in vertices, passes through at least 3 vertices.]
(3.3) A graph G is singly-crossing if and only if it has a drawing in the projective
plane which is not 3-representative.

We omit the proof, which is easy. But now it follows that
(3.4) A graph is singly-crossing if and only if it has none of H1i . , H41 as a
minor.

Proof. If G is singly-cn. sing then by (3.3), (3.1) and the equivalence of (i)
and (iii) in (3.2), it follows that G has none of Hl,.. ., H41 as a minor. For
the converse, suppose G has none of Hl,..., H41 as a minor. By (3.1), G has
a drawing in the projective plane, and by the equivalence of (ii) and (iii) in
(3.2), this drawing is not 3-representative. From (3.3), G is singly-crossing, as
required. U

One can also check that H 1, . .. , H4 1 are all distinct, and indeed none of these
is a minor of another.
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ABSTRACT. Graph minors is a field that has motivated numerous investiga-
tions in discrete mathematics and computers science, a fact demonstrated
by the variety of papers and open problems appearing in this volume. This
section summarizes those problems which were submitted by participants
of the conference for inclusion in this special section of the proceedings,

1. Introduction

There were many open problems discussed in problem sessions, meals, ex-
cursions and other gatherings at the conference. Several of these appear in the
other papers of this volume, and a few of the participants submitted problems
to be included in this section. This paper is partitioned into several sections

addressing a variety of problem areas: path-width and tree-width (Section 2).

paths, cycles and independent sets (Section 3), coverings and integer flows (Sec-
tion 4), well-quasi-ordering (Section 5), geometry and topology (Section 6). logic
(Section 7), and disjoint paths (Section 8). Each subsection focuses on present-
ing a particular problem or group of problems, and the name of the author who
contributed that section is given in the title. To enhance the exposition and
have a more consistent format, several of the contributions were edited and so I

apologize for any errors that may have been introduced.
With only a few exceptions, our notation and terminology is consistent with

that of Bondy and Murty [7]. A graph H is said to be a minor of a graph G
if H can be obtained from a subgraph of G by contracting edges. A graph may

have loops and multiple edges unless we explicitly state otherwise.
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2. Path-Width and Tree-Width

Recently, researchers in structural as well as algorithmic graph theory have
shown much interest in the notions of path-width and tree-width. A tree-
decomposition of a graph G = (V, E) is a pair ({X, I i E 1}, T (IF)),
with T a tree, and each X Cg V, such that

(i) UiEI Xi = V,
(ii) for all vw E E, there exists an i E I with v, w E Xi, and

(iii) for each v E V, {i E I v E XiI forms a connected subtree of T.
The width of a tree-decomposition is maxi•E IXiI- 1. The tree-width tw(G) of
G is the minimum tree-width over all tree-decompositions of G. When tw(G) <
k, G is often called a partial k-tree or, if G is maximal with respect to this
property, a k-tree. The terms path-decomposition and path-width pw(G)
are defined similarly, except that T is required to be a path.

2.1. Unavoidable Minors (Paul Seymour). Let H1 be a graph with a
vertex v such that H1 - v is a forest. Let H2 be an outerplanar graph, that is,
a graph that can be drawn in the plane so that every vertex is incident with the
infinite region.

OPEN PROBLEM 1. Does every 2-connected graph of sufficiently large path-
width (or equivalently, containing a sufficiently large uniform depth binary tree
as a minor) contain H1 or H12 as a minor?

2.2. The Path-Width of k-Trees (Hans L. Bodlaender and Jens Gust-
edt). The general problem of determining the path-width of a given graph is
known to be NP-hard, proven independently by various authors [23]. Many
problems become polynomial time solvable, when restricted to graphs whose
tree-width is bounded by a constant [3]. Thus, we are interested in the complex-
ity of the problem of determining the path-width of graphs G with tree-width
bounded by some constant k. So far, this problem has only been solved in the
case k = 1 (i.e., G is a forest) by Scheffier [30], among others, who gives a linear
time algorithm for the problem. For k > 1, the problem is open.

CONJECTURE 2. For any fixed k the problem of calculating pw(G) on the
class of graphs G with tw(G) !_ k is solvable in polynomial time.

Here is an indication why Conjecture 2 should hold. Recently Bodlaender
and Kioks [6] gave an algorithm to determine whether or not pw(G) < 1 holds
in time 0 ((21)! n), if a tree-decomposition of G of size < k is given, where k is
constant. The '0' hides a term, exponential in k. Since pw(G) < tw(G) - log n
(see [5]), this gives a subexponential algorithm which uses time, polynomial in

lIogn.

Now for every k > 1 one of the following three cases must hold
(i) The problem is NP-hard for k

(ii) It has e lower bound which is super-polynomial
(iii) It has a polynomial algorithm, that is Conjecture 2 holds.
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Of course, (i) would separate NP from EXP and (ii) would separate P from
NP. So these two cases, if proven, would both imply deep results in complexity
theory. This seems very unlikely. On the other hand many people have tried
and failed to prove the conjecture in the special case k = 2.

CONJECTURE 3. The problem of calculating pw(G) on the class of partial
2-trees is solvable in polynomial time.

One reason for this seems to be the large number of cases that result (for

example) when several graphs are glued together at a triangle, for full 2-trees, or
a cycle, for partial 2-trees. At the moment it seems more likely that Conjecture 2
would be solved in one step, avoiding intensive case analysis.

3. Paths, Cycles and Independent Sets

3.1. Neighbors of an Independent Set (Nathaniel Dean).

CONJECTURE 4. Let G be a k-connected, nonhamiltonian graph with k > 2.
Then some cycle of G contains k independent vertices and their neighbors.

CONJECTURE 5. Let G be a k-connected, nontraceable graph with k > 1.
Then some path of G contains k + 1 independent vertices and their neighbors.

The cases k = 2,3 of Conjecture 4 have already been proved (see [14] and [20]).

In fact, the case k =- 2 of Conjectures 4 and 5 follows easily from a proof given
by Dirac [11] (see also Exercise 10.27 in [19]). Further, cases k = 1,2 of Con-

jecture 5 are easy.

3.2. Dominating an Independent Set (Paul Seymour).
OPEN PROBLEM 6. Let G be a simple graph with n + k vertices, and let X

be an independent set with 1X1 = k < V(G). Suppose IE(G)i > kn and each
vertex v not in X is joined to X by k paths, mutually (vertex) disjoint except

at v. Can one always contract edges (not identifying any two vertices in X) to
obtain a graph in which there are two vertices both adjacent to every vertex in
X?

Robertson, Seymour and Thomas have proved this for k < 5. There are
examples showing that the condition JE(G) I > kn is best possible. For example,

if G is obtained from an (n + 1)-vertex path P with one end x G X by joining

each of the remaining k - 1 vertices of X to every vertex of P - x, then G has
kn edges and no such contraction is possible.

3.3. Hamiltonian Cycles (Robin Thomas). Tutte [41] proved that ev-
ery 4-connected planar graph is hamiltonian, and Wagner [44] characterized the
graphs having no KA.-minor. These results together imply that every 4-connected
graph with no K5 -minor is hamiltonian. Can this be extended to larger connec-

tivities by excluding larger minors?

CONJECTURE 7. For every k > 1, every k-connected graph with no gk+l-
minor is hamiltonian.

The conjecture is vacuously true for k < 4.
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4. Coverings and Integer Flows

4.1. Triangles (Andras Seb6).
OPEN PROBLEM 8 (S. POLJAK, A. SEB6, P. D. SEYMOUR). Characterize

graphs which can be regularly edge-covered by triangles, that is for which there
exists a set of triangles covering every edge of the graph the same positive number
of times.

Equivalently, when is the all l's function on the edges of a graph in the cone
generated by the edge-characterismic vectors of triangles? More generally, what
is the set of linear inequalities describing the cone of triangles (as edge-sets) of
a graph? Namely, is the following conjecture true?

CONJECTURE 9 (S. POLJAK, A. SEBO, P. D. SEYMOUR). Let G = (V,E)
be a graph. Then the cone generated by the edge-characteristic vectors of tri-
angles is {x : vHx > 0}, where H = (V', E') is a triangle free subgraph of G,
and

-1 ifeEE(H)

VH(e)= 2 if e = xy E E(G) - E(H) and x, y E V'
1/2 if e has exactly one end in V'
0 otherwise.

For a reference on cones of circuits see [35], and for more information on
triangle covers see [22]. Svatya Poljak notes (personal communication) that for
random graphs Problem 8 has already been settled since in this case the all 1's
function is in the cone of cuts if and only if there is a regular triangle cover.

OPEN PROBLEM 10 (A. SEB6). Let G be a graph. Is it true that for all
R C E(G) satisfying IE - RI •5 IE n RI there exist edge-disjoint circuits each
containing exactly one edge of R, if and only if there exists no R for which the
same inequality holds and in addition the union of cuts for which equality holds
contains an odd cut?

This problem comes from the undirected integer multiflow problem where the
union of the demand and supply edges is planar [21]. If the cut condition holds
a fractional solution always exists (see [37] or for a short proof see [321). A
common generalization of these is proved in [15], and some special cases where
the condition stated in the conjecture is also sufficient are stated in [33].

OPEN PROBLEM 11 (A. SEB6). Let G be a graph. Is it true, that (i) holds
for arbitrary R C E(G), and adding to G parallel copies of edges in an eulerian
way (copies inherit membership in R), if and only if (ii) also holds for all these?

(i) There exist edge-disjoint circuits each containing exactly one edge of R,
if and only if there exists a fractional packing of such circuits.

(ii) There exist edge-disjoint circuits each containing exactly one edge of R,
if and only if for every 0 - 1 - c• function I on E(G) - R which is even on

cycles, Z-ER/i1(r) <_ Z-,E-RPL(e), where pg(e) denotes the shortest
path length with edge-weights 1, between the ends of e.
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FIGURE 1. 2-connected graphs with no even cycle decomposition

The property that a fractional solution to multiflow problems implies an inte-
ger solution provided the data is Eulerian is strictly related to the bipartiteness
of the metrics providing a necessary condition for the existence of a fractional
flow. Some tools for Problem 11 and a proof for a special case can be found
in [341 and [31].

4.2. Even cycle decomposition (Cun-Quan Zhang). Let G be an eule-
rian graph. A partition T" of E(G) into cycles is called a cycle decomposition
of E(G), and the decomposition is even if every cycle of F has even length.

CONJECTURE 12. Every 3-connected eulerian graph G =-. K5 containing an
even number of edges has an even cycle decomposition.

Note that K 5 does not have an even cycle decompositio.i. The conjecture was
proved by Seymour [36] for 2-connected planar graphs and by Zhang [47] for
2-connected graphs with no K5-minor. Furthermore, the connectivity condition
in the conjecture cannot be reduced since there are 2-connected eulerian graphs
#ý K5 that contain an even number of edges and have no even cycle decomposition
(see Figure 1).

4.3. A Weak 4-Flow Conjecture (Cun-Quan Zhang). The following
conjecture of Tutte is a well-known refinement of the Four Color Problem (see [40]
or [18]).

4-Flow Conjecture: Every 2-connected graph containing no
Petersen-minor admits a nowhere-zero 4-flow.

The only progress was made by Jaeger [18] who proved ý.hat every 4-edge-
connected graph admits a nowhere-zero 4-flow.
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A cycle double cover of a graph G is a family F of even subgraphs such
that each edge of G is contained in exactly two even subgraphs of F. The
relation between the 4-flow problem and the cycle cover problem is evident in
the following well-known proposition.

PROPOSITION 4.1. Let G be a 2-connected graph. The following statements
are equivalent:

(i) G has a nowhere-zero 4-flow;
(ii) G has a cycle double cover consisting of at most 4 even subgraphs.

CONJECTURE 13 (WEAK 4-FLOW CONJECTURE). There is an integer k such
that every 2-connected cubic graph containing no subdivision of the Petersen
graph has a cycle double cover consisting of at most 4 even subgraphs.

4.4. Disjoint Parity Subgraphs (Cun-Quan Zhang). Let G be a graph.
A subgraph H of G is called a parity subgraph of G if dH(V) M = (V) rmod 2
for every vertex v of G. The odd-connectivity of G is the smallest number of
edges in an edge cut of containing an odd number of edges.

CONJECTURE 14. If the odd-connectivity of a graph G is ko, then G contains
at least (k, - 1)/2 edge-disjoint parity subgraphs.

The following related results are either well-known or obvious.
(i) Every 2k-edge-connected graph contains at least k edge-disjoint span-

ning trees (see 125] or [42)).
(ii) Every spanning tree of a graph G contains a parity subgraph of G.

(iii) A graph admits a nowhere-zero 4-flow if and only if it contains at least
three edge-disjoint parity subgraphs.

(iv) In any graph the maximum imumber of edge-disjoint parity subgraphs is
odd.

4.5. Equivalence of SCC and CPP (Cun-Quan Zhang). The (undi-
rected) Chinese Postman Problem CPP is to find a shortest postman tour (i.e.
a closed walk using each edge at least once) of a given graph. The Shortest Cycle
Cover Problem SCC is that of finding a family T of cycles of a graph G such
that each edge of G lies in at least one cycle of F and the total length of all
cycles in Y is as small as possible. It is obvious that an optimum solution of
CPP cannot be greater than a solution of SCC. Further, these two solutions
need not be equal; see, for example, the Petersen graph. We say that CPP and
SCC are equivalent for G if an optimum solution of CPP equals an solution
of SCC.

A weight function w : E(G) -, {1, 2} is called eulerian if the total weight
of each edge-cut is even. A graph G with an associated weight function w is
denoted by (G, w). The set of all (1. 2)-eulerian weight functions of G is denoted
by 14-. If (G, w) has a family F of cycles such that each edge e of G is contained
in precisely w(e) cycles of F, then F is called a cycle w-cover and G is cycle
w-coverable (see [21, [181 and [48J). A graph G is said to have the cycle cover
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property if G is cycle w-coverable for every w E WG. It is not hard to see that
the SCC and the CPP are equivalent for G if G has the cycle cover property.

CONJECTURE 15. Let G be a 3-connected graph. Then SCC and the CPP
are equivalent for G if and only if G has the cycle cover property.

Note that this conjecture is stronger than Tutte's 4-flow conjecture. Moreover,
it is known that if G has no Petersen-minor or admits a nowhere-zero 4-flow, then
G has both properties: the cycle cover property and the equivalency of SCC and
CPP (see [1], [2], [18] and [48]). Note that the connectivity condition in the
conjecture cannot be reduced since there are 2-connected graphs for which SCC
and CPP are equivalent and which do not have the cycle cover property.

5. Well-Quasi-Ordering

A simple graph H is an induced minor of a simple graph G if H can be
obtained from an induced subgraph of G by contracting edges (multiple edges
that result are deleted). Let us denote by G -< H if G is isomorphic to an induced
subgraph of H.

5.1. Alternating Double Wheels (Robin Thomas). An alternating
double wheel is a graph obtained from an even circuit by adding two non-
adjacent vertices and joining one of them to one color class of the circuit and
joining the other vertex to the other color class. Let F be a set of (isomorphism
classes) of planar graphs such that if G C Y and H is an induced minor of G
then H E Y.

OPEN PROBLEM 16. Is it true that F" is well-quasi-ordered in the induced
minor ordering if and only if it contains only finitely many alternating double
wheels?

See [39] for a related result.

5.2. Well-Quasi-Orders From Bipartite Graphs (Guoli Ding). Let
P,, be the path on n vertices and let Gn be the class of graphs with no induced
P,, and P5, (the complement of P,). It has been shown in [10] that (G 4 , -<) is
a well-quasi-order but (G5 , •) is not. Let H be the class of permutation graphs
[16]. Then we ask:

OPEN PROBLEM 17. Is (Gn I H, -) a well-quasi-order for n > 5?
Let G = (X, Y, E) be a connected bipartite graph. We define the bipartite

complement of G to be the bipartite graph G* = (X, Y, X x Y - E). Let B"
be the class of bipartite graphs without induced P7, and P*. It is proved in [11]
that (B6, -<) is a well-quasi-order yet (B8, •) is not.

OPEN PROBLEM 18. Is (B7 , _) a well-quasi-order?

6. Geometry and Topology

6.1. Higher Genus Polyhedra (Nathaniel Dean). A polyhedron P of
genus -( is constructed by joining polyhedral faces edge-to-edge so that the re-
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FIGURE 2. A 4-connected toroidal polyhedron

sulting figure is topologically equivalent to a surface of genus -/ (see Figure 2).
The 1-skeleton of P is a graph of genus -y, but there are toroidal graphs that
cannot be realized as a toroidal polyhedra [46].

CONJECTURE 19. Every 4-connected toroidal polyhedron is hamiltonian.
Grunbaum has made the stronger conjecture that every 4-connected toroidal

graph is hamiltonian.

6.2. Crossing Number (Detlef Seese). For which minor closed classes K
of graphs does there exist a polynomial time algorithm to determine the crossing
number of the elements of C?

OPEN PROBLEM 20. Is there a polynomial time algorithm to determine the
crossing number of partial k-trees, for fixed k?

6.3. (Robin Thomas). Colin de Verdiere [8] introduced an irvariant it de-
fined for every graph G. He showed that p(G) <_ 3 if and only if G is planar.

OPEN PROBLEM 21. Is it true that pi(G) < 4 if and only if G can be embedded
in 3-space in such a way that every circuit of G bounds a disk disjoint from the
graph?

See, [291 for more information about this kind of spatial embeddings.

6.4. Bandwidth of the Integer Simplex (Douglas West). Consider the
problem of labeling Llh* vertices of a graph with integers so as to mirimize the
maxinimn of the absolute values of the difference between the labels of adjacent
vertices, This minimum over all possible labelings is called the bandwidth of
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the graph. Let G(k, 1) be the graph whose vertices are the vectors with k + I
non-negative integer coordinates summing to 1, putting vectors adjacent when
they differ by one in two positions. It is easy to draw G(2.1) in the plane as a
triangulation of a large equilateral triangle. Numbering the vertices successively
in rows confirms that the bandwidth is at most I + 1.

CONJECTURE 22. The bandwidth of G(2, 1) equals I + 1.
More generally, when the vertices of G(k, 1) are assigned distinct k + I-

dimensional integer vectors, the minimum sum of coordinate differences between
adjacent vertices is called the (k+l)-dimensional bandwidth (see [4) and [45[).

CONJECTURE 23. The (k + 1)- dimensional bandwidth of G(k, I) is I + 1.

6.5. Pagenumber of the Complete Bipartite Graph (Douglas West).
The pagenumber of a graph is the minimum number of pages in a book such
that the graph can be embedded without crossings with the vertices in some fixed
order on the spine of the book and each edge on a single page. By construction.
the pagenumber of K,,.,, has been shown to be at most [(2rn + n)/41, where

rn > n.

CONJECTURE 24. The pagenumber of Km.n is [(2m + n)/41, where in > n.

Of particular interest is the answer for K•,, which by our conjecture should
be 3m/4 (see [24]).

7. Logic

7.1. Trees and Second Order Theory (Detlef Seese).

CONJECTURE 25. Let C be a class of finite graphs with a decidable monadic
second order theory. Then there is a class T of trees such that the monadic
second order theory of K is interpretable into the monadic second order theory

of T.

For the class of planar graphs, graphs of bounded genus and any class of
graphs excluding an arbitrary fixed graph as a minor one can show that this

conjecture holds (see [38] and [91).

7.2. Digraphs and Decidability (Dirk Vertigan). For a directed graph

G, let C denote the corresponding undirected graph. Let C be a minor closed
class of directed graphs. Let C be the corresponding minor closed class of undi-
rected graphs, that is, C = {G: G E C}. Note that C is not uniquely determined

by C, By the Robertson-Seymour theorem [27], both C and C have finitely many
excluded minors. How are these excluded minors related? Consider the following
problem (see also [43)).

Input: An antichain of directed graphs (being the excluded

minors of some C).
Output: The excluded minors of C.

Is this problem decidable? (Equivalently, is there a computable bound on
the size of excluded minors of C, in terms of such a bound for C?) If so, what

stronger statements can be made? What about special cases such as when C has



686 NATHANIEL DEAN

a planar excluded minor, or a single excluded minor" For minor insight. hcre
are some examples:

Input: Acyclically oriented C(3. Output: K1.1,2-
Input: Cyclically oriented C:', Output: K 4 . Cr,

Input: Both oriented Cj's. Output: ('3.

8. Disjoint Paths (Nathaniel Dean)

Probably no stucture is more fundamental to graph theory than a path. Re-
sults concerning disjoint paths tend to have significant theoretical anid practical

implications. Consider the following algorithmic problems.

CYCLE THROUGH K VERTICES
INSTANCE: Graph G = (V. E) with Watcger edge weights and a subset S of V

of size k.
QUESTION: Is there a cycle in G that contains S?

SHORTEST CYCLE THROUGH K VERTICES
INSTANCE: Graph G = (V. E) with integer edge weights, an integer w. and a
subset S of V of size k.
QUESTION: Is there a cycle in G of weight at most w that contains S?

DISJOINT CONNECTING PATHS
INSTANCE: Graph G = (V.E) and a collection of k disjoint vertex pairs
(s1,t6), (s82 , t2 ) ....- (sk, tk).

QUESTION: Does G contain k mutually vertex-disjoint paths, one connecting

si to t, for each i = 1,2..... k!

SHORTEST DISJOINT CONNECTING PATHS
INSTANCE: Graph G = (V. E) with integer edge weights, an integer w, and a

collection of k disjoint vertex pairs (s 1, t1), (s 2 , t 2 ) ..... (sk tk).

QUESTION: Does G contain k mutually vertex-disjoint paths of total weight at
most w, one connecting si to t, for each i = 1, 2, .... , k?

The DISJOINT CONNECTING PATHS problem is solvable in polynomial

time for fixed k (see [261 and 128])). This implies a polynomial time solution to
CYCLE THROUGH K VERTICES for fixed k. The case k = 3 can actually be
solved in linear time [13]. This algorithm is straightforward and appears to be
quite fast. For k > 3 nothing is known.

OPEN PROBLEM 26. 11 SHORTEST CYCLE THROUGH K VERTICES solv-
able in polynomial time for fixed k?

OPEN PROBLEM 27. Is SHORTEST DISJOINT CONNECTING PATHS solv-
able in polynomial time for fixed k?
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